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Brownian motion and vibrational phase relaxation at surfaces: CO on Ni(111)
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The temperature dependence of the internal stretch vibrational mode of CO chemisorbed on
Ni(111) has been studied with the use of infrared spectroscopy. The width of the absorption peak of
the bridge-bonded molecules exhibits a strong temperature dependence. A theory is developed
which accounts well for the experimental results. It shows that the peak broadening is caused by
anharmonic coupling to one particular low-frequency mode, namely a hindered rotation.

I. INTRODUCTION

Much work has been done in recent years towards a
better understanding of what determines the linewidth
and line shape of vibrational modes in solids, in liquids,
and at surfaces. Such studies can give important informa-
tion about the processes that give rise to vibrational ener-

gy relaxation and redistribution, ' as discussed in partic-
ular by Marks et al.

The absorption spectrum as obtained usin'g infrared
spectroscopy or Raman scattering can be written as

I(co)- I dt e' '(u(t)u(0)), (1)

where u(t) is the relevant normal mode coordinate and
where ( ) stands for a thermal average. Equation (1) is a
suitable starting point for a discussion of vibrational line
shapes. For example, if

(u(t)u(0)) e
—Itu —~t~/T

then

1(~) I dt i(t0 Q)t —
)
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—/t
00 (Q —co) +1/2

i.e., I(co) is a Lorentzian centered at co =Q and with a full
width at half maximum (FWHM) of 2/~. Now there are
two different ways in which the correlation function
( u (t )u (0) ) can decay with increasing titne:

(a) Vibrational energy relaxation: After the excitation,
the oscillator amplitude u(t) decays. This can be caused
by emission of phonons or, for adsorbates on a metal sur-
face, by excitation of electron-hole pairs.

(b) Vibrational phase relaxation: The amplitude of u(t)
is constant but the definite phase relation that exists be-
tween u (t ) and u (0) for a free oscillator
[u(t)=u(0) exp( —iQt)] is destroyed because of elastic
scattering with thermally excited phonons (or electron-
hole pairs). That this leads to a decay of the correlation
function (u(t)u(0) ) is seen if we consider an ensemble of
X oscillators. If they all are excited in phase at time
t=0, they will, in general, have different phases at time
t&0 caused by this interaction. Thus, the correlation
function (u(t)u(0)), which can be considered as an en-

semble average, will decay towards zero as t —+ ao.
From (1) it follows that

f dcoI(co) —(u'(0) ) —coth(PQ/2),

where P= 1/kttT (T is the temperature and ktt the
Boltzmann constant). In the present work, we will only
consider the line shape of high-frequency modes, giving
PQ ~& 1 for all temperatures of interest. Thus
coth(PQ/2) = 1 and the area under the line profile I(co) is
practically temperature independent. The interaction be-
tween the high-frequency mode Q and the surrounding
will shift and broaden the absorption peak but not change
the integrated absorbtance (as long as the interaction is
"weak").

In general, the relative importance between vibrational
energy and phase relaxation at metal surfaces is quite dif-
ferent from that in (nonmetallic) solids and liquids or at
nonmetallic surfaces. The reason is that in the latter case
energy relaxation of a high-frequency (Q) mode can only
occur via multiphonon emission (which has a very small
probability if Q»co „,where co „is the highest phonon
frequency of the surrounding media). For adsorbates on a
metal surface, the additional decay path caused by
electron-hole pair excitation exists and is particularly im-
portant for high-frequency modes since the phase-space
for electron-hole pair excitation is proportional to Q. On
the other hand, on nonmetallic surfaces (e.g., undoped
semiconductor surfaces) one would expect vibrational
phase relaxation to dominate for all high-frequency modes
by many orders of magnitude (in solids and liquids cases
are known where phase relaxation is more than 10 orders
of magnitude faster than energy relaxation; such as the
N —N stretch vibration in liquid nitrogen ).

Several experimental line-shape studies of vibrational
modes of molecules adsorbed on metal surfaces have been
published. ' In a very recent letter, ' we have shown
that the C—0 stretch vibration of CO on a Cu(100) sur-
face has a temperature-independent Lorentzian line shape
with a width (FWMH) of 4.5 cm . This linewidth is
caused by vibrational energy relaxation, via excitations of
electron-hole pairs. Decay via phonon emission would re-
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quire that at least 8 phonons are emitted, which has a very
small probability. On the other hand, for low-frequency
modes such as the Ni-CO vibration on Ni(100) decay via
two-phonon emission is energetically possible and prob-
ably the relevant energy relaxation process. Chiang et
al. " found at room temperature a linewidth of 15 cm
for the Ni-CO vibrational mode, which agrees well with
theoretical predictions. ' '

Recently, Hayden and Bradshaw' have reported a
strong temperature dependence of the line shapes for the
C—0 stretch vibrational mode on Pt(111). Similarly,
Trenary et al. ' found a strong temperature dependence in
the linewidth for CO on Ni(111). This temperature
dependence cannot be due to multiphonon emission which
has negligible probability. Furthermore, damping via
electron-hole pair excitation is practically temperature in-
dependent. ' Thus, it is likely that the temperature depen-
dence of these vibrational lines is caused by vibrational
phase relaxation. ' In this work we will discuss this
problem in more detail and present a combined
experimental-theoretical study which clearly reveals the
nature of the phase relaxation process.

II. BROWNIAN MOTION MODEL

We consider the following problem: A diatomic mole-
cule AB is adsorbed on a metal surface. The frequency 0
of the internal A Bstretch vibr—ational mode depends on
the bonding position on the surface (for CO, 0 increases
typically with about 10% when going from bridge to on-
top position). This variation in the internal vibrational
frequency with bonding position will, at temperatures
where the molecules are mobile, lead to a broadening of
the vibrational line.

Due to the screening by the substrate conduction elec-
trons, 0 will depend only on the position of a small num-
ber of neighboring lattice atoms. We call these atoms to-
gether with the AB molecule for the cluster. The normal
mode frequencies of the cluster are denoted by co„and the
corresponding coordinates by Q&. Of the vibrational
modes involving the AB molecule one distinguishes
(somewhat loosely) between frustrated translations and
frustrated rotations. The former involves mainly transla-
tional (but also some rotational) and the latter mainly ro-
tational (but also some translational) motion of the AB
molecule.

Assume now that the A —B stretch vibration frequency
0 depends mainly on one of the other normal mode coor-
dinates Q (frequency cop), so that Q=Q(Q). For example
(as will be shown later), for CO in bridge position on
Ni(111) the dominating coupling is to a frustrated rota-
tion. Assume also that the system is symmetric as

Q —+ —Q. As low enough temperatures, where (Q ) is
small, we can expand

Under some assumptions, which are discussed in Appen-
dix A, the equation of motion for the coordinate Q is

mQ+mcopQ+mgQ+m aQou Q='f(t) . (4)

In this equation we have now accounted for the cou-
pling between the cluster and the rest of the crystal, which
has three effects' ' (see Appendixes A and 8): It renor-
inalizes the cluster frequency (cop~cop). It introduces a
friction force which we simply take to be of the Markoff
form mi)Q. The physical origin of the friction force is
that the Q motion is damped due to excitations of pho-
nons and electron-hole pairs. Finally, it introduces a fluc-
tuating force, which in accordance to the fluctuation-
dissipation theorem satisfies

(f(t)f(0) ) =2rtmjcii T5(t) .

The solution of the system of equations (3)—(S) represents
a complicated mathematical problem but we have recent-
ly presented a quite general solution, which is valid
beyond the Markoff approximation, i.e., with a
frequency-dependent friction in the equation of motion (4)
for the Q coordinate. Here we will only discuss a simple
limiting case which clearly exhibits the basic physics in-
volved and which defines the relevant physical quantities.

Assume that the fourth term in (4) can be neglected
compared with the third term —this is obviously possible
only if

m*
~

a
~
flou &&mi1coo .

In the first vibrational excited state we have
u-(fi/2m*Op)'; thus the inequality above takes the
orm

iit'( a
~
/2&(mijcoo

or

)5co
/
(&ij,

where

5co = iria /2m coo —aQo',

where Qp ——(A'/2mcoo)'~ is a displacement characteristic
of the zero-point motion. .

The quantities 5co and i) and the resonance frequency
cop are the basic parameters which enter in the phase re-
laxation process. In Appendix 8 and Sec. III we discuss
the friction parameter it. Here we present a simple dis-
cussion of Sco. Assume first that Q corresponds to a frus-
trated translation. For a rough estimate we take

Q(Q) =Qp+ —,
' b 0[1—cos(2mQ/d )]

+ho, A(2m. Q/d ) /4,
where d is the surface lattice constant. %'e get
a =b,0,2m /d and

Q (Q)=Oo+aQpQ (2) 5co=2ir AQ(Qo /d)

m*u'+m*Qou+m*aQoQ u =0 . (3)

where a is a constant. If u(t) denotes the normal mode
coordinate for the A —B stretch vibration, then the equa-
tion of motion for this coordinate becomes

For CO, m =28 u and if cop-100 cm ', then Qp-0. 1

A. With d=3 A and AQ-100 cm ' one gets 5co=2
cm '. For most metals (see Appendix B and Sec. III),
q-30 cm ' when ~0-100 cm '. Thus, in this case, the
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inequality ~5co~ &&11 is well satisfied. Physically, this
means that the response back on the Q motion from the
high-frequency vibration is negligible compared with the
damping force mgQ.

Let us now consider a frustrated rotation. Q is now an
angle variable and for a rough estimate we take

r

I(co)oc f dte' ' e ' exp —f dt'A(t') +c.c.
0

(14)

Next, we use the cumulant expansion ' to second order in

Q(Q) =Qp+ —,
' KQ(1 —cosQ)

=Qp+b Q Q /4 .
(

t
ex —' dt'A(t') =e""'"- "'

0
(15)

Thus a =hQ/2 and

5co=b,Q Qp /2,
where Qp=())1/2Icop)'~ is a tilting angle characteristic of
the zero-point motion. %'ith coo- 100 cm ' and
I=ml —16u X(1 A ) we get Qp=0. 2=10'. Thus if
AQ-100 cm ' then 5~=2 cm

If 5co always was this small for frustrated translations
and rotations, then practically no observable contribution
to the linewidth and frequency shift would result [using
Eqs. (22) and (23) below with q=30 cm ', 5co=2 cm
and cop ——100 cm ' gives at room temperature a frequency
shift b,co-4 cm ' and a linewidth y= 1 cm '].

Equations (3) and (4) can now be written as

where

H(t)= ' f dt—' f dt" h(t' t")—,
h(t) = (A(t)A(0)) —(A(o))'.

(16)

(17)

Furthermore, since f is a Gaussian random variable,

( Q'(t)Q'(0) ) = (Q'(0) )'+2(Qit)Q(0) )',

We now calculate (A ) and h(t) using the equation of
motion (11). We get

(A ) =a(Q2) =akt)T/mcop .

u+(Qp+aQpQ )u =0,
Q+nQ+~pQ =f/m .

(lO) so that

(11) h(t) = (A(t)A(0) ) —(A(0) )'=2a'(Q(t)Q(0) )' . (l8)

Our basic problem is now to calculate the line-shape func-
tion Now ( Q(t )Q(0) ) is easily calculated from (11):

I(co)= f dt e' '( u (t )u (0) ) (12)
(Q(t)Q(0)) = (coze

' —co)e ')(Q ), (19)
from Eqs. (10) and (11). This can be done as follows:
First, we rewrite (10) as

where
u+ [Q', +Q,A(t)]u =0,

where

(13)
co1 2

——— + 1 (cop g /4)—2 1/2
2

A(t)=aQ

Next, we write

u =a(t)e '+H. c.

and substitute this in (13),

Substituting (19) in (18) gives

h ( )
4a (co)+coz)t( Qz) 2

( coz co))— (20)

cc'+ 2i Qpcc —Qocc+ f Qo+ QpA (t ) ]a=0
or

2iQoci+ AoA a =0,
where we have neglected the ci' term which is small when

i
A

i
«Qp. Thus we get

r

t
cc(t) =a(0) exp —f dt'A(t')

0

t
u(t)=a(0) exp —f dt'A(t')+iQpt +H. c.

0

Substituting this in (12) gives

2')t 26)2twhere we have neglected the terms -e and -e
which both oscillate rapidly in time and give no contribu-
tion to the linewidth or shift. (These two terms give rise
to absorption peaks at 0+2coo corresponding to the emis-
sion or absorption of two vibrational quanta cop together
with the internal A-8 vibrational mode Q. ) Substituting
the explicit expressions for co) and coz in (20) and assum-
ing that ~0 &&g /4 we get

h(t) a2e —Yft(Q2)2

and thus

H(t)=, (rit+e ') —1)=Hp(qt-+e ') ——1) .
2(Q2)2 t

4q

Combining this result with (14) and (15) gives



32 Bg.OWNIAN MOTION AND VIBRATIONAL PHASE. . . '

3589

I(co)= f dte' 'I exp[ —i(QO+ —,
' (A))t H—o(ri~ t

~
+e "~'~ —1)]+c.c. I

2g(HO+ n )=e ( —Hp)"
' ( —0,——,'(A))'+[ (H, + )]'

where we have neglected the nonresonant (for co & 0) term.
For

~
Ho

~
&& 1, Eq. (21) reduces to

2Hpg
I(co) =

(to —Qo ——, (3 )) +(Hog)2

Thus, in this limit, the line shape is a Lorentzian with the
center frequency

~=n, + ,'(~-) =n, + ,'a(-g')

and the linewidth (FWHM)
2

7 =2H, q= ' (g')'.
29

I(co ) Irn-D (io ),
where (n, m =0, 1, . . . , L)

D(co) = g D„(co) .
n, m

The matrix D„satisfies the equation

(29)

(30)

D=P (co3.—h —M)

where

In the general case where 6co, g, and T are arbitrary, it is
not possible to derive any simple expression for b,co and y.
Here the line shape I(co) is approximately given by

(g2) AT
b.co = —' 5'2 2 5co

Qo coo

and the linewidth as

(22)

With the definition (7), we can write the (temperature-
dependent) frequency shift as h„=5„(QO+n 5co ),

5„ —i g(2nnb+ n +nb )+5„+,t gn(nb+ 1}

+&n, m —&&'9~nb

(32)

(33)

where

(Q')
5co

2g Qo

T 2
ka T 2(5to)

COp

(23)
except for n =m =L, where

Mgg —— igL(nb+—1) .

In the ex.pressions above

(34)

Qo
——(fi/2m coo)

'~ (24)

66)= 6co
~~o

(25)

e ' 2(5'�)Po)o

pco0 1)2 7J
(26)

We note that Aco and y-e as T~O which indeed is
—Pcoo

the correct low-temperature dependence of these quanti-
ties, as shown by Harris et al. These authors have
shown that the line profile I(co) at low temperature, in-
dependent of the relative magnitude of 5' and g, has a
Lorentzian shape with frequency shift and width given
b 21,22

2
ha) =e 5co

(5') +g
(27)

p =2e Yj
(5to)

(5') +g

is the amplitude of the zero-point motion. In deriving the
equations above, we have assumed that the temperature T
is so high that we are in the Boltzmann-statistic regime.
However, the expressions for Ace and y are probably valid
for all temperatures if we calculate ( Q ) quantum
mechanically and subtract away the zero-point contribu-
tion:

nb ——[exp( peso) —1]
is the Bose-Einstein factor. The dimension L+1 of the
matrices must be chosen so large that the result is con-
verged, i.e., unchanged if L is increased further. Equa-
tions (29)—(34) have been derived within the Markoff ap-
proximation but we have recently generalized this result
beyond this approximation. The formulas (29)—(34)
reduce to (25) and (26) for g/5'�»1 (or, more exactly,
for g/5' nb »1) and to (27) and (28) as T—+0. The
latter result has been shown by Harris et aI. by limiting
the dimension of the matrices to two (which is a good ap-
proximation at low temperatures) and inverting the matrix

(coi —h —M) analytically. The theoretical results present-
ed in Sec. V are calculated from Eqs. (29)—(34) by invert-

ing (co).—h —M) numerically.

III. FRICTION PARAMETER q

In this section we will discuss the damping of frustrated
translations at surfaces. These results are interesting on
their own but can also be used as basis for rough estimates
of the friction coefficient 7) entering the equation of
motion (4) for the coordinate Q.

Let x denote the position of a molecule on a surface
and let V(x ) be the ground-state potential-energy surface.
Since V(x ) must have the same periodicity as the underly-
ing surface crystal structure it can be written as a sum
over reciprocal-lattice vectors. For simplicity, assume
that
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V(x ) = —Ep —Vp cos(gpx )

where gp 2n——/a and a is the surface lattice constant.
Within this approximation, 2Vo is the activation energy
for diffusion along the surface which is known for many
molecule-metal systems. For low-amplitude vibrations
around x =0 we can expand

V(x)= —(Ep+ Vp)+ —,
'

Vpgpx = —(Ep+Vp)+ —,'mcopx

(35)
where m is the mass of the molecule. Thus

irtpip-(A' Vpgp /m)' =0.39(Vp/ma )'
0

with Sicko and Vo in eV, m in u, and a in A. For Co ad-
sorbed on close-packed metal surfaces [e.g., the (111)sur-
faces on fcc crystals] the corrugation 2Vp in the ground-
state chemisorption potential V(x) is very small, typically
2Vo-0. 2 eV. With m=28 u and a-2 A, one gets
flop —10 meV. The highest phonon frequency of many
metals (e.g., Ni) is about 30 meV, so that the activation
energy of the frustrated translation is well down in the
bulk phonon band. Thus this vibration is not a localized

EI( = —PEYf IIx

where

1 m ~o
~lt =

8m p cp

'3

(36)

mode, but rather a resonance with a width determined by
the rate of one-phonon emission. In this section, we will
estimate the damping of frustrated translations caused by
bulk and surface phonon emission.

We assume that coo ~&co „,where co,„ is the highest
phonon frequency of the crystal. Thus the damping of
the frustrated translation x will involve emission of rela-
tively long wavelength phonons and we will be in the
linear region of the metal phonon dispersion relation.
Thus we can, as a first approximation, use the elastic con-
tinuum model to calculate the damping of the frustrated
translation x. It is shown in Appendix 8 that the friction
force acting on the x motion from phonon emission can
be written as

oo 1
gii= Re dx + 2v'1 —x (1—2x) /V'1 —x +4x[(cr /cL) —x]'

Here p is the density of the metal and cL and cr are the longitudinal and transverse sound velocities. For most metals
cr /ci ——, and for this case we show in Table I the contributions to

g~~
from emission of surface and bulk phonons. Gb-

viously, almost the whole damping comes from emission of bulk phonons (more exactly, transverse bulk phonons with
the displacement field parallel to the surface —see Appendix 8). It is also of interest to know the damping of motion
normal to the metal surface as it enters into various other dynamical processes. Again, it is shown in Appendix 8 that in
this case (z is a coordinate normal to the surface)

EJ — PPl Qj z

where
'I 3

1 m ~o'
4~p

8m p cg
(37)

and

gi ——Re J dx 2

1/2
(cr /cL) —x

1 —x
1

(1—2x)2/&1 —x+4x[(cr /ci ) —x]'i

Table I shows that the dominating contribution to gi is
emission of surface (Rayleigh) phonons. In Table II, we
show q~~ [as obtained from (36)] for a few different metals
(in the calculation we have used cop ——80 cm '). F (r)= —mg ~&(r), (38)

The formula given above for the friction force (sum
over repeated indices)

Friction
parameter

Surface.
phonon

L+ T bulk
phonons

TABLE I. The contribution from emission of bulk and sur-
face phonons, respectively, to the damping of modes parallel
(g~~) and normal (gi) to the surface.

TABLE II. Friction coefficient gll for some metals using
cop =80 cm ' and m =28 u (CO). The friction coefficient for
other resonance frequencies coo and masses m can be obtained by
scaling, using gll -m~0.

0.47
2.10

2.57
1.19

3.04
3.29

Metal

~ll (cm ')

Pt

14.4 6.4

Al

20.8 14.4
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FIG. 1. General behavior of the friction parameter g as a
function of frequency. co,„is the highest phonon frequency.
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or with the time dependence Fourier transformed

F~(co) =i corn g~px p(co),

is valid within the elastic continuum model, i.e., for
~ «~max.

It is clear, however, that in general g ~ wi11 depend on
co. For example, under the assumption that the coupling
between the x motion and the crystal is harmonic, one
must have rt tt(co)~0 as co~co,„since no damping can
occur for co & co,„. Thus one expects g p(co) to have the
general form shown in Fig. 1. In reality, gott(co) is
nonzero also for co & corn, „, since it is possible to couple to
electron-hole pair excitations and also since the coupling
to the crystal is never purely harmonic so that decay via
multiphonon emission can occur. For the most general
case, one writes

F (t)= —m f dt'q tt(t t')xtt(t'—), (39)

where the memory function rl gt) depends on the de-
tailed molecule-crystal interaction. The derivation of the
vibrational line shape in Sec. II A is only valid within the
so-called Markoff approximation where (38) holds, i.e.,
when the memory function

rt tt(t t') =ri tt5(t—t')—
has no memory, making g tt(co) frequency independent.

IV. EXPERIMENTAL RESULTS

In this work we present experimental data on the inter-
nal stretch vibrational mode of CO chemisorbed on a
Ni(111) surface. The temperature dependence of the in-
frared absorption peak position and width has been stud-
ied. The experimental details of the infrared spectrometer
have been given elsewhere. ' The Ni crystal was orient-
ed within —,

'' mechanically and electropolished, and then
cleaned by repeated cycles of heating to 1100 K, 200 L Oz
exposures at 300 K and argon ion sputtering. [1 L (lang-
muir) —= 10 Torr sec.] The adsorption stages of
CO/Ni(111) followed in general the work of Erley et al. 5

At sufficiently low temperatures first an ordered c(4X2)
structure with a basis of two molecules giving a coverage
of 0.5 (with respect to the surface Ni atoms) was found,
with all molecules in bridge position. Higher exposures
gave a (v 7/2X V 7/2)R 19' structure (coverage 0.57) with
every fourth molecule in the on-top position and the other
bridge bonded. In Fig. 2 we present peak position and
width as functions of temperature for the bridge-bonded
molecules in the c(4X2) structure and the terminal bond-

1895

20-
'E

15—

UJ
10—

(D

50

() . ~
II (Q"

~ y
()

(D

I

100 150 200
TEMPERATURE (K)

250 300

FIG. 2. Infrared absorption peak position and width
(FWHM) as function of temperature for the internal stretch vi-
brationa1 mode of CO on Ni(111). Bridge-bonded (0) and ter-
minal bonded (0} molecules. Inserted is a typical first-
derivative spectrum with a resolution of 3 cm ', an averaging
time of 5 min, and with the background subtracted.

ed molecules of the (v 7/2X~7/2)R19' structure. The
widths were determined by integrating the first derivative
spectra, taken with a modulation amplitude less than —,',

slit width. A typical derivative spectrum is also shown
(after signal averaging for 5 min and subtracting of the
measured background). The spectrometer resolution was
3 cm ', which has been subtracted from the data.

For the bridge-bonded molecules, which were of pri-
mary interest in this work, the widths were very sensitive
to additional inhomogeneous broadening. This was prob-
ably caused by imperfections in the c(4X2) structure (the
on-top position is occupied for coverages both below and
above 0.5) that can be due to uncertainties in the exposure,
readsorption during the heating of the sample, or minor
surface contamination. For poorly-ordered structures we
easily obtained an additi. onal inhomogeneous broadening
in the order of IO cm '. In Fig. 2 we therefore present
the mean value for four different depositions at each tem-
perature and with a standard deviation of these four
points as an error bar. The c(4X2) structure is stable, as
seen from the LEED pattern, below 300 K. The peak po-
sition, which was recorded by second-derivative spectra,
was much more reproducible.

For the terminal-bonded molecules the situation is dif-
ferent. Most of the strength of their absorption peak is
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FIG. 3. Peak position and width for bridge-bonded molecules
(0) reproduced from Fig. 2. The solid lines are the theoretical
calculations using coo ——220 cm ', g=37.5 cm ', and 5co=34.4
cm

caused by intensity transfer from the bridge-bonded mole-
cules due to the dipole-dipole interaction. Consequently,
changes in the width and position of the bridge-bonded
molecules will also influence this high-frequency peak.
The (V 7/2&& V 7/2)R 19 structure was only stable below
230 K.

Except for the temperature-dependent features that will
be discussed in the next section, it is interesting to note
that the temperature independent part of the width for the
bridge-bonded molecules is much smaller than what has
previo'usly been reported on transition metals. The low-
temperature value places an upper bound to the vibration-
al damping rate, which then turns out to be at most only
30% larger than on Cu. Again, the value for the on-top
molecules is not a good measure of the intrinsic linewidth
due to the strong dipole-dipole coupling.

Although our results show the same general tempera-
ture dependence of the width as the previously reported
study on the same system by Trenary et al., ' there exist
some important discrepancies. For the c(4&&2) structure
we find an upward frequency shift of 8 cm ' compared to
a negligible (or a possible 6 cm ' downward) shift with
increasing temperature. Furthermore, the absolute values
of the widths that we obtain is about half of that of,
Trenary et al. Part of the reason for these differences is
probably due to our better sensitivity and resolution. In
addition, the adsorbate structures were created using dif-
ferent procedures. %'e found that the sequence that gave
the best ordered structure was to adsorb 3.0 L CO at 100
K, followed by a short anneal at 230 K. The structure
was checked during each measurement by low-energy
electron diffraction (LEED) and the I(V) curve of the
(0,0) beam. As mentioned above, the width was very sen-
sitive to inhomogeneities in the structure, which forced us
to make an average of four values at each temperature.

V. ANALYSIS OF EXPERIMENTAL DATA

In this section, we will analyze the experimental data
using the theory discussed above. Figure 3 shows the
peak width (FWHM) and center frequency for the internal
stretch vibration for CO in bridge position on Ni(111).
The open circles are experimental data and the solid lines
are calculated from Eqs. (29)—(34). In the calculation we
have used cu0 ——220 cm ', g=37.5 cm ', and 6~=34.4
cm '. The overall agreement between theory and experi-
ment is very good. For low enough temperatures, the
low-frequency mode coo is frozen out so that Ace and y be-
comes almost temperature independent for kz T &&Rcoo.

Let us now discuss the implications of the values of the
parameters coo, g, and 5co found above. Richardson and
Bradshaw have performed a normal mode analysis of
CO bonded in the bridge position on a small nickel clus-
ter. Of all the normal modes involving CO, only the frus-
trated translation co,„, and the frustrated rotation co,«(see
Fig. 4) have resonance energies below the maximum Ni
phonon frequency (=290 cm '). The next-lowest vibra-
tional mode is the metal-CO stretch vibration at the fre-
quency co0-360 cm '. This mode has probably a width
(FWHM) of the order of 15 cm ', damped via two-
phonon emission. The calculated frequencies for the frus-
trated translation and rotation should only be taken as
very rough estimates. It is nevertheless satisfying to find

L

FIG, 4. (a) Position of the bridge-bonded CO molecules in the
c(4&&2) structure on Ni(111). (b) Schematic picture of the frus-
trated rotation, co„t-184 cm '. (c) The frustrated translation,
~tra 76 cm
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that the frequency coo ——220 cm ', that we have obtained
by comparing theory with experiment, is close to the cal-
culated co,« ——184 cm ' while it is a factor of 3 larger
than co«,——76 cm . Thus we argue that the Uibratl, onal
phase relaxation in the present case inuolues coupling to the
frustrated rotation co«,.

Next, let us discuss the magnitude of the friction coeffi-
cient q =38 cm '. We can estimate g theoretically using
the theory presented in Sec. IV and Appendix B. First we
note that mo ——220 cm ' is so large compared with the
highest bulk phonon frequency co,„=290 cm ' that we
cannot directly use the continuum model result. Howev-
er, based on the known (for co«co~,„) relative magni-
tudes between emission of transverse and longitudinal
bulk phonons and surface (Rayleigh) phonons, we have
shown in Fig. 1 the approximate frequency dependence of
g~~ and gz and using this figure and Eqs. (36) and (37) we
get g~~=gq=0»nd g~~=gq-45 cm ', which is con-
sistent with the obtained g=38 cm '. We have also es-
timated g for a pure rotation and find g«, =40 cm

It is not possible to estimate 5co theoretically without an
extensive chemisorption calculation, which is not yet
available. However, we would like to make one qualita-
tive point. In Fig. 5(a) we show the lowest unoccupied
molecular orbital (2n') and the highest occupied molecu-
lar orbital (5o ), which are the orbitals that are expected to
be most involved in the chemisorption. The So. is essen-
tially nonbonding, with respect to the C-0 separation, and
we expect that changes in the So-metal bond as the CO
molecule is tilted will have little influence on the C—0
stretch frequency. On the other hand, the 2m' molecular
orbital (MO's) are antibonding with respect to the C-0
separation. For chemisorbed CO, the 2m* level forms a
partly-filled resonance located in the vicinity of the Fermi
energy. In the bridge position, there is an appreciable
overlap between the 2m' and the metal orbitals [see Fig
5(a)] leading to a relatively large charge transfer into the
2~* level and consequently a lowering of the C—O stretch
frequency when going from the on-top to bridge position.
As the CO molecule is tilted, this overlap will change ap-
preciably, leading to a relatively large change in the vibra-
tion frequency, i.e., i

c)Q/c)e
~

-5co is large.
For CO on the on-top position, on the other hand, the

2m" MO's are less involved [Fig. 5(b)] making 5co smaller.
Furthermore, the frustrated rotation has stiffened to

Ni

FICi. 5. The 5o. and 2n.* MO's of CO. (a) Bridge position.
(b) On-top position

u,«——411 cm ' which is well above the highest phonon
frequency of Ni. Thus we expect the damping, g,«, to be
considerably smaller than that for CO in bridge position.
The small magnitude of 5co and g and the large magni-
tude of co,«(corresponding to a temperature of about
=600 K) explain why the phase relaxation is so much
weaker in the on-top position. Based on estimates of 5~
and g for the low-frequency frustrated translations one
can also understand why these modes give in general a
negligible contribution to the phase relaxation process.

Finally, let us present a short discussion of the experi-
mental data by Trenary et al. Since they observe negligi-
ble frequency shift compared with the increase in
linewidth, the condition 5co»g must be satisfied. Thus
at low temperatures (k eT«%coo) one has [see (27) and
(28)]

b,co=(g /5co)e

The best fit of the linewidth is obtained with coo-700
cm '. At room temperature (keT=200 cm '), y=30
cm ' so that

g=ye '/2=500 cm

i
5co

i
=

i ri /b co
i
e ' & 1000 cm

since
i

b,co
~

&7 cm '. These values for q and 5co are un-
physical. Since the frequency coo is well above the highest
phonon frequency of the metal, the damping g is expected
to be rather small, g-10 cm '. The quantity Lo is the
frequency shift of the C—0 stretch mode as the low-
frequency mode coo is in its first excited state. This fre-
quency shift can hardly be as large as

~

5co
~

& 1000 cm

VI. OTHER PHASE RELAXATIGN PROCESSES

The vibrational-phase relaxation process - discussed
above is, of course, not the only possible one. For exam-
ple, the C—0 stretch vibration is coupled directly to the
metal substrate via the anharmonic metal-CO binding po-
tential and this coupling gives a contribution to the vibra-
tional phase relaxation process as has been discussed in
detail elsewhere. '

The temperature dependence of this contribution to the
linewidth is y-T as T—+ac and y —T as T~O. Thus
it does not exhibit an exponential low-temperature depen-
dence as for the exchange coupling. For the system
CO-Ni(111) one can estimate that the contribution to the
room-temperature linewidth of the C—0 stretch from the
direct molecule-metal coupling is -0.1 cm, i.e., an en-
tirely negligible contribution.

The lateral interaction between adsorbed CO molecules
will also give a contribution to the vibrational linewidth.
This process is similar to the collisional broadening occur-
ring in a gas of molecules. For an ordered system of ad-
sorbed CO molecules, one must, in general, account both
for the long-range dipole-dipole interaction as well as for
the short-range (usually repulsive) interaction caused by
the direct contact between two nearby molecules. It is
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easy to show that the dipole-dipole interaction gives a
negligible contribution to the linewidth, but the contribu-
tion to the linewidth from the short-range interaction is
more difficult to estimate since much less is known about
its nature.

VII. SUMMARY AND CONCLUSION

In this work we have presented experimental results for
the temperature dependence of the C—0 stretch vibration-
al line for CO on Ni(111). These data have been analyzed
within a simple theoretical model and remarkably good
agreement between theory and experiment was obtained.
We found that the temperature de-pendent contribution to
the C—0 stretch vibrational line shape for CO in the two-
fold bridge position on Ni(111) involves coupling to a
frustrated rotation with frequency to«, —220 cm ' and
damping (via' one-phonon emission) g=38 cm '. We
have presented theoretical results for the high-temperature
dependence of the vibrational line shape thus extending
the low-temperature results by Harris et al. We have
also shown that the relative importance of energy and
phase relaxation for a chemisorbed molecule critically de-
pends on its normal mode spectrum, the absorption site,
and the properties of the substrate.
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APPENDIX A

Consider a diatomic molecule AB adsorbed on a metal
surface. Let Q be the frequency of the A —8 stretch. It is
assumed that 0 is much larger than any other vibration
frequency of the system. Q depends on the coordinates of
a small number of nearby lattice atoms. We call these
atoms together with the A and B atoms for the cluster. If
the cluster were isolated (i.e., not interacting with the rest
of the crystal) then the equation of motion for the cluster
atoms would be

x+co .x=F(x), (A 1)

where co is the frequency matrix which, within the har-
monic approximation, determines the normal mode fre-
quencies of the cluster, and where E(x) is an anharmonic
coupling between the AB molecule and the rest of the
cluster. Now, if the metal crystal is harmonic, then it is
possible to account (exactly) for the coupling between the
cluster and the rest of the crystal by simply replacing (Al)
with" —"
e ~ t
x+Po,tt.x+ I dt'q(t t') x(t')—

+g(t).x(0)= f(t)+F(x) . (A2)

This equation differs from (Al) in three ways. Firstly,
the frequency matrix co—&Poeff i.e., the cluster frequencies
are renormalized due to the interaction between the clus-
ter and the rest of the crystal. Secondly, a friction force
has been introduced which describes the energy flow from

Ip
——ep.F .

We now assume that

gq (t)=2g„5pg(t) .

We then get

Q„+~„'Q„+g„g„=f„(t)++„(Q„). (A3)

Assume that the A —B stretch mode couples mainly to
one low-frequency frustrated translation or rotation of the
AB molecule. Let Q and coo denote the corresponding
normal mode coordinate and frequency. We get

Q+a)og+qg=f(t)lm —Qa( oml )umg,
where

(f(t)f(0)) =2qmk~T5(t) ',

where m is an effective mass.

Q =Q (Q)=QD+aQOQ

where we have expanded Q (Q) to second order in Q and
assumed that the linear term vanishes because of symme-
try Thus, .if u(t) denotes the normal mode coordinate of
the A —8 stretch, then it satisfies

m*u+m'(Q +aQ Q )u=0.
Here we have assumed that the A —8 stretch vibration

is undamped. In reality, this motion is damped due to ex-
citation of electron-hole pairs but this just adds a
temperature-independent contribution to the infrared (IR)
linewidth (see Secs. IV and V). The low-frequency mode
Q satisfies an equation of the type (A3)
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APPENDIX B

Here we will derive (within the elastic continuum
model) the friction parameters g~~ and rI~ for the motion
parallel and perpendicular to the surface, respectively.

We consider first the following general problem: On
the surface of a semi-infinite medium acts a surface ten-
sion (z =0),

0 i(k(
(

'x~
~

—cot)
o~3 ——aje:—aj(x~~, t) . (81)

We want to calculate the resulting displacement field
uj(x, t). This is a standard problem in mathematical
physics and is most easily solved by decomposing the dis-
placement field as

u=pA+K. B+p&&KC . (82)

(83)

2 3
atz

—cTV C
——0.

It is obvious from (82) that A is associated with the longi-
tudinal displacement field and 8 and C with the two
transverse displacement fields. Note also that IM is
parallel to the metal surface

We write

o;J.=(a b)uk k5~J+b—(u; J+u, ;),
where

cr b/p, ci ————(a+b)/p .

Substituting (82) and (85) in (Bl) gives

z(a b)p A+pb—(2p, A+K C)

+ Kbp, B+p~Kbp, C= —ia .

Here A, B, and C are three scalar fields and
p= i V—,K.= iz—X V. Substituting (82) into the equa-
tion of motion

8 fig
ij'g P

Bt
results in three scalar equations

1/2
CO

pi. —— 2
—kii

CI

1/2
co kz

2 II

from which one can calculate u 3 (0,t ):
u3 ——p, A+X C= —,(kii+pr)C

—i(k~~+p T)a,
2

Case 2. Assume az ——a, =O. Substituting (87) in (86)
glvCS

k»a„
Bp ——i

bk~ pr

Co= 2 [(a b)k~~+(a+—b)pL]~0
—1 2 2

2bk

iver

PT 1
c40 = —Ek~a""pi. Q'

from which one can calculate u i(O, t):

~i =J ~~ —s»B —s~J»c

bkIpr cT 2k
(89)

I.et us now return to the original problem, namely the
calculation of the memory functions q~~(co) and rji(co).
I.et us first consider motion of the particle in the x direc-
tion:

Now we consider two cases.
Case I. Assume a„=a„=O. Substituting (87) in (86)

gives 8=0 and

A 0
— (p T —k

i i
)Co ~= 1 2 2

2pL

a,'
[(a —b)k~~+(a+b)pi. [(p~L —k)~ )/2pL]+2bk ~pT

~ 0—laz

From this equation one obtains three scalar equations by
operating with I, K, and p~~".

[(a b)p +(a+b—)p, ]A+2bp2p, C= ia, , —
mx+mco 0[x —ui(O, t)]=f(t) .

The force on the elastic medium is o23 o33 Oand— —
(810)

bp~p, B=i(kya„—k„ay),

bp [2p, A+(p —p, )C]= i(k„a„+k~a~—) .

(86)
or

o i3 ——mco o[u i(O, t) —x(t)]5(x)

The general solutions to (83) and (84) consistent with
the boundary condition (81) are

i(kI~ xiii+pi z —rot)~ =~oe 7

r

Bp
i(kI

I
'x)

)
+py z —cot )

e

where

o„=mco [u, (O, co) —x(co)] f d'k(( e
(2n )

Using (89) we now get

u i(O, co) =mco p[u i(O, co) —x(co)]
—2 E

(2m )

k 2 kx fd'k —i
bk~~pr cr 2k~~ pL Q
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or

u i (O, co) =E(co)x(co),

where

R(co)
1+R(co)

(811)
Thus, using (813),

2
2 coo—co x(co)+ x(co)

1+Rp

coo Ri—t
'

x(co)=f(co)/m .+ 0 + 0

We write

1 m ~o co
ImR(co) =-

87T p CT COp

where g~~ is given in Sec. III. We now write R =Rp+iRt
where Rp and R t are real. Now R t -co so that for small
enough co (see below)

~

R t ~
&&1 and we can approximate

—2
CO p

1+Ro
—2~o

1+Rp 1+Rp

T 3
1 m ~o

giicopco=giico,8m. p cT

1 1

1+R 1+R, (1+R,)'

Consider now the equation of motion (810)

—~'x(~)+~ p'[x(~) —u, (O,~)]=f(~)/ m,

or with (811) and (812):

co2x(c—o)+co p x(co) =f(co)/m .
1+R

(813)
so that

—co x (co ) +copx ( co )—t co7I
i i

x ( co )=f( co ) /m

or

Thus, the coupling to the substrate will renormalize the
oscillator frequency cop~cop and introduce a friction q~~.
In an analogous way, one can derive the expressions for
qq given in Sec. III.

A. Laubereau and W. Kaiser, in Chemical and Biological Appli-
cations of Lasers, edited by C. B. Moore (Academic, New
York, 1977), Vol. II.

S. Marks, P. A. Cornelius, and C. B. Harris, J. Chem. Phys.
73, 3069 (1980).

Ph. Avouris and B. N. J. Persson, J. Phys. Chem. 88, 837
(1984).

4J. W. Gadzuk and A. C. Luntz, Surf. Sci. 144, 429 (1984).
58. N. J. Persson, J. Phys. C 11, 4251 (1978); B. N. J. Persson

and M. Persson, Solid State Commun. 36, 609 (1980).
A. Laubereau, Chem. Phys. Lett. 27, 600 (1974).

7Y. J. Chabal and A. J. Sievers, Phys. Rev. Lett. 44, 944 (1980).
8R. Ryberg, Surf. Sci. 113, 627 (1982).
9F. M. Hoffman, Surf. Sci. Rep. 3, 107 (1983).

B.E. Hayden and A. M. Bradshaw, Surf. Sci. 125, 787 (1983).
~~S. Chiang, R. G. Tobin, P. L. Richards, and P. A. Thiel, Phys.

Rev. Lett. 52, 648 (.1984).
M. Trenary, K. J. Vram, F. Bozso, and J. T. Yates, Jr., Surf.
Sci. 146, 269 (1984).

' R. Ryberg (unpublished).
4J. C. Ariyasu, D. L. Mills, K. G. Lloyd, and J. C. Hemminger,

Phys. Rev. B 28, 6123 (1983).
B. N. J. Persson, J. Phys. C 17, 4741 (1984).

~68. N. J. Persson and E. Zaremba, Phys. Rev. 8 31, 1863
(1985).

7R. W. Zwanzig, J. Chem. Phys. 32, 1173 (1960).
S. A. Adelman and J. D. Doll, J. Chem. Phys. 61, 4242 (1974);
64, 2375 (1976).

~9M. Shugard, J. C. Tully, and A. Nitzan, J. Chem. Phys. 66,
2534 (1977); A. Nitzan, M. Shugard, and J. C. Tully, ibid. 69,
2525 (1978);J. C. Tully, ibid. 73, 1975 (1980).
B. N. J. Persson (unpublished).

~R. Kubo, J. Phys. Soc. Jpn. 17, 1100 (1962).
2 C. B. Harris, R. M. Shelby, and P. A. Cornelius, Phys. Rev.

Lett. 38, 1415 (1977) R. M. Shelby, C. B. Harris, and P. A.
Cornelius, J. Chem. Phys. 70, 34 (1979).

2 P. W. Anderson, J. Phys. Soc. Jpn. 9, 316 (1954).
~4R. Ryberg, J. Phys. (Paris) Colloq. 44, C10-421 (1983).
25W. Erley, H. Wagner, and H. Ibach, Surf. Sci. 80, 612 (1979).

B. N. J. Persson and R. Ryberg, Phys. Rev. 8 24, 6954 (1981).
N. V. Richardson and A. M. Bradshaw, Surf. Sci. 88, 255
(1979).


