
PHYSICAL REVIEW B VOLUME 32, NUMBER 6 15 SEPTEMBER 1985

Acoustical polaron in three dimensions: The ground-state energy
and the self-trapping transition
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The interaction of an electron with acoustical phonons by the deformation potential is studied
with the Feynman path-integral method for zero temperature. An upper bound to the polaron
ground-state energy is obtained. The nature of the transition of the quasifree to the self-trapped
electron state is discussed for different approximations to the polaron ground-state energy. We find
that, within the Feynman approximation, which is the most reliable one for the ground-state energy,
there exists a critical value (ko) for the cutoff (ko) in phonon wave-vector space such that for
kp & k 0 ( ko )k 0 ) the self-trapping transition is continuous (discontinuous) as a function of the
electron-phonon coupling strength.

I. IN'PRODUCTION where

The self trappin-g' of an electron caused by its interac-
tion with phonons has attracted renewed interest in recent
years. ' This problem is related to the localization
problem. ' In the latter the electron is localized by ran-
dom potential fluctuations appearing in particular in
disordered systems. In the present paper we discuss in de-
tail the self-trapping of an electron due to its interaction
with acoustical phonons of the host lattice. We limit our-
selves to the study of an electron in a parabolic conduc-
tion band, moving in a three-dimensional (3D) lattice and
interacting with the acoustical deformation potential. The
problem under study is referred to as the acoustical pola
ron problem. As a first step the lattice temperature will be
taken equal to zero. In the present paper we will study
the ground-state energy of such an electron within dif-
ferent approximations. In a forthcoming paper the
dynamical properties of this system will be derived. In
particular the frequency-dependent mobility and the influ-
ence of the self-trapping transition will be studied.

The electron self-trapping problem already has a con-
siderable history going back to Landau's paper in 1933.
In recent years we noticed a revived interest because of the
advent of new techniques (renormaliz ation-group ap-
proaches, "' Monte Carlo simulation techniques, ' etc.)

and the possibility of mapping certain physical systems
onto an acoustical polaron-type problem (e.g., electrons on
thin helium films, etc.).

In this paper we consider the continuum model (i.e.,
"large polarons") but with a finite cutoff ko in the pho-
non k space which simulates the discreteness of the host
lattice (ko- I/a with a the lattice constant). The oppo-
site limit of a discrete lattice theory (the small polaron
problem' ' ) will not be discussed here.

The electron-phonon interaction will be described by a
Frohlich-type Hamiltonian
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with s the velocity of sound, V the volume of the crystal,
and

D m
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(4)

is the dimensionless electron-phonon coupling constant
where D is the deformation potential and p the mass den-
sity of the crystal. In our calculation the sum over the
phonon wave vectors gk will be replaced by the integral

[ V/(2m) ] f dlt. which is cutoff at ko, the boundary of
the first Brillouin zone.

Other authors used a slightly different notation for the
electron-phonon coupling constant. Sumi and Toyozawa
introduced S„ to characterize the strength of the
electron-phonon interaction. The relation with our nota-
tion is S«/N =(4rrct/Vko)(A'/ms) with N the number of
unit cells in the crystal. Shoji and Tokuda introduced a
coupling constant a3 which in our notation is given by
ct, =v 2a.

In the following we will express the energies in units of
ms, the lengths in units of A'/ms, and the phonon wave
vector in units of ms/tri. In doing so, all variables will be
dimension1ess.

In Ref. 2, Sumi and Toyozawa applied the Feynman
path-integral method to study the ground-state energy and
the polaron effective mass when the electron interacts
simultaneously with the acoustical, as well as the optical,
modes of the lattice vibrations. It was shown that the
abrupt change of the polaron state from a nearly free elec-
tron state to the self-trapped state is caused by the short-
range acoustical interaction and not by the long-range

32 3515 1985 The American Physical Society



3516 F. M. PEETERS AND J. T. DEVREESE 32

LO-phonon interaction. In the present paper only the in-
teraction with acoustical phorions is considered and we
will concentrate on the phase diagram in (a, ko) space and
on the order of the self-trapping transition. One has to
keep in mind that the self-trapping transition is not a
phase transition in the strict sense because it is not a col-
lective effect. But nevertheless there are, as we will
demonstrate in the present paper, many similarities with
the theory of phase transitions, and therefore we some-
times will adapt the language of phase transitions in the
following.

The organization of the paper is as follows. In Sec. II
different upper bounds to the polaron ground-state energy
(E) are derived. We present results for the Feynman' ap-
proximation, the Gaussian approximation, and the uni-
tary transformation approximation discussed in Ref. 6.
Numerical results for E and its derivatives
E'(a)=BE/Ba and E"(a)=BE/Ba are presented in
Sec. III for the different approximations discussed in Sec.
II. The phase diagram for the self-trapping transition is
also given. Our conclusions are presented in Sec. IV.

The Feynman approximation also provides' higher-order
terms in a.

In the strong-coupling limit u »w and after a varia-
tional calculation one finds u =2(a/15m)'~ ko which re-
sults in the ground-state energy

1/2

(8)
2(X 3 3A0+
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The strong-coupling region is defined by the condition
a»15'/16ko ——2.95/ko. Note that for the acoustical
polaron the ground-state energy in the strong-coupling
limit is linear in the electron-phonon coupling constant e!
This is different from the optical polaron where E——a
for a~ oo.

B. The Gaussian approximation

This approximation to the ground-state energy can be
obtained from the Feynman result, Eq. (5), by taking the
limit w~O:

II. DIFFERENT UPPER BOUNDS
FOR THE GROUND-STATE ENERGY

OF THE ACOUSTICAL POLARON

E = — j d rf dkk e
4 ~ o o

2 1 —e
&exp —k
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(9)

Various techniques have been used to calculate the
ground-state energy of the polaron. In this section we
summarize different approximations to the polaron
ground-state energy: (1) approximations which are in-
tended to be valid over the whole electron-phonon cou-
pling range and (2) approximations which provide an
upper bound to the exact polaron ground-state energy.

A. The Feynman approximation

Using the path-integral representation of the partition
function and introducing an appropriate trial action,
Feynman' derived an approximate expression for the op-
tical polaron ground-state energy which today still consti-
tutes one of the best approximations valid for the whole
electron-phonon coupling range. Sumi and Toyozawa
adapted the Feynman approximation to the case of the
three-dimensional acoustical polaron and found
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where
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2

with U, w the two variational parameters of the Feynman
polaron model.

The second-order perturbation-theory result for the po-
laron self-energy can be obtained from Eq. (5) by taking
U =w which leads to

C. The approximation of Shoji and Tokuda

Using a generalization of the Lee-Low-Pines canonical
transformation approach, Shoji and Tokuda found the
following upper bound to the acoustical polaron ground-
state energy:

EsT ———A, — J dk k20
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(10)

where X and a are two parameters which have to be deter-
mined by minimizing EsT. For the limiting behavior of
EsT for a && I and a »1 the same remarks can be made
as for the Gaussian approximation.

III. NUMERICAL RESULTS AND DISCUSSION

The three different approximations to the ground-state
energy given in Sec. II are studied numerically in this sec-
tion. In Fig. 1 we have plotted the ground-state energy
and the first and second derivatives of the ground-state

Only one variational parameter, v, is left. In the Gaussian
approximation the electron motion is approximated by the
motion of a particle in a harmonic potential well. In the
weak- and strong-coupling limits the same results are ob-
tained as for the Feynman approximation to leading order
in a. But in the weak-coupling limit there is an essential
difference between Ez and EG, namely, EG gives Eq. (7)
exactly —there are no higher orders in a—while EF has
higher-order terms in a. In the case of the 3D optical po-
laron a similar artifact of the Gaussian approximation
was found in Ref. 10.
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FIG. 1. Ground-state energy of the acoustical polaron in
three dimensions and the first and second derivatives as a func-
tion of the electron-phonon coupling strength for two values of
the cutoff [(a) ko ——10 and (b) ko ——50] for three different ap-
proximations.

energy with respect to the electron-phonon coupling, as a
function of a for two values of the cutoff parameter,
kp ——10 [Fig. 1(a)] and kp ——50 [Fig. 1(b)]. We note the
following.

(1) For both values of kp the Feynman approximation
gives the lowest value for the ground-state energy for all
a. Consequently, in view of the variational character of
the approximations the result of the Feynman approach is
closest to the exact result.

(2) Note that in the limit a~O and for any value of kp
all approaches give the same result for the ground-state
energy (E) and its first derivative E'(a)=BE/Ba. The
reason for this is that in this limit the three approxima-
tions give the exact result up to first order in o.. The
second derivative E"(a)=BE/Ba is different in the
a~0 limit because the Feynman approximation still gives
a correction to order a, while in the other approxima-
tions there is no correction to order cz and consequently
r) E/Ba =0. In fact, the Gaussian and the unitary
transformation approaches give 8 E/Ba =0 for e&u,
where a, depends on the approximation and the value of
the cutoff ko.

(3) In the strong-coupling limit, i.e., a~ ao,
E'(a)=BE/Ba and E"(a)=BE/Ba approach the same

asymptotic result in the three approximations. The
ground-state energy is the same up to leading order in o,

but the next correction terms are different for the three
approximations.

(4) For kp ——10 the ground-state energy EF and its
derivatives to a are continuous for all values of a. This is
in contrast with EG and EsT whose first and second
derivatives to o. are discontinuous at n, =0.36 and 0.41,
respectively.

(5) The discontinuity in E'(a) and E"(a) reflects a
transition from a quasifree electron state (a &a, ) to a
self-trapped electron state (a&a, ). In the Feynman ap-
proximation this transition is continuous when ko ——10.
In that case it is characterized by a peak in E"(a) at
a=0.31. For relatively large values of kp [see, e.g. , Fig.
1(b) for kp ——50] the Feynman approximation also leads to
a discontinuous transition, namely, at a, =0.052 (EG(a)
[EsT(a)] is discontinuous at a, =0.055 (0.057) ).

(6) From the numerical results [Figs. 1(a) and 1(b)] it is
apparent that for a given value of kp the critical coupling
a, at which the self-trapping transition occurs is smaller
for approximations which give lower (i.e., better) values
for the ground-state energy [if the transition is continuous
we associate a, with the position of the peak in E"(a)].

From the above discussion we may conclude that our
numerical results seem to indicate that the numerically
calculated critical coupling a, at which the self-trapping
occurs is an upper bound to the exact a, . This, of course,
is a direct consequence of the fact that the calculated
ground-state energy is an upper bound to the exact value
of the ground-state energy. Indeed, the lower the calculat-
ed E the more biriding there is and consequently the
closer one is to the self-trapped state.

The phase diagram for the self-trapping transition is
shown in Fig. 2. For each value of ko we plotted the a
value at which the self-trapping occurs for the Feynman,
the Gaussian, and the unitary transformation (ST) ap-
proaches. The unitary transformation approach gives a
first-order transition [E (a) is discontinuous] in the whole
kp region which we investigated numerically (i.e.,
kp~0. 4). A more complicated phase diagram emerges
for the Gaussian approximation which has a line of first-
order transitions when ko & 1.8 and which continues into
a line of second-order transitions [E (a) is continuous but
E"(a) is discontinuous] for kp ) 1.8. In the Feynman ap-
proximation the phase diagram consists of a line of first-
order transitions which ends in the point a =0.151
+0.0005, ko ——18+0.5, at which point a second-order
transition occurs. In the theory of phase transitions this
point is analogous to a critical point. For ko & 18 there is
no we11-defined (i.e., discontinuous) self-trapping transi-
tion. In the limit kp —+Do the line of first-order transi-
tions could be fitted to a, =2.56/kp.

The behavior of the first [E'(a)] and second [E"(a)]
derivatives of the energy with respect to a close to the
critical point is shown in Fig. 3 for E calculated within
the Feynman approximation. 'Note that at the critical
point E'(a) is continuous while E"(a) diverges. This
divergent behavior for ko ——18 and o. ~0.151 could be fit-
ted to the power law E"(a)= —2 (1—0.1508/a) with
A =930+10 and the exponent v=0.61+0.01. For
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FIG. 2. Phase diagram for the self-trapping transition of the'-
acoustical polaron in three dimensions within the three different
approximations.

ko & 18, E'(a) becomes discontinuous at a certain a,
where E"(a) exhibits a finite jump.

Experimentally, E(a), E'(a), and E"(a) are not direct-
ly measurable because a is a fixed quantity for each ma-
terial. It is possible to observe the self-trapping transition
by measuring the mobility p=~/I which is inversely
proportional to the polaron mass m *. The scattering time
r does not change much at a, as will be shown in a forth-
coming paper. In Fig. 4 we plotted the mass of the Feyn-
man polaron model M =(u/w) as a function of a for dif-
ferent values of ko. M =(u/tu) is a reasonably good ap-
proximation (within 10%%uo) to the actual polaron mass I'
as will be shown in a forthcoming paper (see also Ref. 19).
The differences between the quasifree-electron state and
the self-trapped state are very clear. In the quasifree state,
M=1 and the electron mass is, within a few percent,
equal to the bare electron mass. At sufficiently large a
the polaron mass M ~) 1 and the polaron is dressed with a
heavy phonon cloud which will severely limit the polaron
mobility. For example, for ko ——100 the critical coupling
is a, =0.0256 at which the mass M increases with three
orders of magnitude and thus we expect that the mobility
will decrease with several orders of magnitude.

For the strong-coupling limit u » tu and D(r) can be
approximated by D(r)=1/2u. In doing so we neglect the
translational motion of the polaron [the term co r/2u in
D (r) of Eq. (6)] and the virtual transitions to the different
internal states [the term (u —tu )e ' /2u in D(r) of Eq.
(6)]. The ground-state energy

Es — I d7- J dk k3e "~e —"i2" (11)
o o

can then be presented as an analytic form
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FIG. 4. Mass of the Feynman polaron model as function of
the electron-phonon coupling and for different values of the cut-
off kp.
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kp= 20 FEYNMAN

ko -k&/2U

~2u
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where erf(x) is the error function. In the self-trapped
state, with increasing a and ko fixed, one has u~ oo and
we may expand Eq. (12) in powers of ko/V 2u « 1:
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of Eq. (13) can thus easily be per-
18/ ko

FIG. 5. Order parameter in the Feynman approximation. In
the inset the Feynman polaron mass is given as a function of a
for ko ——10 and 20.

which leads to the ground-state energy

2cx 3 3A 5/2 1 5
Es = — ko+ ko — ko3~ 5~ 112

The self-trapping transition occurs when the polaron
ground-state energy in the self-trapped state becomes
equal to the ground-state energy in the quasifree state.
For kv large this imPlies EQps —(2a/n )ko from which
we find

(15)

(1+~6) =2.10/ko21
160 ko

(16)

which may be compared with our numerical result
a, =2.56/ko of Sec. II. In deriving Eq. (16) it was as-
sumed that EQps —(2a/m)ko which is only approxi-
mately valid. From our numerical analysis we found that
in the quasifree-electron state (QFS) and for a near a, (a,
is the electron-phonon coupling at which the self-trapping
occurs), u &w and this results in EQps & —(2a/m. )ko.
Consequently, the self-trapping tra, nsition occurs for
a, &2.10/ko which is in agreement with our numerical
findings.

At the self-trapping transition the polaron mass jumps
from MQps(v/w) =1 to Ms =(v/w) =(4a/15~)ko
=0.18ko ——3.49cx," when ko ~&1. In the context of phase
transitions one often introduces an order parameter.
Within the Feynman approximation we define the quanti-
ty b,(1/M)=1/MQps I/Ms which is Plotted in Fig. 5.
Note that 6(1/M) has an analogous behavior with that of
an order parameter in the theory of phase transitions.

For the Gaussian approximation we show in Fig. 6 the
jump in the variational parameter u at the self-trapping
transition. u measures the eigenfrequency of the quadra-
tic electron potential. The above analysis of the ground-
state energy in the Feynman approach is also valid for the
Gaussian approximation bemuse the dominant terms in
Ez are independent of the value of w. For large k~
we find approximately b,u =2(a/15~)'~ ko -0.42k o
=1.87/a2. From our discussion on the coefficient in Eq.
(16) we know that the coefficient in the relation
Au=0. 42ko is correct within a factor of 2. Note also that
in the gaussian approximation for the QFS we have ex-
actly u =0 while in the self-trapped state u&0. For

ko & 1.8 there is a jump in u at the transition point while
for ko & 1.8 u is continuous but Bu/Ba is discontinuous at
the self-trapping transition point.

IV. CONCLUSION

1„2
k2(I12 W2~/2U3e

1+ k2
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FIG. 6. Discontinuity of the variational parameter U in the
Gaussian approximation. In the inset the variational parameter
is shown as a function of a for ko ——1.5 and 6 in the neighbor-
hood of the self-trapping transition.

In earlier work' we pointed out that the Gaussian ap-
proximation can be obtained from the Feynman approxi-
mation by taking one of the variational parameters, name-
ly w, equal to zero. Physically this means that the
translational degrees of freedom are not taken into ac-
count; the electron is localized in a potential well for
v&0. Next we will try to obtain the Shoji-Tokuda result
from the Feynman approximation. For that purpose we
disregard the exponential term in the function D(r) [Eq.
(6)j and insert D(r)=[(u —w )/2u ]+(w /2v )r into
Eq. (5). This allows one to perform the r integral explicit-
ly and results in

3 (u —w) 2a "o

4 u . 0"'
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Comparing this equation with the Shoji-Tokuda result
[Eq. (10)], one sees that both expressions are very similar.
We can make the identification a =w /U and
A, =(U —w) /v but then the exponential in the integral of
Eq. (10) is e " ~" which is different from the one in Eq.
(17) which still contains 1 —w /U . Another possibility is
to choose a =w/U and A, =U(U —w) /(U —w ) which
makes the terms with the integral in Eqs. (10) and (17)
identical to each other, but then the first term in Eq. (10),
—,'k=(3/4U)(U —w) /[1 —(w/U) ], is larger than the cor-
responding term in Eq. (17), (3/4U)(v —w), and conse-
quently Eq. '(17) gives a result which is. lower than Esr.
In conclusion, the integral term in the ground-state energy
of the Shoji-Tokuda result can be obtained from the Feyn-
man approach by neglecting the transitions to the dif-
ferent internal states, retaining the translational degrees of
freedom with an effective mass a =(v/w) . Even after
this approximation the resulting kinetic-energy term is
still smaller than the corresponding term in the ST result.

In earlier work on the self-trapping transition by Toyo-
zawa and Shinozuka, the dependence of the discreteness
of the self-trapping transition on the dimensionality of the
system, on the type of the interaction, and on the phonon
dispersion was studied within the adiabatic approximation
for large values of the cutoff ko. In the case of the 3D
acoustical polaron problem their results are reobtained
here and are given by Eq. (13). The extension to finite ko
values of the results of Ref. 4 was given recently by Das
Sarma' whose result for the 3D acoustical polaron is
reobtained here and is given by Eq. (12). In the present
work we confirm that for large values of the cutoff ko the
adiabatic approximation gives the correct behavior for the
self-trapping transition. But for smaller values of ko a
more detailed approximation is needed. The Feynman
path-integral approximation is most suited for it because
it is able to describe, within the same approximation, a
continuous and a discontinuous self-trapping transition.

Jackson and Platzman applied the Feynman approxi-
mation to the two-dimensional (2D) acoustical polaron
problem. In their study they fixed ko and only varied the
electron-phonon coupling constant u. It is interesting to
note that their results are qualitatively similar to ours
when we take ko & 18. These authors also investigated
the influence of temperature on the self-trapping transi-
tion and found that the transition becomes smoother with
increasing temperature. A similar behavior is expected
for the 3D acoustical polaron problem.

The following question still exists: Is the self-trapping
transition continuous or discontinuous for the 3D acousti-
cal polaron7 The present study shows that the better the
approximation the more continuous the self-trapping
transition is. A similar situation was found for the 30
(Ref. 10) and the 2D (Ref. 21) optical polarons. At
present we can only say that the best approximation yet
studied (namely, the Feynman approximation) gives a
continuous self-trapping transition for ko & 18 while for
ko & 18 the self-trapping transition is a discrete one.

It would be interesting to see if an even better approxi-
mation than the Feynman two-parameter polaron model
(e.g. , a general harmonic approximation with an infinite
number of variational parameters as discussed in Ref. 22

for the 3D optical polaron) does lead to an even larger
critical value ko ——18. But within a variational approach
one is never able to prove whether the self-trapping transi-
tion is continuous or discontinuous. A totally different
approach to the problem would be a Monte Carlo calcula-
tion of the ground state (see, e.g., Refs. 15 and 23). This
approach, in principle, is exact but is limited by, e.g., sta-
tistical errors induced by the finite simulation time. The

'

latter one will limit the conclusion drawn from such a cal-
culation on the discreteness of the self-trapping transition.

In the present work the ground-state properties of an
electron interacting with acoustical phonons via the defor-
mation potential were investigated. In real crystals the in-
teraction with LO phonons can also be important and
may change the present results qualitatively, but it is not
expected (see, e.g., Ref. 2) to be the determining factor for
the occurrence of self-trapping. Consequently, we can
make a qualitative comparison between the present results
and experimental results and indicate the main trends be-
tween groups of materials.

The semiconductors Si and Ge have a lattice constant
of a =5.43 and 5.66 A, respectively, which is much
smaller than the unit of length introduced in our calcula-
tion: R/ms=830 A for Si and 5100 A for Ge. The ener-

gy scale is ms =0.7 meV (Si) and 0.07 meV (Ge). The
parameters determining the behavior of the acoustical po-
laron are ko ——480 (Si) and 2800 (Ge) and a=7.5X 10
(Si) and 1.1X10 (Ge), which gives ako ——0.036 (Si) and
0.031 (Ge) but which is too small to have self-trapping.
Thus the electrons in Si and Ge cannot be self-trapped as
is indeed observed in these materials.

For the III-V compounds similar results are found. As
an example we take GaAs which has a =5.65 A; the
units in our problem are ms =0.11 meV and A/ms =3200
A. The coupling constant a=6.3)&10 is very small
while the cutoff in wave-vector space ko ——1800 A is such
that we are in the large ko limit. The relevant quantity
ako ——0.011 tells us that the electrons in GaAs are free as
is well known experimentally.

For the alkali halides the product ako is an order of
magnitude larger, and we found ak0-0. 19—0.26. As an
example, let us take NaC1, which has a lattice constant of
a =5.6 A; the units in our problem are, for the energy,
ms =0.57 meV, and the length, fi/ms=5. 6 A. Further-
more, ko ——310, a =7.7)& 10 and thus the product
ko ——0.24 is still an order of magnitude too small to have
self-trapping for the electrons. The holes in alkali halides
are found experimentally to be self-trapped. This can be
explained from the present formalism and appears to be
mainly a consequence of their larger effective mass. The
effective mass of holes is a factor of 3—4 larger than the
electron effective mass, and consequently [see Eq. (4)] the
coupling constant a will be a factor of 10 larger and thus
the product ako&2. 4 is sufficiently large to have self-
trapping.

The present results are consistent with the experiments
and with earlier theoretical calculations. '

In the present work we did not discuss the self-trapping
of excitons. The Hamiltonian (1) should then be modified
in order to account for the electron-hole interaction. The
interested reader is referred to, e.g., Refs. 24—26.
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