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Ground state of an ion fluctuating between two magnetic valence states
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As a model for mixed-valence thulium which fluctuates between the configurations f", S= 2,
and f ', S= 1, we consider an ion with orbital degeneracy embedded in a free-electron continuum.
We construct variational states of different total-spin multiplicity, namely singlet, doublet, and trip-
let. We find that the ground state is a singlet, with the triplet and doublet lying higher in energy
and in that order. If we confine ourselves to the simplest variational functions, i.e., those that do
not include electron-hole excitations of the Fermi sea, then the splitting between singlet and triplet is
very small, of the order of a few percent of the mixing width. (Under the same approximation, this
splitting for the case where one of the valence states is nonmagnetic, is of the order of the mixing
width. ) When excited states of the Fermi sea are included, we find that the 1/N expansion, which
shows that in f to f' fluctuating valence the corrections due to these states are small for large N, is
not applicable to the present case because the degeneracies of f ' and f' are comparable, and so N is
of order unity. We do a perturbation calculation to all orders, keeping only the dominant logarith-
mic terms. This has the effect of enhancing the energy separation between singlet and magnetic
states by a factor of order 3. This separation is still very small however; we conclude that the
magnetism of TmSe is probably caused by interactions between ions.

I. INTRODUCTION

Phenomenologically, mixed-valence materials appear to
fall in two distinct classes, one in which one of the valence
states has no magnetic moment (class I), as in Ce and Yb
compounds, and the other in which both valence states
have magnetic moments (class II), as in TmSe. It has
been recognized' that (for significant valence ratios) the
former remain a normal Fermi liquid (i.e. show no spon-
taneous moment or magnetic ordering) at low tempera-
tures, while the latter undergo a transition to a magneti-
cally ordered state.

A significant question raised in this connection is
whether this difference arises from the nature of an isolat-
ed mixed-valence atom or whether it arises due to a differ-
ence in the interaction between mixed-valence atoms in
the two different cases. It has been shown in a Hartree-
Fock approximation that the interactions differ signifi-
cantly for the two cases. Using this, a transition from an-
tiferromagnetic to ferromagnetic order was predicted on
alloying TmSe with TmTe, which was subsequently ob-
served. One may argue, however, that the ground state
of an isolated ion may differ between the two cases. In
this paper we show that this is not so, using methods em-
ployed earlier.

Several years ago we constructed a variational wave
function for the mixed-valence impurity of class I and
calculated the energy and the magnetic susceptibility of
the ground state, which is a singlet. The variational func-
tion used was

ciao+ gcrkc cJ
l 4o&

k, o.

where
~

go& is the filled Fermi sea, o. the spin index, c,
the creation operator for the local orbital assumed nonde-
generate, and ck the annihilation operator for conduction
electrons projected on a spherical basis around the impuri-
ty. The binding energy of the singlet, co (defined to be
positive), was found to be given by

co =ef +(2I /~)in[( W+co)/co j . (lb)

is exact in the limit X = oo. They did this by considering

Here ef is the energy of the f level measured from the
Fermi level (ef &0), I is the virtual level width arising
from the mixing interaction with the conduction band,
and 8 is the width of the occupied part of the band. In
Eq. (1) we have assumed a constant density of states,
while in Ref. 2 we had taken a free-electron density of
states, resulting in a slightly different expression.

The result Eq. (lb) has been reobtained through a scal-
ing analysis by Haldane, by summing an infinite class of
diagrams by Bringer and Lustfeld, by means of
Brillouin-Wigner perturbation theory by Ramakrishnan,
and by Keiter and Grewe. Bringer and Lustfeld showed
that their results for the Green's function are exactly
equivalent to having Eq. (la) as the wave function.
Ramakrishnan and Sur considered also the case of orbital
degeneracy N and found that the factor 2 in Eq. (lb),
which comes from the spin degeneracy, is replaced by the
full degeneracy 2iV. Gunnarson and Schonhammer' also
considered the case of orbital degeneracy and showed that
the generalization of Eq. (la),

lg&= ~o+ g ~kmcam. ckmcr l0o& ~ (lc)
k, m, o.
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higher-order terms, which, because of angular-momentum
conservation, give corrections of 0(1/N). The 1/N ex-
pansion has also been developed, using other techniques,
by Coleman, " Read and Newns, ' Lee, ' and by several
others.

The validity of our earlier approach having been estab-
lished, it is worthwhile to consider mixed-valence impuri-
ties of class II by similar methods. Such a calculation was
recently presented by Mazzaferro et aI. " unfortunately
they did not examine the different possible spin states of
the impurity —Fermi-sea system and concluded erroneous-
ly that the ground state is magnetic. More recently, Lust-
feld, ' in a comprehensive paper, investigated in great
generality the mixed-valence problem for a rare-earth ion
in jellium, using the methods of scaling theory. Lustfeld
finds that for a large number of ions, including Tm, the
ground state of the system is a singlet.

Here we present a treatment confined to the ion Tm for
which the f-shell valence fluctuates between one and two
holes (f ' and f ' ). Because the ionic states have only one
or two holes (we will be treating them as electrons to sim-
plify the writing), the angular-momentum machinery re-
quired to deal with them is considerably simpler than in
the general case and we are able to use the simple varia-
tional methods of our earlier paper.

To recall the mixed-valence problem, consider an ion
having an impurity level f lying within a partly filled
band at an energy ef relative to the Fermi level. If Eo is
the total energy of the Fermi sea in the absence of any
mixing interaction, the ground state of the system has one
electron in the f level, and the total energy is Eo+e'f.
Suppose now a second electron is transferred from the
Fermi level to f: If U is the Coulomb repulsion between
two electrons localized on f, the total energy becomes
Eo+2Ef + U. The system is mixed valent when the ener-

gy cost of adding the second electron is small, either posi-
tive or negative, i.e. ef+U=5 and

j
5

~

(I, the level
width.

We show that for such an ion in an isotropic Fermi sea,
with an isotropic mixing interaction between the localized
and the conduction states, the ground state of the com-
plete system is a singlet. This conclusion is not obvious
since both ionic configurations are magnetic. The energy
separation between the singlet and the lowest-energy mag-
netic states is, however, very small, of the order of a few
percent of the level width [in contrast to the situation in
materials of class I (see Appendix A), where this energy
separation is of the order of the level width]. This fact
has a bearing on the question of the origin of magnetic or-
der in these materials.

The paper is organized as follows: In Secs. II and III
the simplest variational functions are used, namely those
containing no electron-hole excitations. This is the same
approximation that was made in Ref. 5. Section II deals
with a case of minimal orbital degeneracy, corresponding
to a fictitious orbital angular momentum l = —,. This is
the simplest model with the right physics, and it has the
advantage that the calculations can be carried through
without the complications of angular-momentum recou-
pling. Section III deals with the realistic case of orbital
degeneracy with I arbitrary. The spin-orbit coupling is in-

eluded from the start in the description of the one-
electron localized state because typical level widths are of
the order I =0.01 eV, while spin-orbit splittings range
from 0.25 eV in Ce to 1.0 eV in Tm. The cases of singlet
and magnetic states of the system are treated, making use
of angular-momentum recoupling techniques. The case of
I.S coupling, with the lowest ionic state given by Hund's
rule, is also treated and shown to reduce, for the value
l = —,', to the result of Sec. II for minimal degeneracy.

In Sec. IV we generalize our wave functions so as to in-
clude electron-hole excitations of the Fermi sea. Since the
energy of such excitations is arbitrarily small, it is not
clear that perturbation theory can be used and it is neces-
sary to include these excitations to all orders. We show
that the N of the 1/N expansion is not a large number in
class-II fluctuating valence ions, and that N ranges be-
tween —,

' and 2. We give our conclusions in Sec. V.

II. LOWEST-ORDER VARIATIONAL CALCULATION

Let f ' and f be the two valence states of the impurity.
We assume that any other occupation states are so far re-
moved in energy that they do not need to be considered.
Since f has spin 1, there must be at least two distinct lo-
calized orbitals,

~

a ) and
~

b ), differing in their orbital
magnetic quantum number, say mI(a)=1 and m~(b)=O.
We take as the simplest model an f level with only two
orbitals. The Hamiltonian is

~band +~f +~mix

The mixing interaction is assumed to be spherically sym-
metric (and spin independent), so it conserves mI. We use
the radial representation,

~

k, l, m~), for the free-electron
band, and drop the l index. Because of spherical symme-
try,

~

a) mixes only with
~

k, l) and
~
b) mixes only

with
~

k, O), i.e.,

(a iH;„ik, l)=(b iH;„k,O)=V.
We also assume V and the density of states p to be con-
stant, independent of k. These approximations are not
essential, but they simplify the calculation while not alter-
ing the results in any meaningful way.

The most general wave function for the Hamiltonian (2)
is a sum of terms, each having the following form: The f
level is occupied by one or two electrons; there is a corre-
sponding number of holes in the Fermi sea so as to con-
serve the total number of electrons, and there are any
number 0,1,2, . . . of electron-hole excitations. In this sec-
tion we will omit any terms containing electron-hole exci-
tations.

Since the impurity states have, respectively, Sf ———,
' and

Sf ——1, the possible ground states of the system are a sing-
let, a doublet, or a triplet. Wave functions having these
spin multiplicities are now constructed and their energies
calculated. First, the simplest wave functions, i.e., those
having no electron-hole excitations, are considered.

A. Spin doublet

Let
~ Po) be the ground state of the singlet Fermi sea.

We take as a variational wave function
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where the c;,c; are creation and destruction operators.
[Throughout we will use k, k', . . . to label states below the
Fermi level, and q, q', . . . to label states above; the similar
wave function with l spin is degenerate with (4).]

Note that of the four singly occupied states ao., bo. ,
o =+1, Eq. (4) contains only one. The reason for this can
be seen as follows: Start with the filled Fermi sea and
state ao. occupied. Under the action of H;, an electron
(k, O) is transferred to orbital b. The next effect of H;„
can only be to transfer the electron in b back to state (k, O)
as there is no hole available in band (k, 1) to which the
electron in state ao. could go. We can represent this by
the sequence

(a)~V~(ab;kO)~V~(a)~V~(ab;k'0)~V~(a)
(5)

which results in the wave function (4). Hence, there is no
mixing between the states in which a and b are, respec-
tively, singly occupied. As will be seen below, this is the
reason why the doublet state is higher in energy than the
singlet.

Let the total energy be

E=Ep+of —u, (6)

I OD & t =ac.'t
I fo &

+ g [/3(k)/v'6]

+ [(catchy +catcbt )ckot+2catcbtckpt]
l Po& ~

(4)

where ~ is positive. If sf+ U =5 is )0, then co is the
binding energy of the impurity to the Fermi sea; if 6 & 0,
the binding energy is co+6.

The variational equations,

&v&PD
l

H
l WD &

—(&o+&f—tp+v(PD
l PD & =0

where a and 13(k) are varied, give the following equation
for ~D, the value of co for the doublet state:

31
coD —— ln

2~

This is the result obtained in Ref. 14.

B. Spin singlet

Consider a singlet state obtained by transferring an
electron from states (k, i,o) to the f states (a,o). Let now

;, act and transfer electrons. As was done in Eq. (5),
this can be represented by

(a;k 1)~V~(ab;k I,k'0)+—V~(b;k'0)

~V~(ab;k "1,k'0)~V~(a;k'1)~V~

Note that, in contrast to the doublet case where the singly
occupied a state did not mix with the singly occupied b
state, here these same states are connected in order V .
Hence they are both present in the wave function, which
we take to be of the form

l 0s & = 2 [at(k)/t/2](c tcklt+c tcktt)
l
4&+ g [ap(k )/V2](cbtck'pt+Cbtck'pt)

I 0o&
I

k k'

+ g [&«k )/&3][catcbtck'otck 1 t+ca lcbtck'ptck 1 l+ 2 (catcbt+catcat )(ck'ptck1 t+ck'ptck 1t)] l
t('o& .

k, k'
(10)

The last term, in P(k, k'), is formed by coupling the triplet
ab state to a triplet two-hole state so as to form a singlet.
The variational equations are

homogeneous integral equation

a(k)+a(k')a( k)(co+ ek ) = I d6k'6)+5+Ek +E'k
(12)

at(k)(co+uk) = —V3/2 g Vp(k, k'),
k'

a (k')(co+@„)= —&3/2 g VP(k, k'),
k

(1 la)

(1 lb)

where we have made use of

V'g =(I"/tr) f dek

p(k, k')(ro+6+Ek+Ek ) = —V 3/2V[at(k)+ao(k )l

(1 lc)

where ek, ek are the positive, one-hole excitation energies
relative to the Fermi level. Substitution of (1 lc) into (1 la)
and (lib) gives two coupled integral equations for al(k)
and ap(k'). These two equations are compatible if al and
ap are the same function, a. Since the mixing interaction
is the same for orbitals a and b, it is to be expected that
they wi11, in fact, occur in a symmetric way in the wave
function. We obtain for the eigenvalue equation the

in doing the summations, and have introduced
I =(3I /2vr).

That we should have obtained an integral equation is
not surprising in view of the comment following (9), i.e.,
that the two kinds of terms c, ck] and cb ckp interact
in order V (or I ). Thus we have a kind of Schrodinger
equation in momentum space for the amplitude a(k):
The kinetic energy is ek and the effective potential in I
couples a(k) to all the other amplitudes a(k'). The term
in a(k') in Eq. (12) is responsible for the difference in
binding energy between the doublet and the singlet. This
can be seen by letting a(k') —=0 (i.e., excluding the cb ck p
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terms) and taking ek ——0 to obtain the ground state, Equa-
tion (12) reduces then to Eq. (8).

The interaction responsible for the binding energy of
the doublet is of order V (the mixing strength), while that
responsible for the doublet-singlet difference is of order
V . Thus we expect this difference to be small compared
to coD. We denote by cps the solution of Eq. (12), so that
the singlet binding energy (relative to the doublet) is
cps —coD. We have not been able to solve Eq. (12) analyti-
cally. Before discussing the numerical solution we shall
discuss the triplet state.

C. Spin triplet

We start as we did for the singlet, by transferring an
electron from state k la to the f state acr. As in the sing-
let case, H;, connects this state in second order to the
state where the orbital b is singly occupied, but now we
have two kinds of states in which both a and b are occu-
pied: First, two holes in the singlet state coupled to the
triplet (ab), and second, two holes in the triplet state cou-
pled to the triplet (ab) to form a triplet. The wave func-
tion of the triplet for Mq ——0 is taken to be

l 4T &p= g [a](k)/V'2](cgsck}& canuck&t) l
4o&+ g [~o(k )/v'2](cbsck'p& —cbtck'ot)

I fo&
k k'

I I 1 I+ 2 g P(kk )(catchy +ca Icbm )(ck'otck Ii ck'pick Ii )
l 0o & + ~ g y( kk')(ca gcb1ck'oick 11 ca'tcbrck'otck1 ) )

I 4o &

k, k' 2 kk

The variational equations are

a&(k)(co+ek) = — —g P(kk') —V g y(kk'),
V2 „,

(14a)

I

The coefficient of e(k), expanded to first order in ek and
neglecting cps/W, is given by

cats —I ln[( W+cus)/~s]+( I+ I /~s)&k

ap(k')(co+ ek ) = g /3(kk') —V g y(kk'),v'2
k

(14b) Now,

—I in[(W'+~ )/~ ]=0,
P( kk ')(co+ 6+ek +ek ) = — a &(k)+ ap(k '), (14c)

V V

2 2

y(kk')(co+5+ ek+ek ) = —Va~(k) —Vczp(k') . (14d)

Taking the functions a] and o,'o to be the same as before,
we obtain the eigenvalue equation

w a(k)+ —,a(k')
a(k)(co+ok) =I I dek .

CO+5+6k +Ek~
(15)

This differs from Eq. (12) for the singlet in having the
factor —, in front of a(k'). Thus the effective potential
that couples a(k) to a(k') is only —,

' of what it is for the
singlet, and hence we expect the triplet binding energy to
be much smaller than that of the singlet.

D. Numerical results

a(k) cos+ek —I ln
8'+ COg+ ek

~S+~k
a(k')=I dEk~ e

COg+Ek+Ck
(16)

To solve Eq. (12) numerically, the integration is re-
placed by a discrete summation (i.e., de —+sg,".

&) which
converts it to a system of homogeneous linear equations.
In order to choose a reasonable value for the mesh, it is
necessary to consider the rate of change with energy of
the symmetric kernel and of the eigenvector a(k). The
kernel is largest at ek ——ek =0 and falls off slowly with en-
ergy. The eigenvector a(k) is also maximum at @k=0,
but it falls off sharply away from it. To see this, perform
the integration of the first term on the right-hand side of
Eq. (12), which converts it to

TABLE I. Doublet and singlet binding energies, coD' and
re~

' —co~', for different values of 8'. Energies expressed in units
of I . Calculation done with s ~

——0.02, n t
——100 and s2

=0.09,n 2
——200.

(0)
COD

(0) (0)
COg —COD

20

2.2797
0.0457

50

2.9028
0.0270

100

3.4115
0.0171

200

3.9453
0.0107

and it will be seen below that co& is only a little larger than
coD, so that

~s —I 1n [(8'+ cps ) /~s ]=vt

where v ~ 1 is a small number. The right-hand side of Eq.
(16) varies slowly with Fk, and hence a(k) varies as
[vl +(1+1 /ros)ek] ' for ek & I, which is a rapid rate
of variation. On the other hand, for ek large compared to
I, a(k) can be seen to vary slowly, as (1/ek) . Accord-
ingly, we choose a fine mesh, s

&
for ek & I, and a coarse

mesh, s2 for larger ek', n], and n2 are the corresponding
numbers of intervals. From here on we express all ener-
gies in units of I". We also take 5=0 in all our calculated
values except as noted otherwise.

Table I lists the values of coD from Eq. (8) and the
. values of co& —cuD calculated for the range 8'=20, 50,

100 and 200. Equation (16) was approximated by a sys-
tem of linear equations of order 300, with values of
s&

——0.02, n~ ——100 and s2 ——0.09,nq ——200. (The energy
range covered in the summation is thus 20, which is only
part of the actual 8', except for 8 =20; this does not in-
troduce any detectable error because at large energies the
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FIG. 1. Wave functions of the singlet and triplet states in k
space, normalized to unity at the Fermi energy, for 8 =201".
The solid line refers to the singlet, the dashed line to the triplet.

3.5 4.0

eigenfunction cz(k) is negligible, [n(k)/a(0)]=10 for
Ek) 2'0).

It is seen that the singlet binding energy cps —coD de-
creases from 0.0457 to 0.0107 as W changes from 20 to
200. This decrease is to be understood from the fact that
mD increases logarithmically with W so that the effective
potential

3 V
V,rr(k, k') = ——

2 ~s+~k+~k
(17)

decreases as W increases, because cps -coD.
The binding energy of the triplet, ~T —coD, has also

been examined and found to be, somewhat unexpectedly,
exceedingly small, more so than what the factor —,

' in the
right-hand side of Eq. (15) would have suggested. For
W =20, taking s

&
——0.0001,n

&
——200 and sz

=0.02, n2 ——100, we found ~T —coD ——0.00005, i.e., a fac-
tor 10 smaller than cos —coT. (At the energy ek =2.0, the
wave function was down to 2&(10 of its value at the
origin so that we can neglect contributions from higher-
energy states).

In Fig. 1 we have plotted the eigenfunctions in k space
of the singlet and triplet states for W=20. The wave
function of the triplet is much more localized near the
Fermi level (that of the doublet is a 5 function!) than that
of the singlet state. The physical origin of the large sing-
let binding energy can be seen to be the fact that with a
wave function that is extended in k space, the off-
diagonal contributions of II;, are more effective in
lowering the energy. The eigenfunctions transformed to
real space have characteristic oscillations at the inverse
Fermi wave vector.

I 4&, =~
I Wi J &+ X@k)

I
A(k),j & (18)

where the states
~
g~,j & and

~
$2(k),j & have, respectively,

one and two electrons on the f level. Specific expressions
for the families of states

~
1(~,J& and

~
1(q,J& with one or

two holes in the Fermi sea and for total angular rnomen-
tum J of the system will be given below. To find the
value of J of the ground state, we need the matrix element
of the mixing interaction,

x ~ Cfj m Ckj m +Ckj m Cfjm

one would only have to consider one-electron states hav-
ing j+ ——l +s. The lowest f state would then be obtained
by coupling two j+ states to give J =2j+ —1. This is
what we shall do in detail in the first part of this section,
using straightforward angular-momentum recoupling
methods. In fact, LS coupling gives a better description
of the rare earths, although for Tm one should really use
intermediate coupling. Any departure from pure jj cou-
pling makes it necessary to consider also one-electron
states with angular momentum j = l —s. We have in-
cluded these states in an extension of our recoupling cal-
culation, and will give the results for the pure IS-
coupling case, following the jj-coupling treatment.

Just as in Sec. II, we will do the calculation for three
different values of the total angular momentum J. The
first is the case J=j (we drop the subscript + until we
need it again). This case occurs when the total number nj
of electrons of angular momentum j in the system is equal
to one plus a multiple of 2j + 1. (Free-electron states with
other values of angular momentum do not interact and
are irrelevant. ) The second and third cases are J=0 and
J=1. Both occur when nj is equal to a multiple of
2j +1.

We should make a remark about comparing the ground
states of systems with different total number of electrons,
and, in fact, about considering systems where the number
nj is a multiple of (2j+1). Superficially, this appears to
be an artificial restriction. However, it is not so. The
free-electron sea corresponds to the infinite-volume limit
of the system, and so the actual number nj is arbitrarily
large. When we prescribe the value of nj to within a mul-
tiple of 2j+1, we are in fact leaving out of our calcula-
tions, no matter what nj actually is, a number of states
which is at most 2j+1. Since nj tends to infinity, the
fraction (2j+1)/nj tends to zero, and so the neglected
free-electron states do not affect our results.

We shall construct variational wave functions that are
of the same form as those of Sec. II. For the J=j case,
for instance, we take

III. ARBITRARY ORBITAL DEGENERACY

We begin with the case, valid for thulium, that the
spin-orbit coupling is large compared to the level width,
so that the f ' configuration (we associate f ' with Tm +
and f with Tm +) must be described by f electrons with
quantum numbers j+,I where j+ ——l +s is the total an-
gular momentum. If the spin-orbit interaction had been
large compared to the Coulomb interaction, then jj cou-
pling would have been valid for the f configuration and

between the families of states
~

Q~, J & and
~
$2,J&.

A. Magnetic state, J=j
The states g~ and P2 are given by

(19)

(20)

The notation used in (19) and (20) is standard; thus, in
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(20), there are two electrons on the f orbitals with their
orbital momenta coupled to give 2j —1, and one hole k in
the Fermi sea, whose angular momentum j is coupled to
2j —1 to give a resultant j. A convenient way to find
&A(k) j I

H ~ I 4i j ) is to act with H ~ «
I 0ij & and

to project the resulting normalized state onto
I
gz(k), j).

To be able to use angular-momentum recoupling pro-
cedures, we formally treat the two-f-electron states as
unequivalent (different shells), distinguishing them by a
prime, and after the calculation restore the equivalence by
multiplying by a factor &2. We have

2 (+j-I)
2j+I

j —2
r (j)= j+I

~(
5/2

I ~ I I I

5/2 7/2 9/2
I

I

I/2

vt'( j)
2— r

/
/

I I/2

H;„
I Q),J ) = V&(2& + 1)

I g, (k),j&,

where the normalized state pq(k), j & is

(21) FIG. 2. Coefficients 3 (j) and r(j) occurring in the integral
equation of the singlet and the triplet for J=1.

1t~(k),j& =((f'k)0, (f)j;j) .

The projection of 1t z onto gq is given by a 6-j symbol

(22)

((f'k)0 (fj)j I
(f'f)2j —1 (k)J J)

=( —1) ~ 'v'4j —1
' .

v'4j —1

2j +1
(23)

&P (k)j
I
H;„

I
1(,,j)= V

2(4j —1)
(2j+1) (24)

Substituting in (21) and multiplying by V'2 to restore the
equivalence of the f electrons, we obtain

1/2

ments of the singlet and the doublet in the minimal degen-
eracy case [compare Eqs. (8) and (12)]. To show that one
obtains an integral equation of the same form as (12), it is
necessary to show that the matrix elements

& q, (k, k), 0
I
H, „ I

1t,(k),0)

and

&g (k', k), 0 H;„
I g, (k'), 0)

are equal. It is shown in Appendix B that the state

I
Pz(k', kl0) is even under interchange of k' and k be-

the resultant angular momentum J of k' and k is even,
J =2j —1. Hence the equality of the matrix elements fol-
lows,

This quantity replaces, for arbitrary j, the matrix element
Vv'3/2 which gave the value I = (3I /2~) for the doublet
in the minimal degeneracy case.

VJ
——

& 1t,(k', k), 0
I
H, „ I g, (k ),0) = V

(k) 2j + 1

1/2

(29)
B. Singlet state, J =0

The states 1( ~ and ttq are now

I q, (k),0) =((fk)o),
gq(k', k), 0) =((ff)2j —1,(k'k)2j —1;0) .

(25)

(26)

The matrix element of H;, between g~ and gq is again
found by acting with H;„on

I
g&(k), 0) and projecting

the resulting normalized state 1tq onto fz

H;„ I
P)(k),0) = V&(2j + 1)

I
t/rq(k', kl, o),

where

(27)

I Q (k', k),0) =((f'k')0, (fk)0;0) . (28)
f

The projection of gz onto fz is given by a 9-j symbol'7
(since there are four angular momenta to recouple), but
because all three resultant angular momenta in (28) are
zero, this quantity reduces to a 6-j symbol, the same that
occurs in (23). It follows that

and one obtains the same integral equation as in the
minimal degeneracy case, the only difference being that
the effective width I is now dependent on j and given by

2(4j —1) 1 (. I
(30)2j+1

The coefficient A (j) increases from a value of 1 for j= —,
'

to 4 in the limit of large j. It is plotted in Fig. 2. We will
see in the next section that the decay width of configura-
tion f to f ' is 21, so that the effective width 1

~
which

determines the scale of the binding is at most twice this
decay width. To finish the proof that the singlet has the
lowest energy, it remains to be shown that other magnetic
states with integral angular momentum have a higher en-
ergy.

C. Magnetic state with integral J
In this case we have

&g,(k', k)0
I
H;„

I P, (k)0)

is equal to

I 1t,(k),J)=((fk)J),
I Pz, (k', k),J)=((ff)2j —1,(k'k)J, ;J), (32)

of the previous (magnetic) case. This result generalizes to
an arbitrary value of j the equality between the matrix ele-

where J can be any integer (J= 1 for the triplet) up to 2j,
and J„the angular momentum of the coupled holes, can
range from 2j to

I
2j —1 —J I, so as to satisfy the tri-

angular inequality. Note that, unlike cases A and B, there
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are now several independent two-hole states, depending on
J, . In Appendix 8 it is shown that for J, an odd integer,

i gz, (k', k)J) changes sign when k and k' are inter-
changed, while for J, even it remains the same. To find
the linear combination of the gz, that occurs in the
ground-state wave function, we take the latter to be of the
form

g) =
i

f')+ if')
where

Treating again the two f electrons as unequivalent, we
find for the mixing matrix element.

(f'
i
H. ,„ f ') =g g g [ a(k)P, (k, k )p,

J k k'
(k &k')

+a(k')P, (k, k')p, ( —1)] '

X V&2j+1.
f') =pa(k) g (k),J),

k

i

f~) =/ y y/3, (k, k')
i lt~, (k', kl, J) .

k k'
(k &k')

(33) The projection coefficients p, are found just as in Eq.
(27), i.e., by operating with H,„on

i P, (k),J), normaliz-
ing the two-hole state thus obtained, and projecting it onto

i gz, (k', kl, J). We find

p, =(gq,
i ltd) =((f'f)2j —1,(k'k)J„J

i

(f'k')0, (fk)J;J)

J J 2J —1

= [(4j —1)(2J,+ 1)(2J+ 1)]'~ j j J,
0 J J

1/2
(4j —1)(2J,+))

( 1)4g —1+2 ~+
2J +1 2J —1 J Jc

The variational equations are found just as in Sec. II, and the result is

(p, )'~(k)+ ( —1) '(p,')a(k')
a( k)(co+ ok ) = V (2j + 1)gg

k' J CO+6+6k + Ek~
C

(34)

The sums over J, are obtained by using the sum rules for 6-j symbols, ' and the result, after multiplying by the factor of
2 to restore the equivalence of the f electrons, is

8' a(k) —(2j+1) '2.
1

. . 'a(k')
2J —1 J J~(k)(~+~„)=r, fJ p CO+6+ 6k +6k

(35)

with I z given by Eq. (30). Equation (35) is a general re-
sult, valid for all j and J [including J=0 for which it
reduces to Eq. (12)]. It shows that the singlet has always
the lowest energy because, as seen from Eq. (34), for J~O,
the coefficient of a(k') is the sum of terms of alternating
signs and hence is smaller than that of a.(k). For J =1,
the coefficient of cz(k') in Eq. (35) is given by the simple
expression

r(j)= .j+1
where r(j) is plotted in Fig. 2. Curiously, A(j) and r(j)
can be made to coincide by two translations, thus
&(j + —,)=r(j)+3. We do not know whether this has
any significance.

0(L,S,J; ) = 2l
2l+1

' 1/2
1+ 2» 4(J+j ;J ), -(36)

where j+ ——l+s. Only the singlet state J=0 will be con-
sidered.

D. LS coupling in the f~ configuration
I

Russell-Saunders coupling is a better approximation for
the rare earths and so we will obtain here the modification
of Eq. (35) for this case. For the maximum value of the
ionic angular momentum, J;=2j—1, the (LSJ;) state
p(L, S,J; ) is given in terms of the jj-coupled states by

r 1/2

4(J+j + J )
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Since f states with j = l —s are present in the LS wave
function, the terms in cfj pgcj,j yg of the mixing Hamil-

tonian must now be included. As a result, the two-hole
wave function will have three kinds of terms, which, in
the standard notation for multiple couplings, can be writ-
ten as

(f LS, ((k')j+, (k)j+)J;;0),
(f LS,((k')j, (k)j )J;;0),
(f LS, ((k')j+, (k)j )J;;0) .

(37)

dEk
X

CO+ 6+Ek +Ek
(38)

Compared to Eq. (35) (with J =0) for jj coupling, this
differs in having l-dependent factors multiplying u(k) and
a(k'). These are both close to unity, but the factor of
a(k') is smaller than that of a(k). This break in the sym-
metry between k and k' is a direct result of breaking the
jj coupling in the f state, as the following argument
shows: Let k+, k refer to the conduction orbitals k
having angular momentum j+,j, respectively, and let
H;„(j+) and H;„(j ) refer to the corresponding parts
of the mixing Hamiltonian. Then H;„(j ) acting on

g, (k+),0) gives
~

gz(k', k+),0). Now H;„(j ) act-
ing on

~

$2(k', k+ ),0) connects it back to
~
g&(k+ ),0),

but not to
~
P&(k'+), 0) because the state k'+ does not

occur in
~

1t2(k', k+),0). By contrast, when jj coupling
is valid, only H;„(j+ ) is involved, and H;„(j+ ) con-
nects

~
rgb(k'+, k+ ),0) both to

~ f,(k+ ),0) and

~
g&(k'+ ),0). The break in symmetry is small (41 versus

4!+ 1) because the weight of the p (j+,j;j; ) state in
P(LS,J; ) is small [see Eq. (37)].

For l =3, the ratio of the coefficients of n(k') and n(k)
in Eq. (38) is 0.9231. Numerical calculations including
this factor give a reduction of about 25%%uo in the singlet
binding energy.

E. Case of no spin-orbit coupling

This is a purely academic case since the spin-orbit in-
teraction is large compared to I . The treatment is the
same as in the case of~ jj coupling, except that there are
two independent sets of angular momenta, orbital and
spin, and they are recoupled separately. The effective
width I is found tobe

I = [3(4l —I )/(21+ 1)](I /n),

To find the matrix element of H;, we take a two-hole
state

~ f ) which is a sum over k and k' of the three
states (37) with coefficients /3;(k, k'). Making use of the
recoupling machinery as in subsection C, we finally obtain
the following simple form for the integral equation, valid
for LS coupling:

a(k)(co+eI, )=I J f a(k)+ a(k')4l+1 4l
o 4l+2 4l+2

where l is the one-electron angular momentum in the
valence shell. For the fictitious value I = —,, this reduces
to the value I = —,

' (I /vr) of the minimal degeneracy case.

IV. INCLUSION OF ELECTRON-HOLE EXCITATIONS

States with electron-hole pairs get admixed into the
wave functions of Sec. III by repeated applications of the
mixing Hamiltonian. Thus, to the component
((ff)2j —1,(k'k)2j —1;0) of the singlet wave function,
H';„will admix ((fq)2j —l, (k k)2j —1;0), in which an f
electron has been promoted to an electron state q. Com-
pared to the ((f)j,(k)j;0) component of the same wave
function, this term has an electron-hole pair. Further,

acting on ((fq)2j —1,(k'k)2j —1;0) will give
((ff)2j —1,(qk"k'k)2j —1;0), which has two electrons in
the f level and an electron-hole pair, and so on. The two
processes just described have a qualitative difference, in
that the first one does not change the total numbers of
electrons and holes, simply transferring an electron from
an f level to an empty level above the Fermi surface,
while the second process increases the numbers of elec-
trons and holes by one each. The matrix elements of
H;, for these two processes are different: For the first
one, since no recoupling is involved and the label on an
electron is simply changed from f to q, the matrix ele-
ment is V&2, the omnipresent &2 arising from the
equivalence of f electrons. (More simply, since there are
two electrons on the f level, the decay width is 2I .) For
the second process it is necessary to recouple
((fk")0,(fq)2j —1;Zj —1) to ((ff)2j —1,(k "q)j„; 2j —1)
and to sum over j,. This is done exactly as in Sec. III and
the same result is obtained for the matrix element, namely
Vv'2(4j —1)/(2j —1). It is clear that the matrix ele-
ments have these values in any order of the interaction
since no matter how many other electrons and holes are
present, they are simply spectators to the recoupling.

The ratio of the squares of these matrix elements is
(4j —1)/(2j+1)=(2J;+1')/(2j+1), which is just the ra-
tio of the degeneracies of the f and f ' ionic states. This
is a generalization to class-II mixed valence of a similar
situation in class-I mixed valence, namely that the ratio of
the matrix-element square for (a) transferring an electron
to the f-level by creating a hole, and (b) for transferring
an f electron to an empty electron level, is equal to the ra-
tio of the degeneracies, 2N to l of the ionic configurations
f ' and f respectively. Note, however, that this ratio can
be a large number in this case, while for the class-II case,
the ratio of the degeneracies is always smaller than 2. For
Tm, with J=6, j= —, , the ratio is 13/8. It follows that
while the successive admixtures of electron-hole pairs
could be treated by perturbation theory in class I, here it
is not possible to do so, and electron-hole terms must be
included in all orders. This is simply done by adding
terms with electron-hole excitations to the variational
wave functions. Thus, instead of Eq. (18), we now take

~ g), = o(f j)+gp(k)((ff)2j —1,(k)j;j)+ggy(k, q)((fq)2j —1,(k)j;j) + g g g~(k, k', q)((ff)2j —1,(kk'q);j),
k q k k' q

(k (k')
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and attempt to eliminate the higher-order coefficients in
terms of the lower ones. Inclusion of the term in y(k, q)
poses no problem, but already in sixth order, the term in
6(k, k', q) makes the algebraic elimination of the y(k, q)
coefficients impossible: 5(k,k, q) introduces a coupling
between y(k, q) and y(k', q) [which is not surprising as
this is similar to the coupling between cc(k) and a(k ) in-
troduced by P(k, k')] and the equations become very com-
plicated.

The situation is illustrated in Fig. 3. The contribution
to the energy of the terms in 6(k, k', q) gives rise to two
kinds of diagrams, those in which the electron lines k, k
do not cross (nested), and those in which they do. These
contributions have been discussed by Inagaki' for class-I
mixed valence: The nested diagrams give the dominant,

logarithmic contributions to the self-energies of the two
valence states f and f '. If the other diagrams are
neglected, these self-energies are expressible as the solu-
tions to two coupled integral equations. Inagaki convert-
ed these to coupled differential equations by truncating
the high-energy end. He defined two functions,
f(e)=e+Xo(e), and g(e)=a+6+X&(e) and was able to
parametrize f and g in terms of a parameter s related to
the energy in a complicated way. We too shall keep only
the nested diagrams. This is probably a good approxima-
tion, but we have no rigorous proof. The advantage of re-
taining only these is that we can then eliminate successive-

A

t2 l
/

k'

k

(b)

A

I p I l

// //

k
k'

FIG. 3. Diagrams of the sixth order in V occurring in the ex-
pansion of the self-energy of the f' configuration. The matrix
elements at vertices 2 and 8 are, respectively,
VV 2(4j —1)/(2j+1) and VV 2. Only the nested diagrams of
type a, which give the leading logarithmic contributions to the
self-energy, are kept in the calculation, to all orders.

ly the higher-order terms of Eq. (39), using only algebra,
and we obtain the following equation for the binding ener-

gy co& of the magnetic, 7 =j state (corresponding to the
doublet of Sec. II):

coJ=I J I
coj+5+ e —cI 1 I fir

COJ +6 +6'

This can be written

coJ =F(coj ), (41)

F(co)=1 j co+6+e' —G (co+e')
8' dE

G(co) =cl ~.

co+e' F(co+e')—
(42a)

(42b)

On transferring the first term to the left, and noting that
f (e') =e—F(e) and g(e) =@+6—G(e), we obtain the
equation

cc(k )de
cc( k)f(co+ Fk ) =I,I' g(~+~k+ek )

(44)

where c =(2j+'1)/(4j —1) is the ratio of the degeneracies
of f ' and f . In Inagaki's case, c = —,', as he had no orbi-
tal degeneracy. The functions F(co) and G (co) are just the
negatives of the self-energies Xo(co) and X,(co) of Inagaki.

The same elimination of the higher-order states goes
through for the singlet case, and we obtain the integral
equation [compare with Eq. (12)]

W a(k) +cc(k')
cc( k)(co+ek) = I

~ co+&+ek+ek —G(co+~k+ek )

the solution of which determines the eigenvalue co& of the
singlet. The energy of the magnetic state is simply given
by Eq. (41), i.e., f(coJ)=0. The functions f and g are
monotonically increasing functions of their argument. It
follows that the eigenvalue cos of Eq. (44) is larger than
coj, which means that the singlet has the largest binding
energy.

We have solved Eq. (44) numerically, making use of
Inagaki's parametrization of f and g in terms of s. The
discretization of the integral equation was more compli-
cated than in the simple case of Sec. II because of the
computational necessity to increment g(co+ok+uk ) by
equal energy intervals, while the explicit form of g is
known in terms of the variable s but not in terms of the
energy. To keep the computation within bounds we took
c= —, instead of c=—„. To estimate the change this
made in the calculated energies we also did the calculation
with c =1, in which case F(co)=G(co). The binding en-

ergy of the singlet was found to be slightly smaller in this
case.

The numerical calculation was done for the case 6=0
and a value of (IV/I )=200, taking c = —,'. Both the
cases of jj coupling and of IS coupling in the f configu-
ration were done, the latter by multiplying the right-hand
side of Eq. (44) by the factor (4l/4l+1)=0. 9231. We
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find co~—coj =0.0351 for the former, and cps —coJ=0.0271 for the latter. With the simple wave functions
of Sec. II, we had found cps —coD ——0.01I, taking the same
value for 8'/I . The inclusion of the self-energy terms
raises this energy separation, co& —~&, to a value 0.03 I,
thus increasing the tendency to singlet formation. How-
ever, I is small in the rare earths: An estimate is I =70
meV, which gives mq —co& -2 K, a very small energy.

V. CONCLUSIONS

We have shown that for an isolated mixed-valence im-

purity in a sea of conduction electrons, the ground state of
the complete system is a singlet. The energy separation
between this state and a magnetic state is, however, very
small, of the order of a few degrees kelvin. The concen-
trated salt TmSe is magnetic. It seems likely that the ori-
gin of the magnetism resides in the interactions between
the rare-earth ions. As pointed out in Ref. 2, in concen-
trated mixed-valence Tm salts, the hopping of electrons
between ions (double exchange) and the Ruderman-
Kittel-Kasuya- Yosida (RKKY) interaction provide two
mechanisms for the occurrence of ordered magnetism.
Since the energy difference of -2 K favoring the singlet
state of a single impurity is small, it is quite possible that
the interactions are responsible for the existence of
magnetism in TmSe.

Another tendency toward magnetism may be provided
by the crystal field. We have investigated the effect of the
crystal-field splitting of the ground state of a single im-

purity, and find that in any case, it will decrease the ener-

gy advantage of the singlet. However, the magnitude of
this decrease depends on which crystal-field states
represent the ground states of the f' and f configura-
tions. We find that, if I", and I ~ are the representations
of the f ' and f ground states, then if the direct product
I,&I, contains I ~, the energy difference ~s —coj. is re-
duced by a factor of the order of 0.5. If I, )& I, does not
contain I ~, then co& —~J becomes vanishingly small. Un-
fortunately, the crystal-field ground states of the f' and

f configurations are not known in mixed-valence TmSe.
Further theoretical work on the interactions and experi-
mental work on the crystal-field states appears necessary
for a full understanding of the magnetic properties of
TmSe.
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APPENDIX A

The binding energy of the singlet for the mixed-valence
impurity of class I, given by Eq. (1), was derived in Ref. 5.
It was argued there that the binding energy of the triplet
will be much smaller. The triplet binding energy for thef,f ' case can be derived with the variational function

The binding energy can be seen to be given by (for E~
——0)

(A2)

Similarly, the binding energy for the doublet can be de-
rived with the variational function

fd, o aocfv +Qagcko' $0)

This also gives the binding-energy expression (for e~ ——0)

leod
f

=—ln
'Tf COd

(A4)

Neither of these states nor the singlet energy, Eq. (lb),
contain corrections due to the self-energy terms.

APPENDIX B

It is shown here that the state ((k', k)J), obtained by
coupling equal angular momenta j of two distinct orbitals
k' and k, and antisymmetrizing with respect to the elec-
tron coordinates, is even under the interchange of k and
k' when J is an even integer, and odd when J is odd. The
proof rests on the following symmetry property of the
vector-coupling coefficients: '

(j~m j2(M —m)
l jll2 JM)

(j2(M —m) jim lJij2 JM) (B1)

Associating orbital 1 with k and orbital 2 with k, (Bl)
gives

(k'm, k (M —m)
ljj,JM )

=( —1)' —'{k'(M m), km
l
jj—,JM) . (B2)

Before antisymmetrizing the state ((k'k) J), associate elec-
tron 1 with orbital k' and electron 2 with orbital k. Then,
for each term k' (1)kM (2) in this state, there will be
another in which m and M —m have been interchanged,
with the sign given by (B2), namely the term
( —1) ~ k~ ~(1)k (2). When the state is antisym-
metrized there will be two more terms like these, but with
electrons 1 and 2 interchanged and with opposite sign. In
all, for each pair (m, M —m), there will be four terms in
the antisymmetric state. With the proper relative signs,
they are

k' (1)k~ (2), ( —1) ~ k~ ~(1)k (2),

—k' (2)kM (1), ( —1) J+' k~ (2)k (1) .

Interchanging k and k' in (83), it is seen that, for J even,
the set of terms remains unchanged, while for J odd, the
terms of the set have changed sign. This proves our asser-
tion. If the orbitals k and k are identical, interchanging
them must have no effect, and so only even J is allowed,
the well-known restriction imposed by the Pauli principle.

g, = pa(k)c~ c~ + g P(q, k)c~ c&
l go) . (Al)

k, q, o.
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