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Evidence for 6d valence states in a-U, UGa,, and UGa;
as revealed by resonant photoemission
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We have studied a-uranium, UGa,, and UGa; with resonant photoemission. In agreement with

~ Iwan, Koch, and Himpsel, we find for a-U a 2-eV photoemission feature in the off-resonance spec-

trum at Av=94 eV, which they have interpreted as a 5f shake-up satellite. In contrast, we show

that this feature can be related to valence states of U because of (i) its sensitivity to O, exposure and
(ii) its. occurrence in UGa, and UGaj at ~ 1.4 eV, suggesting 6d valence-band emission as its origin.

Resonant photoemission has become increasingly the
technique to identify and locate the f-derived photoemis-
sion features within the valence bands of rare-earth (RE)
and actinide (4) systems.!~% It is particularly useful in
cases where the f electrons are energetically degenerate or
even hybridized with non-f electrons, e.g., the RE- or A4-
derived d electrons or, e.g, the transition-metal valence
electrons in intermetallic compounds. However, since
resonant photoemission is based on Fano-type interference
effects’ between direct photoionization of valence elec-
trons and photoexcitation of a deep-core hole, the recent
realization of the importance of screening effects”!°~!2 in
normal photoemission from light-RE systems implies
screening effects should be particularly important in
resonant photoemission owing to the deep-core hole.

At present there exists no theoretical treatment of the
5d —5f resonance behavior and its various decay chan-
nels, which includes screening, except for uranium.!* By
analogy'4 with the p—d resonance of itinerant d states in
Ni and the resonant enhancement of the Ni 6-eV valence-
band satellite!® which reflects localized excitations into
different final-state multiplets, Johansson et al.!* predict-
ed a similar localized excitation channel for a-U produc-
ing a 2-eV shake-up satellite of the 5f itinerant valence
states. Iwan, Koch, and Himpsel4 actually observed a 2-
eV photoemission feature emerging in the off-resonance
spectra of the 5d—5f resonance, and ascribed it to the
shake-up satellite predicted. It is the purpose of this pa-
per to show that this 2-eV feature is not a satellite, but
can be interpreted as photoemission from U-derived 6d
valence states.

The occurrence of shake-up satellites is an indication
that, owing to electronic correlation effects, the itinerant
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systems under investigation are close to the localized re-
gime, at least in the final state probed by photoemission
as, e.g., in Ni (Refs. 14 and 15) or Ce systems (Refs.
10—12). Hence, if the interpretation of the 2-eV feature
as a satellite holds, it will imply that the 5/ electrons in
a-U are on the border line between itinerant and localized
behavior. However, several facts and observations are at
variance with “near-to-localized” 5f electrons in uranium.

(i) Band-structure calculations!® describe U as a proto-
type f-band metal with a hybridized 5f, 6d valence band,
cut by the Fermi level Er, which agrees quite well with
photoemission results at photon energies far above!’ or
below!® the resonance energies.

(ii) Effective electron masses owing to itinerant 5f elec-
trons have been found in a-U by de Haas—van Alphen
measurements. '’

(iii) A possible valence-band satellite was not observed
in resonant photoemission of itinerant 5f-electron systems
with a larger U-U spacing than in a-U, e.g., UN,?° Ulr;,2!
UNis,?? and UBe;3,® which are thus closer to the localized
regime. Nor do clearly localized 5f compounds, e.g.,
USb, UTe, and U02,5 exhibit such a satellite.

(iv) The analogy with Ni,'* which led to the satellite in-
terpretation,*!> is rather limited: First, increasing the
Ni-Ni spacing in NiO (Ref. 23) or UNis (Ref. 22) still al-
lows the observation of the Ni satellite and its resonant
enhancement at the 3p —3d resonance?”?* as in Ni met-
al'® in contrast to the U case [see (iii) above]. Second, the
6-eV satellite in Ni is also observed with x-ray photoemis-
sion spectroscopy [XPS, Av=1486 ¢V (Ref. 24)] while a
2-eV feature cannot be discerned in the high-resolution
XPS spectrum of a-U.!7

(v) The resonance behavior of the 2-eV feature in a-U,
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i.e., its intensity-versus-Av curve, is rather unexpected,
namely, the maxima (minima) of the 2-eV curve exactly
coincide with the minima (maxima) in the resonance
behavior of the main 5f valence-band emission. Such a
" case does not exist in the theoretical treatment of reso-
nance behaviors of main and satellite features,?”> which,
however, gives good agreement for the Ni case.?*%’

All arguments (i)—(v) cast strong doubts onto the inter-
pretation of the 2-eV feature in a-U as a shake-up satel-
lite. Furthermore, since several uranium oxides exhibit a
chemically shifted 5f photoemission peak around 2 eV,>26
we decided to repeat the experiments on a-U as well as on
UGa, for which a 7-eV valence-band satellite had been re-
ported and also been taken as an indication for localized
5f-electron behavior.?’

The resonant photoemission experiments were per-
formed using synchrotron radiation 40 eV <hv <600 eV
from the Berlin 775-MeV storage ring of the Berliner
Elektronenspeicherring-Gesellschaft flir Synchrotron-
strahlung (BESSY) in conjunction with the SX700 mono-
chromator. Photoemission spectra were taken with a
cylindrical-mirror analyzer with an overall resolution
(electrons and photons) at Av=100 eV of AE~0.5 €V.
Polycrystalline samples of a-U, UGa,, and UGa; charac-
terized by x-ray diffraction to be single phase were filed in
a vacuum of 1X 1071 Torr with a diamond file, until a
minimum of the bulk-dissolved O-derived 2p signal
around 6 eV was reached.
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FIG. 1. Photoemission energy distribution curves taken near
off-resonance at Av=94 eV of (a) (from Ref. 4) and (b) clean
uranium, (c)—(f) as a function of oxygen exposure, and (g) solid
UQO,. The shaded area in (a)—(c) denotes the 2-eV feature, the
cross-hatched area in (d)—(g) denotes the oxygen-induced 5f
emission. The apparent shift in the O 2p emission around 6 eV
is caused by different oxide formation as a function of O cover-
age (see Ref. 26).
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Photoemission energy-distribution curves of a-U taken
near the off-resonance photon energy hv=94 eV are
presented in Fig. 1. In contrast to our own expectation,
the cleaner the uranium surface became, the more pro-
nounced was the 2-eV feature [shaded in Figs. 1(a)—1(c)].
In Figs. 1(a) and 1(b), we compare our cleanest result with
the finding of Iwan, Koch, and Himpsel4 which confirms
the 2-eV feature as an intrinsic property in the photoemis-
sion spectra of a-U near off-resonance. Absolutely oppo-
site, exposure of the U surface to small amounts of oxy-
gen reduces the spectral intensity of the 2-eV feature [see
+ L O, exposure in Fig. 1(c); 1 L=1 langmuir =10—°
Torrsec] while the O 2p intensity around 6 eV has
markedly increased. The corresponding on-resonance
spectrum in Fig. 2 shows that + L O, does not yet pro-
duce the chemically shifted 5f emission peak (also at 2
eV), as higher exposures of O, clearly do. After the in-
trinsic 2-eV feature has disappeared at about 5 L O, the
spectral intensity again increases owing to oxide forma-
tion, as the corresponding on-resonance spectra monitor,
which enhance the 5f emission only. Finally, at 100 L
0,, a UO, surface layer has been formed?® as can be in-
ferred from the filed UO, single-crystal spectrum in Fig.
1(g), and the corresponding on-resonance curve in Fig. 2.

The fact that the 2-eV feature is affected by the chemi-
cal processes happening during oxidation of the U surface
[Figs. 1(a)—1(c)] suggests that it may be related to valence
states of uranium, and is not a shake-up satellite. Fur-
thermore, we believe that it reflects photoemission from
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FIG. 2. Corresponding on-resonance (hv=98 eV) spectra to
Fig. 1. Note the simultaneous existence of 5f valence-band
emission near Er and oxygen-induced 5 emission at 2 eV for %

L and 1 L oxygen exposure.
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U-derived 6d valence-band states, because of the follow-
ing.

(a) 6d electrons are involved in the covalent bonding of
U with oxygen. So are the 7s electrons, but their photo-
emission cross section is too small at Av~ 100 eV as com-
pared to 6d electrons.?®

(b) The 5d—6d resonance is much weaker than the
5d —5f resonance’ because of different main quantum
numbers.’ This leaves the 6d emission almost unaffected,
and explains quite naturally the observed* unusual relative
resonance behaviors of the 5/ main emission and the 2-eV
feature [see (v) above]: The 6d emission (which corre-
sponds to the 2-eV feature) is present for all Av, but only
when the 5f emission disappears at off-resonance, does
the 2-eV intensity appear to grow out of the background
produced by the secondary-electron loss of the 5f peak.
Apparently, the 2-eV intensity has its maximum when the
5f emission is completely quenched, and vice versa.

(c) Hence, the 6d emission is masked by the energetical-
ly degenerate emission from 5f states which have a bigger
cross section for Av>60 eV (Ref. 28) and contain ~3
times more electrons. This explains the absence of a 6d
feature in the XPS spectrum!” [see (iv) above].

(d) At low excitation energies (hv <30 eV) the cross
section is smaller for the 5f electrons than for the 6d elec-
trons. In fact, 6d emission in a-U has been identified at 2
eV using a photon energy Av=21.2 V.8

Finally, in Fig. 3 we discuss two U alloys: UGa, with
the hexagonal A1B, structure (U-U distance of 4.21 A)
and UGa; with the cubic Cu;Au structure (U-U distance
of 425 A). We were motivated by the reported existence
of a 7-eV valence-band satellite in UGa, (Ref. 27) which
in view of our new interpretation of the 2-eV feature in U
(see above) became rather doubtful, since at the same time
other itinerant U alloys with bigger U-U spacings than in
UGa, gave no indication of the 7-eV satellite, i.e., Ulrs,2!
UNis,?? and UBe;;.2 Our new measurements with excita-
tion energies up to Av=600 eV do in fact show [cf. Figs.
3(b) and 3(c)] that there is no evidence for a satellite
around 7 eV in UGa, and UGa;. Any spectral intensity
. in this energy region is caused by the residual bulk-
dissolved O 2p signal. The 7-eV 4f core-level satellite,?’
however, was confirmed for both alloys (not shown).

The on-resonance spectra in Fig. 3 reveal the narrowing
of the 5f, 6d valence-band emission owing to the decreas-
ing U-U wave-function overlap with increasing U-U spac-
ing in going from a-U to UGa, and UGa;. This band
narrowing causes a shift of the 6d emission maximum to-
wards Er as shown by the off-resonance curves in Fig. 3.
We take the shift of this feature from 2 eV in a-U to 1.4
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FIG. 3. Comparative photoemission energy distribution
curves taken at on-resonance (upper curves, Av=98 eV) and
off-resonance [lower curves, (a) hv=94 eV; (b), (c) hv=92 eV]
photon energies for (a) a-uranium, (b) UGa, (off-resonance
curve times 7), and (c) UGa; (off-resonance curve times 12).
The shaded area denotes the 6d valence-band emission.

eV in UGa,; and UGa; as another indication of its 6d
valence-state character. Its existence in UGa, and UGa;
also shows that it is not a surface-related feature as its
sensitivity to oxygen exposure might suggest (see Fig. 1),
because for the UGa, and UGa; compounds we could not
observe the same quenching of the 2-eV intensity as for
a-U. In conclusion, we suggest that U 6d valence states
are the origin of the off-resonance photoemission features
at 2 eV in @-U, and at 1.4 eV in UGa, and UGa,.
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