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The relation between extended and localized states in a magnetic field is investigated. A general
form for the magnetic Bloch states in an arbitrary rational field (with p /¢ flux quanta through a
unit cell, p and g relatively prime integers) is written, and their basic properties are studied. It is
shown that the completeness properties of lattices of orbitals relative to a set of N magnetic sub-
bands are connected with the value of the total quantum Hall conductance oy (in units of e%/A) car-
ried by these subbands. In particular, lattices of orbitals can reproduce continuously all the magnet-
ic Bloch states of N subbands if and only if oy =0, a case which may occur only for N multiples of
g. This is also the only case where localized magnetic Wannier functions for the subbands can be
constructed. In the light of these results a discussion is given of the almost-free-electron limit and

the tight-binding approach of Harper’s equation.

. I. INTRODUCTION

The concepts of Bloch functions! and localized orbitals?
are basic in the dynamics of electrons in solids. The prop-
erties of Bloch functions and localized orbitals, or Wan-
nier functions, have been studied extensively,3 ~8 and it is
by now well established that these two kinds of quantum
states provide equivalent descriptions of bands in solids.
Lattices of localized orbitals have also been used to give a
global definition and symmetry specification of bands in
solids.’

In the presence of a uniform magnetic field H the crys-
tal possesses magnetic translational invariance.'’~'? Be-
cause of this symmetry, a band structure exists in the en-
ergy spectrum, resulting, in general, from the broadening
and splitting of Landau levels in solids."*~!® The transla-
tional symmetry and band structure in the case Hs40 is
fundamentally different from that of the classical Bloch
case (H=O0). Magnetic translations are essentially
translations in a phase space (of the orbit center!®) and not
in ordinary space, as in the case of usual translations.
Thus, unlike Bloch bands, in which the conserved quanti-
ty is the quasimomentum k, magnetic bands are described
by a conserved quantity x, which is associated with the
whole degree of freedom of the orbit center.!” While a
large amount of information exists concerning Bloch
states and localized orbitals for usual bands (H=0),3~7
much less is known about the corresponding concepts in
the magnetic case, particularly the relation between them.

In a previous paper!’ it was shown that the basic differ-
ence between the translational symmetries for H=0 and
H-£40 is reflected in a corresponding difference between
the Bloch and localized states in the two cases. The case
studied was that of a rational magnetic field with 1/N
flux quanta through a unit cell (N integer). In this case it
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was shown that magnetic Bloch states are essentially kg
functions? in the coordinates of the orbit center, and that
magnetic lattices (or Pippard networks?!) of orbitals for a
magnetic band are generalized von Neumann lattices.?>2
By using known properties of the latter lattices, the com-
pleteness properties of Pippard networks of orbitals were
investigated. It was shown that exponential localization
of magnetic Wannier functions on this network is exclud-
ed by their orthogonality. This is in contrast to usual
Wannier functions (H=0), which can be chosen to be ex-
ponentially localized.>> ,

This difference in localization between the Wannier
functions for the cases H=0 and H-40 is due entirely to
different periodicities of the corresponding Bloch states in
their respective quasimomenta k and x. Bloch functions
can always be chosen to be strictly periodic in k in the
Brillouin zone.>~7 As a consequence of this, Wannier
functions with exponential localization do exist.>® On the
other hand, the magnetic Bloch states considered in Ref.
17 are kq functions® in k, namely they are periodic in the
magnetic Brillouin zone only up to a k-dependent phase
factor. Due solely to this fact, magnetic Wannier func-
tions with exponential localization do not exist.!”

In a remarkable paper, Thouless ef al.?* have shown
that the periodicity of the magnetic Bloch states in x has
a very interesting physical significance. It determines the
quantized Hall conductance o jez/ h (o} integer) carried by
the corresponding magnetic band (or subband) j. In the
case of kg periodicity in x (see Ref. 17), o;=1, which cor-
responds to the Hall conductance e2/h associated with a
Landau level.?® In general, the integer o; gives the
periodicity conditions in « satisfied by the magnetic Bloch
states of an isolated subband j. The integer o; satisfies a
Diophantine equation,?* which has been shown recently®®
to follow just from magnetic translational symmetry. It is
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instructive to recall here that an important element in the
proof of strict periodicity in k of the usual Bloch func-
tions (H=0) is time-reversal symmetry (the Hamiltonian
is real).%” When H=£0, the Hamiltonian is not real, so
that magnetic Bloch states do not have to be necessarily
strictly periodic in k (in fact, they are not in general). The
lack of time-reversal symmetry in the case H=40 is mani-
fested in the fact that a filled magnetic subband carries
generally a nonvanishing Hall current (0j¢0).24

In a recent paper, Thouless?’ shows that Wannier func-
tions for a magnetic subband j can be chosen with ex-
ponential localization if and only if o;=0. Thus, a mag-
netic subband Has a representation in terms of exponen-
tially localized magnetic Wannier functions if and only if
it does not carry a Hall current. This is a very interesting
result. It can, however, be shown that ;=0 for an isolat-
ed magnetic band can be achieved only when in the frac-
tion p/q, defining the rationality of the magnetic field,
g =1. This latter condition can be satisfied only for un-
physically high magnetic fields, of the order of 10° G. In
this paper we show that for N magnetic bands with a total
onxy=0 (for N >1 this can, in principle, be achieved for
any magnetic field with the only condition that N is a
multiple of ¢g) one can choose N localized orbitals (Wan-
nier functions) that span the N magnetic bands, and
reproduce continuously all the magnetic Bloch states.
Only in this case localized orbitals and magnetic Bloch
states provide equivalent descriptions of magnetic sub-
bands in solids, in analogy with the Bloch case (H=0).

A description of a set of N subbands by means of
symmetry-adapted magnetic Wannier functions was first
given by Brown.?® For the case of an arbitrary rational
field, with p/q flux quanta through a unit cell (p and ¢
are relatively prime integers), he shows that this descrip-
tion is consistent with the general theory of symmetry-
adapted localized orbitals* only if N =g, a case which is
expected in the framework of the effective Hamiltonian
formalism for magnetic fields.?’ 3! In a one-band ap-
proximation, one finds that the Hamiltonian is represent-
ed by the operator E (I1/#) (the effective Hamiltonian),
where E (k) is the energy function for the given band and
IT is the kinetic momentum operator, properly substituted
in E(k). An eigenvalue problem for the operator
E(I1/#), by exploiting its full translational symmetry,
gives rise in the tight-binding limit to a one-dimensional
difference equation, well known as Harper’s,’? or the
“almost-Mathieu,”?’ equation. This equation has attract-
ed considerable attention in the recent years, because it
emerges naturally in several other problems of solid-state
physics where competing periods appear.’* The spectrum
of Harper’s equation is very sensitive to the exact value of
the ratio p/q,%*~* and displays curious recursive’® and
scaling®® properties. For a given value of p/g, the spec-
trum consists of g subbands lying within the range of the
function E (k). When equipped with other arguments,
this fact leads to the widespread statement that a Bloch
band “splits” into ¢ “magnetic subbands” in a rational
field p/q. This “splitting” remains, however, controver-
sial.1740

It is curious that the splitting of a Landau level is also
described by Harper’s equation, but with p and ¢ inter-

changed (see, e.g., Ref. 24). This expresses a known re-
ciprocity relation between the nearly-free-electron and the
tight-binding limits in a magnetic field.*! Thouless
et al.?* have calculated from Harper’s equation in the two
limits the Hall conductances o; carried by the magnetic
subbands. In the nearly-free-electron limit they have
shown for their model that the conductances o; of the p
split subbands sum to 1 (the conductance of the original
Landau level). We show in this paper that this is a gen-
eral result following from the group-theoretical nature of
the splitting of a Landau level. In the tight-binding limit,
on the other hand, the conductances o; of the g “split”
subbands sum to zero.?*

In Sec. II of this paper we write a general form for the
magnetic Bloch states in an arbitrary rational field p/q,
and their basic periodicity properties are considered.
One-dimensional Hamiltonians for these states are de-
rived, and the splitting of a Landau level is studied by us-
ing the concept of homotopic invariants.*? In Sec. III we
investigate the completeness properties of magnetic lat-

- tices of orbitals relative to a set of N magnetic subbands.

It is shown that these properties are intimately connected
with the total Hall conductance oy carried by the sub-
band. In particular, lattices of orbitals can reproduce con-
tinuously all the magnetic Bloch states in the N subbands
if and only if oy =0. Only in this case do localized mag-
netic Wannier functions for the subbands exist. These re-
sults are applied to the nearly-free-electron limit and to
the effective Hamiltonian approach of Harper’s equation.

II. BLOCH STATES IN A RATIONAL
MAGNETIC FIELD

In this section the general form of the Bloch states in
an arbitrary rational magnetic field is written, and their
basic properties are studied. The Hamiltonian of an elec-
tron (of charge — e and mass m) moving in a periodic po-
tential ¥ (r) and a uniform magnetic field H is

2
7= vy, (1)
2m
where II is the kinetic momentum,
H=p+—2%H><rEp+%B><r, B=eH/c (2

expressed in the symmetric gauge. For the sake of clarity
we shall restrict ourselves in this paper to the relevant
case of motion in a two-dimensional crystal perpendicular
to H. The crystal lattice is assumed to be rectangular
with basis vectors a; and a, directed along the x and y
axes, respectively, of a coordinate system (x,y). The ex-
tension to more general lattice geometry (including the
third dimension) can be carried out without much difficul-
ty.!®*> The magnetic field H satisfies the general ra-
tionality condition

H'a1><a2 _p
hc/e g’

where p and g are relatively prime integers. Condition (3)
implies a commensurability between the crystal lattice and
the magnetic lattice whose unit cell encloses one quantum

(3)
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of flux, hc/e. Namely, a superlattice with basis vectors
b;=gq;a, and b,=g,a; (g, and g, are integers satisfying
q19,=4q) can be found, such that its unit cell (built on b,
and b,) encloses precisely p flux quanta. On this super-
lattice one can define an Abelian group of magnetic

translations'"1? commuting with the Hamiltonian (1):
(=T (b,)=(—1)"""exp é—ﬂc-b,, 4)

where b, =n,b;+n,b, (n; and n, are all integers) and
M,=p—+BXr. (5

The operator (5) gives the center of the classical orbit in a
magnetic field, (x¢,p9)=(—1l, /B, M. /B).** The com-
ponents of the operators (2) and (5) can be associated with
pairs of canonical variables (3,P) and (Q,P), given by!”!°

Qzény’ }—)=Hx, [é?i’]:lﬁa
(6)

_[J,l—ncx’ P= _ﬂxozncy’ [Q,P]=i#.
The variables (6) define two phase planes (Q,P) and (Q,P)
for the kinetic momentum and the center of the magnetic
orbit, respectively. Here, as in Ref. 17, we shall work in
the PP representation. In the absence of the periodic po-
tential, the Hamiltonian (1) reads

Q=yo=

2 p2 202
o= _P° mo Q7 eH . 7
2m  2m 2 mc

namely, it is a harmonic oscillator in the (Q,P) phase
plane with eigenenergies (Landau levels)

Ej=fio(l+73) . (8)

Because of the absence of the (Q,P) canonical pair in (7),
there is much arbitrariness in the choice of the eigenfunc-
tions of (7), which is directly related to the infinite degen-
eracy of the Landau levels (8).!7 This choice is fixed by

requiring simultaneous eigenfunctions of (7) and of a

complete set of commuting operators in the (Q,P) phase
plane. An important case of such a complete set of opera-
tors is the Abelian group of magnetic translations

(—D"™T (b)) =(—1)"2exp

énc b, ] , )

where b, =nb|+n,b5, and the unit cell built on b} and
b, encloses exactly one quantum of flux, hc/e. The
simultaneous eigenfunctions of (7) and (9) are

Yig(P,P)=f1(P)(P |K) , (10)

where f;(P) is an oscillator function in P, corresponding
to the levels (8), and

172
#ib} e . ,
(P|k)= —2—7—7_-—] > exp(—iknb})

n=-—c

%8 |P —hic,— Zbﬂﬁn (1)

2

is a kq distribution® in the variable P, with k=(k,«;)
(the magnetic quasimomentum) specifying the eigenvalues
exp(ik-b,) of (9). Since the group (9) is a complete set of
operators in the (Q,P) phase plane, its eigenfunctions (11)
form a complete set of functions in the variable P, when x
ranges in the magnetic Brillouin zone

O<ky<2m/by, 0<k,<2m/b} . (12)

Correspondingly, the set of functions (10), at fixed I,
spans the space of a Landau level, and thus describes
completely its infinite degeneracy.!”

In the presence of the periodic potential, the Hamiltoni-
an (1) commutes with the Abelian group (4). Because of
this magnetic translational symmetry, a band structure is
expected in the energy spectrum of (1). The eigenfunc-
tions (magnetic Bloch states) ¢ (P,P) of (1) are labeled by
a magnetic band index j and a magnetic quasimomentum
k specifying the eigenvalues of (4). The group (4) is actu-
ally a subgroup of index p of the group (9),'? since, by def-
inition of (4) and (9), we can choose, for example,
b)=Db,/p, b, =Db, (this choice will be made from now on,
together with b;=gqga;, b,=a,). Thus all the p distribu-
tions

(P |k\+2ms/a, k), s=0,1,...,p—1,

in (11) are eigenfunctions of (4) with the same eigenvalues

explix'b,). It follows that the most general form of
¥, (P,P) is
— p-1 — :
YiP,P) =3 ¢SAPNP |k)+2ms/ar, k) , (13)
5s=0

where k now ranges in the zone

0<K,< , 0<Kk,<2m/b,, (14)

b1

which is p times smaller than the zone (12). For an isolat-
ed magnetic band j, the functions (13) must satisfy period-
icity conditions in k in the zone (14). Following argu-
ments similar to those given in Ref. 45, the phase of
1/1j,,(T’,P) can always be chosen so that these conditions
read as follows:

Yjny 420/, 0 PPV =1 P,P) ,

Yjxy, g+ 2m/b,( Py P)=expliojic1by ) P, P) (15b)

(15a)

where o; is an integer generally dependent on the band j.
As was shown in Ref. 24, and as it will be discussed in
more detail below, o; gives the Hall conductance of the
magnetic band j. Given the conditions (15), we may easily
derive from them and from (13) correspondmg conditions
for the p functions ¢,K(P) in (13):

¢jxl+2ﬂ/b],x2(P): _(ji+t)(P) N

where t=1(mod ¢), s +¢ defined mod p, and

(16a)

¢}s.31,x2+21r/b2(i’)= exp —i%ZWS +i0jqual—i%Klal

X PSP . (16b)
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Equations for the functions dJ}f‘)(I_’) can be obtained by

substituting (13) into the Schrodinger equation with the
Hamiltonian (1). Expanding the periodic potential in a
Fourier series,

i

S & igq 2afis 5
v s exp | = Fuc, + —P |na
sgo u,ng—m ks ip’" P # p ! ai !
X exp

where |s —s'|,=s5 —s’ (mod p), E;(x) is the magnetic
energy band, and % is the Landau Hamiltonian. Equa-
tions (18), for s =0,1,...,p —1, form a system of p cou-
pled differential equations for the p functions ¢§2(P).
This system of equations has for each k an infinite num-
ber of solutions with the index j running from 1 to oo.
The system of equations (18) is apparently periodic in «,
-with the period 2mp /qa,. However, it is not hard to see
that the period in «, is actually smaller than this. In fact,
introducing the functions

¢ (P)=exp iKz';%Sﬂz

¢SAP) , (19)

it is easily verified that (19) satisfies a system of equations
periodic in k, with the period 27 /(ga,). This period is g
times smaller than that figuring in condition (16b), and it
can be shown to be related with the well-known g-fold de-
generacy in a magnetic band.!'~!3 After the transforma-
tion (19), the system (18) becomes periodic in «; and «; in
the zone

O<ki<2mp/qa;, 0<k,<2mw/qa, . (20)

Given a definite solution ¢}i)(f’), s=0,1,...,p—1, of
(18), corresponding to an isolated magnetic band j, the
functions (19) must satisfy periodicity conditions in « in
the zone (20). Again following arguments similar to those
given in Ref. 45, the phase of ¢ {3(P) can be chosen so to
make ¢§i) (P) strictly periodic in «; with the period
2mp /qa [this is consistent with (16a)], while

_— — . qa; |- —
¢;’21,K2+21r/qa2(P)=exp _lmjkl-p_' ¢5fc)(P) » (21)

where m; is an integer generally dependent on j. Using
(19), we see that relation (21) is consistent with condition
(16b) if and only if

poj+gmi=1. (22)

Equation (22) is an important Diophantine equation for
the integers o; and m;. It was derived recently on the
basis of symmetry arguments.”® In fact, it follows from
the g-fold degeneracy in a magnetic band, mentioned
above. The integer o; has the meaning of the Hall con-
dlzlftance (in units of e2/h) carried by the magnetic band
J-
The spectrum of the Hamiltonian (1) can be calculated

i 2 ol
"ﬁ“g“(ﬁQ—ﬁKz)(up +|s—s'|pay

3615

V(X,)="3, Uy n €Xp |2mi , (17)

mx n
mx ny
m,n a)

a,

and using (2), (5), (6), and (13), we obtain, after some alge-
braic manipulations,

OS5 (P)=[E;(k)—Hol¢5)P),  (18)

T

perturbatively in the limit of a weak periodic potential in
the framework of a single Landau level.'*?**! This ap-
proach has a sound group-theoretical basis.'>!* In fact,
the space, or the infinite degeneracy of a Landau level, is
described by the complete group of operators (9).!”!° In
the presence of a periodic potential the Hamiltonian com-
mutes with the group (4), which describes the space of an
isolated magnetic band. Since the group (4) is a subgroup
of index p of the group (9),!? it follows that a Landau lev-
el should split, in group-theoretical terms, into p magnetic
bands (hereafter called subbands). We shall number the
subbands split from a Landau level / by the index w,
w=12,...,p. Thus, in this framework we may write
Jj=(l,w), and the functions d)ﬁ-fc)(l_’) read simply as follows:

$in(P)=fi(P)ejy (k) , 23)

where ¢/)(k) are functions of k to be determined from the
corresponding Eq. (18). A detailed discussion of these
equations is given in Ref. 43 with the result that they lead
to a splitting of the Landau level into p subbands. This
splitting is accompanied by an interesting sum rule which
we prove below. The total Hall conductance carried by
the p split subbands is equal to that of the original Lan-
dau level, namely 1 (in units of e2/h):

S ow=1. (24)
=1

To prove relation (24), we notice first that after the
transformation (19), one obtains from Eq. (18) a p Xp ma-
trix W(k) (s,5'=0,1,. .. ,p —1) with eigenvectors
cl(j,)(x) (w=1,2,...,p). This matrix describes the split-
ting of the Landau level / into p subbands and is periodic
in K in the zone (20). It is known*? that if the eigenvalues
E;, (k) of such a matrix are distinct at each « (the mag-
netic subbands are isolated), one can associate with each
subband Ej,(kx) a homotopic invariant equal to the integer
my, appearing in the periodicity conditions (21). For a

finite pXp matrix the set of p integers my,
(w=1,2,...,p) must satisfy the sum rule*?
p
2 my,=0. (25)
=1

Using relation (25) in Eq. (22), the sum rule (24) follows.
It is interesting to notice that from Eq. (22) it follows also
that, for p > 1, no one of the integers m,, in relation (25)
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can vanish. This means that for p > 1 the system of equa-
tions (18) admits no solution strictly periodic in x in the
zone (20). Similarly, for ¢ > 1, 0,50 in relation (24), so
that the magnetic Bloch states (13) are never strictly
periodic in « in the zone (14). This remark will be re-
ferred to later in discussing the localization problem.

An important well-studied case** arises in the nearly-
free-electron limit with the simple periodic potential

2my
a;

V(x,y)=2V; cos +2V, cos (26)

01

The difference equation for the potential (26) is known as
Harper’s®? or the “almost-Mathieu”*® equation, and has
been studied extensively in recent years,>>~3° also in con-
nection with several other problems in solid-state phys-
ics.* Thouless et al.?* have calculated the Hall conduc-
tances o, associated with the magnetic subbands E,(«x)
for the potential (26). Analogous calculations were per-
formed in the case of a hexagonal lattice.*

By using the magnetic Bloch functions (13), one can
develop the quantum-mechanical representation which
generalizes the magnetic Adams representation developed
in Ref. 17 for the special case p =1. We begin by writing
the orthogonality relations satisfied by the eigenfunctions
(13). For each k the system of equations (18) correspond
to a Hermitian problem, so that using (11) and (15) we ob-
tain

[ [ dPdP (P, P(P,P) =84, (k—K") ,

A , 27Tn1 .
Ajlk—Kk')= D 8 |kj—K)— b exp(—iojKibny)
ny,ny 1
; 2mn,
X8 |ky—Kj— (27
by

We have also the completeness relation

> f dk Yj(P,P);(P',P')=8(P—P')8(P —P'), (28)
J

where the integral over k is performed in the zone (14).
By using the formalism of Ref. 17 and the relations (27)
and (28), we obtain the periodicity conditions obeyed by a
wave function B;(k) in the Adams representation [see re-
lations (15)]:

Bj(K1+27f/b1,Kz):Bj(Kl,Kz) N (293)

Bj(ky, ky+2m/by)=exp(—iojkib)Bj(ky,k;) . (29b)

Expressions for operators in the Adams representation are
obtained in complete analogy with the special case p =1
(see Ref. 17).

The main feature of the magnetic Adams representation
is its characterization by an entire series of integers o,
j=12,3,..., as we see, for example, from (27) and (29).
The set {o;} is not completely arbitrary. Thus, if two
subbands, say j; and j,, first overlap (‘“collide”) and then
separate again, one has the sum rule*?

0j,+0j,=0j +0j, , (30)
where the prime indicates the case after the collision. The
sum rule (30) (and similar expressions for the simultane-
ous collision of three or more subbands) represents physi-
cally the conservation law of the total Hall conductance
of the colliding subbands. If collisions take place only
within a Landau level, the sum rule (24) is maintained for
each /. More generally, the integer o; of a subband may
change only after a collision with another subband takes
place, but then the sum rule (30) must be satisfied. These
facts put restrictions on the set of integers {o;}.

In the limit of a weak periodic potential, the magnetic
Bloch states assume the following important form, ob-
tained by substituting (23) into (13):

1l’jk(p’P):‘f‘l(F)qum(P) » (31)
where
p—1
o P)= cl(,f,}(K)(P |ki+2ms/ay, ky) . (32)
s=0

In relation (31) one has an explicit separation of variables
Pand P. The index w in (31) and (32) is a good quantum
number, having a sound group-theoretical origin and la-
beling the p subbands into which a single Landau level
splits. The corresponding p eigenvectors ci(k) (w
=1,2,...,p) are orthogonal and linearly independent at
each k. The functions (31), for w=1,2,...,p and «
ranging in the zone (14), thus span the space of a Landau
level, and are therefore completely equivalent to the set of
functions (10), where k ranges in the zone (12) [which is p
times larger than (14)]. This equivalency reflects the
group- theoretlcal splitting of a Landau level into p mag-
netic subbands.'?— 1

III. MAGNETIC LATTICES OF ORBITALS

In this section we investigate completeness properties of
lattices of orbitals for magnetic subbands in solids. These
properties were studied in our previous work!” for the spe-
cial case p =1, with o;=1 for all j. It was shown there
that a lattice of orbitals generated by the complete group
of magnetic translations (9) is essentially a von Neumann
lattice’>?* in the (Q,P) phase plane, spanning the Hilbert
space of a magnetic band. It was also shown that orthog-
onal orbitals on this lattice, namely magnetic Wannier
functions, are necessarily poorly localized at least in one
direction of space (have power-law localization in this
direction). Recently Thouless?” has shown that a magnet-
ic subband j can have a representation in terms of ex-
ponentially localized magnetic Wannier functions if and
only if 0;=0. This is a very interesting result and it can
be generalized to a number of magnetic bands with the to-
tal 0=0. Actually, the result for a number of magnetic
bands is of much physical interest for the following
reason. From relation (22) it follows that only when g =1
can o be zero for a particular magnetic band. The value
g =1 corresponds, however, to nonphysical magnetic
fields (of the order of 10° G). On the other hand, when
one considers ¢ magnetic bands, then relatlon (22) for the
total o of these g bands is
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po—+gm =q . k (33)

Unlike relation (22), which has a solution 0=0 only for
q =1, relation (33) for the g bands has always a solution
o=0. Having this in mind, we develop in what follows a
set of localized orbitals for ¢ magnetic bands.

A magnetic lattice or Pippard network?! of orbitals for
a subband j’ is ebtained by applying the group of magnet-
ic translations (4) to a general orbital A4 j'(1_5,P) belonging
to this subband. This orbital is

A;(P,P)= [ dxB;(k)};(P,P) (34)

where Bj(k) is a general function of k satisfying the
periodicity conditions (29). In the Adams representation
the orbital (34) reads ;;Bj(x). By operating with the
magnetic translations (4), we obtain the magnetic lattice
of orbitals

(— 1T (b,)8;;Bj(x)=8,; explix-b,)Bj(x) . (35)

Consider the Hilbert space of all square-integrable func-
tions §; G (k) belonging to subband j’. The set of func-
tions. (35) for all b, is complete in this Hilbert space, pro-
vided the function Bj(x) does not vanish in a finite area
of the zone (14) (this latter requirement is always satisfied
by physical, localized orbitals). The proof of this com-
pleteness is just the same as that given in Ref. 17 in the
special case p =1.

An important property of a function B;(x) satisfying
the periodicity conditions (29) is the following: If B;(x)
is continuous in the variable k, it must assume at least
|oj | zeros in the zone (14), where each zero is counted a
number of times equal to its multiplicity. For o;=1, this
is the known theorem of zeros of kg functions.?? The
proof of the theorem for general values of o} is given in
the Appendix. The requirement of continuity of Bj(«) is
physically a requirement of localization of the corre-
sponding orbital (34). In fact, a necessary condition for
the exponential localization of (34) in both the x and y
directions is the analyticity of B;(k) in the ; and «, com-
plex planes.*»!'7 As was already noticed previously,!”?’
this exponential localization is not possessed by a lattice
of magnetic Wannier functions in the case o #0. It is in-
structive to show this again by using the theorem above.
From the requirement of orthogonality of (35) at different
sites b,, one obtains (compare with Ref. 17)

B;(k)=Cexp[it(x)], (36)

where C is some constant, and the phase 7(«x) is a real
function of k. Since the function (36) can never vanish, it
must be discontinuous for o;5£0. The corresponding
magnetic Wannier functions cannot have, therefore, ex-
ponential localization in both the x and y directions. This
localization can be achieved only in the case?’ 0;:=0,
where one can choose, for example, Bj(k)=1 in (36).
However, because of Eq. (22), the value 0js=0 may arise
(and in fact, it arises in specific models?445) only when
g =1, a case corresponding to physically unaccessible
fields H ~10° G [see (3)]. According to Thouless,?’ the
positions of the discontinuities of B;.(x) for 0,540 may be
interpreted as the locations where the | o} | units of Hall

current, carried by subband j’, are “concentrated” in the
representation of the magnetic lattice of orbitals (35).

Assuming the continuity of Bj(x), one can derive
another completeness property of the set of functions (35):
The magnetic lattice of orbitals (35) is overcomplete in the
Hilbert space of subband j’ by at least |o; | members,
namely it remains complete if | ;| orbitals are removed,
but it may become incomplete if another orbital is re-
moved. This result is a simple consequence of the
theorem above and the known relation between zeros and
overcompleteness derived in connection with von Neu-
mann lattices.??

Having considered the completeness properties of the
magnetic lattice of orbitals (35) relative to the Hilbert
space of a subband, we now examine these properties in
the corresponding space of the extended magnetic Bloch
states (13). To derive these states from the orbital (34),
one should apply to it the projection operator of the mag-
netic translation group (4).!1° This is equivalent to form-
ing the following linear combination of the orbitals (35)
[which we now express in the (P, P) representation]

T P py= PF i N 1yti2P
Yje(P,P)= 7B %exp( iK"b, )(—1)
X T (b,)A;(P,P)

=B, P,P) . (37

For 0750 the function Bj(«’) either vanishes or is
discontinuous at some points k'=x,. At these points the
magnetic Bloch states v;,(P,P) cannot be expressed by
definite linear combinations of the orbitals (35). In other
words, for 040 the space of all magnetic Bloch states of
subband j' cannot be reproduced continuously by the
magnetic lattice of orbitals (35). This should be compared
with the Bloch case (H=0), where it is known*—8 that the
Bloch states ¥, (r) of band m can always be expressed as
linear combinations of a lattice of orbitals ¢,,(r—t,) (t,
are the crystal lattice sites):

Ymilr)= B~ (k)Y exp(—ik-t,)pn(r—t,),

1
( Vb )1/2
(38)

where V), is the volume of a Brillouin zone, and B (k) is
the function defined by
1

om(0=" 7 J dk B(K)¢ (1) . (39)
b

For the linear combination in (38) to be definite at all k,
the function B(k) must be chosen continuous and non-
vanishing. This is possible because of the fact that Bloch
states can be chosen to be strictly periodic in k in the Bril-
louin zone.>~7 For example, one may choose simply
B(k)=1, which corresponds to Wannier functions? in
(39). In the magnetic case strict periodicity in « in the
basic zone (14) (0;»=0) can be achieved only for nonphys-
ical fields corresponding to ¢ =1 (for this value of g the
two lattices b, and t, coincide). Thus, in all physical
cases, the descriptions of a magnetic subband by a lattice
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of orbitals and by the set of all its magnetic Bloch states
are not equivalent.

We shall now generalize the ideas above to a set of N
subbands. Obviously, in order to span the Hilbert spaces
of these subbands, one needs N magnetic lattices of orbi-
tals (35), one for each subband. However, the basic idea
here is to consider the set of N subbands as one single en-
tity. This entity will be described by N independent mag-
netic lattices built on N different orbitals A4,(P,P),
s=1,2,...,N, each belongmg, in general, to all N sub-
bands, say ] =12,...,N:

A,(P,P)= 2 f dx B (k)y;(P,P) . (40)
j=1
By applying to (40) the group of magnetic translations (4),
one obtains the N lattices of orbitals (expressed in the
Adams representation)

(—1)""PT(b,)B{" (k) =explixb,)B{ (k) ,
sj=12...,N. (1)

Consider the Hilbert space of all square-integrable func-
tions G;(k) belonging to the N subbands. The set of orbi-
tals (41) is complete in this Hilbert space if, from the re-
quirement of orthogonality of G;(x) with all the members
of this set, it follows that G;(k) corresponds to the zero
state. The requirement above gives the N XN system of
equations

N

S G (kB (k)=0, 42)

ji=1
s=1,2,...,N. Consider the determinant Ay(x) of the
NXN matrxx built on the functions B(s (k). For general
physical orbitals in (40), Ay (k) does not vanish in a finite
area of the zone (14). Then from (42) it follows that for
almost all x, G;(x)=0, which proves the completeness of
the set (41).

We now consider the possibility of reproducing con-
tinuously all the magnetic Bloch states in the N subbands
from the N lattices of orbitals (41). By applying to each
orbital (40) the projection operator of the magnetic
translation group (4), one obtains, in analogy to (37), a set
of N functions ¢, (P,P), s =1,2,...,N:

Vsl P,P)= 3, B/ (k)¢;(P,P) . 43)

ji=1
The functions (43) are labeled by the “magnetic band in-
dex” s, and are strictly periodic in « in the zone (14)
[namely, they satisfy conditions (15) with o, =0 for each
s]. The orbitals (40) can be rewritten as follows:

A(P,P)= [ dk (PP . (44)

By associating each orbital (40) with a “magnetic band” s
the form (44) becomes quite analogous to that of usual
Wannier functions? in the case H =0. In order to repro-
duce continuously all the original magnetic Bloch states
Yi(P,P), j=1,2, , NV, from the set of functions (43),
the N ><N matrix B(s’(x) in (43) must be continuous and
invertible at each k. Only in this case are the new mag-
netic bands s equivalent to the original ones j. We now
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show that the two requirements above on B }S)(K) are com-
patible if and only if the total Hall conductance oy car-
ried by the N subbands j, j =1,2, ..., N, vanishes:

N
Coy=3 0;=0. (45)
j=1

Physically, condition (45) is an expression of the conserva-
tion law (30) in going from a set of subbands s with a to-
tal 0 =0 (since o, =0 for all s) to a set of subbands j with
oy =0. To show this we notice first that the determinant
An(x) of the matrix B}’)(K) satisfies the periodicity condi-
tions (29) with oy replacing o;. Then, if Ay(x) is con-
tinuous, it must vanish at some k for oy40, and the ma-
trix B;‘)(K) is not invertible there. When oy =0, the ma-
trix B“)(K) can always be chosen to be nonsmgular in
fact, umtary This is accomplished by choosing B k),
s=1,2,...,N, to be the N orthonormal exgenvectors of a
periodic Hermitian matrix A (x) whose homotopic invari-
ants are precisely o;, and aN—O Such a matrix can al-
ways be constructed explicitly.*? This completes the proof
of our claim.

By choosing the matrix B}”(K) to be unitary in the case
oy =0, the functions (43) become orthonormal magnetic
Bloch states for the N subbands s, which are equivalent to
the subbands ] It is also easy to show that with this
choice of B Y(k) the N lattices of orbitals (41) become a
localized orthonormal set (magnetic Wannier functions).
Condition (45) is compatible with relation (22) only if N is
a multiple of g. Thus, in conclusion, the magnetic Bloch
states in N subbands can be reproduced continuously
from the N lattices of orbitals (41) if and only if oy =0.
Only in this case it is possible to construct localized mag-
netic Wannier functions reproducing continuously a set of
g (or a multiple of g) subbands. This construction gen-
eralizes that given in Ref. 27 for a single subband to ¢
subbands. For a single subband j the condition o;=0 is
satisfied, because of relation (22), only for g =1, which
corresponds to unrealistic magnetic fields. On the other
hand, the construction of localized magnetic Wannier
functions for g subbands, with a total o=0, should be
applicable to physically achievable fields.

In what follows we shall consider two important in-
stances where sets of subbands are described by magnetic
lattices of orbitals. The first case is the limit of a weak
periodic potential. Here a Landau level splits into p sub-
bands, and the magnetic Bloch states are given by (31) and
(32). It is known that the infinite degeneracy of a Landau
level is completely accounted for by the so-called Pippard
network of localized orbitals,?"!° which is obtained by ap-
plying to an arbitrary orbital f;(P)g(P) belonging to the
Landau level [g (P) is a general square-integrable function
of P] the Abelian group of magnetic translations (9):'1!

(—=1D""™T(b,)f1(P)g(P) . (46)

The set of orbitals (46) is a special case of (35) for p =1,
and spans the Hilbert space of a Landau level. By choos-
ing b} =b,/p, b, =Db,, and using the fact that (4) is a sub-
group of (9), the set (46) can be rewritten as follows:

(—1)""*T(b,)f1(P)g,(P) . 47)
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Here we have
s=0,1,...,p—1,

introduced the p functions g (P),

Sbl

g(P)=T

L4 (8) o,
gP=3 [ dcBK)g.(P), (48)
w=1

and we have expanded g,(P) in the complete set of func-
tions (32). By writing (46) in the form (47) with (48), it
becomes evident that the p magnetic lattices (47), span-
ning the Hilbert space of the p split subbands
w=1,2,...,p, actually span at the same time the Hilbert
space of the original Landau level. The two Hilbert
spaces are identical because of the group-theoretical na-
ture of the splitting. It should be noticed, however, that,
since the total Hall conductance carried by the p subbands
does not vanish [see relation (24)], the magnetic Bloch
states (31) cannot be reproduced continuously from p
magnetic lattices (47).

The second case we consider is the tight-binding limit
of a Bloch electron in a magnetic field. Here one looks
for an approximate eigenfunction of the Hamiltonian in
the form of a linear combination of orbitals, properly dis-
placed on the crystal lattice by magnetic translations:

PYm(r)=3 c(t,)T(t,)@m(r), 49)

where t, is the crystal lattice, the operator T'(t,) is de-
fined as in (4), and ¢,,(r) is an atomic orbital for band m.
The form (49) was originally proposed by Peierls,”’ who
used it in order to show that the coefficients of expansion
c(t,) in (49) are eigenfunctions of the effective Hamil-
tonian E,, (Il /%) obtained by properly substituting the ki-
netic momentum operator (2) in the expression E,, (k) for
the energy band. The eigenvalues of E,,(Il/#) should
correspond to the energy eigenvalues within the tight-
binding band m. The original and usual approach to the
effective Hamiltonian makes use of the WKB approxima-
tion, leading to the semiclassical quantization of the ener-
gy contours E,,(k)=const in reciprocal space.*’~* In
later work3*—3% the full translational symmetry of the
operator E, (Il1/#) was taken into account. A well-
studied case is that corresponding to the tight-binding
band*?

E,, (k)=2E[cos(kya)+cos(k,a,)] , (50)

where a; and a, are the lattice constants. After the sub-
stitution k—II /7, where II is given by (2), one obtains a
differential operator E,,(II1/#) in the xy representation.
Its eigenfunctions are c¢(r), where c(t,) should be identi-
fied with the expansion coefficients in (49). Writing

iBxy

c(r)=exp | —iux —ivy+—5—ﬁ-— g(x/a,y), (51)

where g (x /a,) satisfies the periodicity condition
- gx/a;+q)=g(x/ay), (52)

one obtains from the effective Hamiltonian the following
eigenvalue problem for g(s) [s is now a dimensionless
discrete variable ranging, because of (52), in the interval
O0<s<qg—1]:

Ey| exp(—iua)g(s +1)+explipa;)g(s —1)

+2cos g?is—vaz g(s) | =Eg(s). (53)

The one-dimensional difference equation (53) was derived
originally by Harper,*? and its properties were investigated
extensively in the last several years,’>**~3% also in connec-
tion with other problems in solid-state physics,>* where
this equation emerges. Because of condition (52), one ob-
tains from (53) a system of g linear equations. For each
“quasimomentum” (u,v), the corresponding eigenvalue.
problem admits ¢ eigenvalues, which form g bands
Ej(p,v),j=12,...,9,0<u<2mw/a;;0<v<2n/a,.

Let us consider the periodicity properties of Eq. (53) in
the “quasimomentum” (u,v). Equation (53) is periodic in
both ¢ and v with the periods 27 /a and 27 /a,. Howev-
er, as in the case of Eq. (18), it is not hard to see that the
period in p is actually smaller than 27 /a;. In fact, intro-
ducing the functions

Ziuls)=exp(—iusa;)g;.ls), j=12,...,q9 (54)

where s is taken modg, the system of equations for (54) is
periodic in ¢ with the period 27 /qa,. Equation (53) thus
corresponds to the eigenvalue problem of a g X g matrix
which is periodic in 4 and v with exactly the same periods
defining the basic zone (14). As previously mentioned in
connection with the eigenvalue problem for weak periodic
potentials, the eigenvectors (54) of such a matrix can be
assigned integers i, j=1,2,... ,q,42 determining the
periodicity conditions in (u,v) satisfied by them [compare
with Eq. (21)]):

gjy,+2ﬂ/qal,v(s)=g_jpv(s) » (55a)

&ju, v+2m/a,(s)=€xp(ifi;ga g ls) . (55b)
The integers /7%; must satisfy a sum rule analogous to
(25):*

S #1,=0. (56)
j=1

We can substitute (51) with r=t, =na;+n,a, into ex-
pression (49) and use (54) to obtain functions 1,[;5';,1 having
magnetic translational symmetry. Let us assume that
these functions correspond to actual magnetic Bloch
states for g subbands in a solid, with (u,v) playing the
role of the magnetic quasimomentum k. Then, by usin
(55) in (49), it is easily verified that the functions ¢jr
satisfy the periodicity conditions (15) with o;=#i;. Be-
cause of relation (56), the total Hall conductance carried
by the g subbands is thus 0,=0. We can therefore use
the transformations (43) and (44) for defining g localized
orbitals A4;, s =1,2,...,q, that reproduce continuously
the g subbands. However, this is precisely what one as-
sumes when writing the basic relation (49), which under-
lines the effective Hamiltonian approach.’® We thus see
that Harper’s equation forms a consistent framework for
describing g magnetic subbands carrying a total Hall con-
ductance o, =0.

q
However, the basic assumption above, that the solutions
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of Harper’s equation and the associated eigenfunctions
1/;;,':'3 give the actual energy spectrum for the problem,
should be carefully examined. It is known®>3 that the
spectrum of Harper’s equation is quite sensitive to the
values of the integers p and g, whose ratio p /q defines the
magnetic field [see relation (3)], but separately have no
physical meaning. The average energy gap in the spec-
trum is proportional to 1/g, so that slight variations in
the magnetic field cause drastic changes in the energy
spectrum. The spectrum is also periodic in p/q with
period 1 (corresponding to one flux quantum, or a very
high field of the order of 10° G), and is symmetric relative
to p/q=1/2, so that the energy spectra for low fields
(p/q,q>>p) are identical to those for high fields
(p'/q'=1—p/q).*® These properties of Harper’s equation
are physically strange and doubtful, especially in view of
the fact that the effective Hamiltonian E,, (I1/h) is
known to have corrections in the form of an asymptotic
expansion in powers of the magnetic field.>! These
corrections may well be of the order of the energy gaps
for g >>1, and may therefore affect significantly the gen-
eral structure (in particular, the periodicity and symmetry
properties) of the spectrum as predicted from Harper’s
equation. We would also like to point out that not in all
cases can a set of g subbands with o,=0 be found. In
fact, for p =1, and at least in the limit of a weak periodic
potential, each magnetic band (broadened Landau level)
carries a Hall conductance o;=1, 17 50 that 04,=q and can
never vanish. For p > 1, and in the same limit, model cal-
culations®**® show that sets of g subbands with o,=0do
exist, and the Hall conductances o; can be calculated
from Eq. (18). Taking a number of Landau levels, say s,
they will split into sp magnetic subbands. Among them it
may be possible to find g subbands with o, =0, and it is
then possible to construct, by means of the transforma-
tions (43) and (44), localized magnetic Wannier functions
spanning these subbands. This is just an example of our
general result that g magnetic subbands with o, =0 can
be described by a set of localized orbitals.

IV. SUMMARY

In this paper the basic properties of magnetic Bloch
states and localized orbitals in an arbitrary rational mag-
netic field have been studied. Because of the lack of
time-reversal symmetry in the problem, magnetic Bloch
states, unlike usual Bloch states,*~7 do not have to be
strictly periodic in the quasimomentum k. For an isolated
magnetic subband, they satisfy the general periodicity
conditions (15), where o; is an integer giving the Hall con-
ductance carried by the subband.?* Because of magnetic
translational symmetry, o; has to satisfy the Diophan-
tine equation (22). Moreover, the group-theoretical nature
of the splitting of a Landau level imposes the sum rule
(24) on the Hall conductances carried by the p split sub-
bands.

A set of N magnetic subbands can be described by N
lattices of orbitals. The completeness properties of these
orbitals relative to the set of subbands are found to be inti-
mately connected with the total Hall conductance oy car-
ried by the subbands. In particular, only for oy =0 (a
case which may occur only for N multiples of g) can lat-
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tices of localized orbitals reproduce continuously all the
magnetic Bloch states in N subbands. In this case it is
possible to construct ¢ lattices of localized magnetic Wan-
nier functions spanning g subbands with o, =0. These re-
sults have been used to analyze the nearly-free-electron
limit and the effective Hamiltonian approach of Harper’s
equation. It has been shown that Harper’s equation forms
a consistent framework for describing g magnetic sub-
bands with o,=0. However, because of asymptotic
corrections to the effective Hamiltonian,?! the fine struc-
ture of the energy spectrum, as predicted from Harper’s
equation,’ ¥ may not be relevant physically.
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APPENDIX

We show here that a continuous function of k, B;(k),
satisfying the periodicity conditions (29), must assume at
least |0 | zeros in the basic zone (14), where each zero is
counted a number of times equal to its multiplicity (the
theorem of zeros). To show this, let us assume the con-
trary, namely that B;(x) assumes zeros at the f points «;,
s=1,2,...,f, with respective multiplicities n; such that

S
nr= ng< lojpl . (A1)

s=1

Consider the function

A (k)=exp Os(z | 1), (A2)

_fp 2
28"

where z=b,(k|+ik,)/2, T7=ib,;/b,, and 65(z/7) is a
theta function.’® The function (A2) is continuous (actual-
ly entire) in k, satisfies conditions (29) with o;j=1, and as-
sumes precisely one simple zero in the zone (14) at
k=(w/by,m/b,).’! The position of this zero can be dis-
placed everywhere in the zone (14) by operating on (A2)
with an arbitrary magnetic (phase-plane) translation T(t).
Let A (k) denote the function (A2), but with its simple
zero located at k=k;. We form the product

! n
Ar(c)= 1] [4:(0)]" . (A3)

s=1

The function (A3) satisfies conditions (29) with o;=nr
and assumes the same zeros and respective multiplicities
as the function B;(«x). Therefore, the function

B (k)/ Ar(K) (A4)

is well defined, continuous, and does not vanish. Howev-
er, the function (A4) satisfies conditions (29) with [recall
(A1)] oj=0;—n7y0. Following the same arguments as
in the theorem of zeros of kq functions,?>?* one can prove
that such a function must assume at least one zero, thus
leading to a contradiction.
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