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Plasmon structure in the appearance-potential spectroscopy of metals
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The effect of plasmon production on the appearance-potential spectra (APS) of simple metals has
been calculated in the framework of the many-body perturbation theory. Numerical results are
presented for the 2p and 1s APS of aluminum. In the 2p spectrum the plasmon contributes very
weakly (beginning with near-zero slope) at the threshold energy for plasm on production
Eth(co~)=2EF+co~ —E, (Ez, ~~, and E, being the Fermi energy, zero-momentum plasmon fre-
quency, and energy of the core state, respectively). In the 1s spectrum, however, there is a finite
contribution (beginning with a finite slope) at this threshold. In both 2p and 1s derivative spectra a
structure appears in the form of an inflection in slope of the intensity at the energy

Eth(cop (q ) )=2' + cop (q, ) —E„where co~ (q, ) is the highest frequency for plasmon production. The
significance of this energy Eth(co~(q, )) is that it is the lowest energy at which the plasmon produc-
tion by the two final-state electrons, located above the Fermi level, becomes real. A structure also
occurs in the 1s derivative spectrum at Eth(co~) as a steep rise, while there is no significant structure
at this energy in the 2p derivative spectrum. The calculated structures in the derivative spectra ap-
pear to be present in the currently available experimental APS of Al.

I. INTRODUCTION

In the appearance-potential spectroscopy (APS) experi-
ment, a fast electron (100—1000 eV) is bombarded on a
solid surface. After an inelastic collision with a core-level
electron, the system in question is left in a final state con-
sisting of a core hole and two electrons above the Fermi
level in the conduction band. What is measured is the x-
ray intensity when the core level deexcites, as a function
of energy of the incident electron. This intensity spec-
trum is thus proportional to the number of excited core
states per unit time, the object of our many-body study.

The plasmon satellites in the APS spectra of solids have
been studied both experimentally and theoretically. '

The observed APS spectrum of graphite' shows large
peaks separated by an energy of 6.8 eV, a value close to
the plasmon loss energy for graphite (7 eV). For simple
metals, Andersson and Nyberg have measured the Al 1S
spectrum, and Nilsson and Kanski have measured the 1s
and 2p spectra for Al, Mg, and Be. In all these cases,
structures have been found resembling plasmon oscilla-
tions, but in each spectra it is difficult to differentiate be-
tween plasmon peaks and variations in the density of
states due to band-structure effects. However, by graphi-
cally differentiating the spectrum, Andersson and Nyberg
found a pronounced peak around 15.5 eV above threshold.
They attribute this structure to the excitation of a
plasmon in the medium.

Theoretically, Chang and Langreth have studied the
APS spectrum associated with the production of a
plasmon and found it to be of the same order of magni-
tude as that found in x-ray photoemission spectra (XPS).
In Laramore's paper, plasmon emission up to the first or-

der (one-plasmon emission) have been considered and he
derives an approximate expression for the intensity of the
plasmon satellite. These studies, however, do not consider
the dispersion or attenuation of the plasmon, and Ref. 4
does not take into account the recoil of an electron after
the emission of a plasmon. They also do not evaluate the
line shape of the plasmon band numerically.

In this paper we will concern ourselves with the
plasmon satellites in the APS spectra of simple metals in
the presence of plasmon dispersion and the recoil of the
electron. Inclusion of these effects will definitely lower
the strength of the plasmon satellite and give it a width
corresponding to the dispersion of the plasmon. The
dispersion relation for the plasmon frequency co&(q) used
in this paper is a sixth-order polynomial first derived by
Glick and Ferrell, with an eighth-order correction term
introduced to obtain the exact plasmon cutoff frequency
co&(q, ). The only parameters the metal in question will
have are the radius parameter r, and the core-level energy
E, . The electron-electron interaction effects will be calcu-
lated in the random-phase approximation (RPA), describ-
ing the polarization in an electron gas.

%'e will only consider the bulk plasmon, thereby ignor-
ing any surface plasmons in our model. The only role the
surface will have in our model will be to introduce a time
v. which is the time the incident electron travels in the
metal before exciting a core-level state.

There are a few different ways of losing energy due to
plasmon production in the APS process. The incident
electron can excite a plasmon, this process being an ex-
trinsic one in that the momentum and energy of the sys-
tem are conserved. The polarization of the conduction
band due to the creation of a core hole (which acts like an
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impurity) can excite the so-called intrinsic plasmons. The
two final-state electrons can also excite intrinsic
plasmons. ' Furthermore, there can be interference be-
tween any two of the above-mentioned processes, which
would reduce the total plasmon contribution, especially in
the region close to the threshold. The threshold region
corresponds to the case where both the final-state elec-
trons lie close to the Fermi level.

In the next section we will formulate the problem, using
an S- and T-matrix approach, which was first proposed
by Chastenet and Longe and later used by Bose et al. to
describe the x-ray photoemission spectra of simple metals.
The last section will give numerical results for the is and
2p spectra of Al and a discussion.

II. FORMULATION

J„(,„)= y Is„(, )I
0Ã

(2)

where

g =6k g g 6(p~ k~)6(p2 k~—) g 6(q, —q) (3)—
f » &2

is the sum over all final states, to is the observation time,
and X is the normalization constant insuring conservation
of the incident electron number and is given by

'k+Ee
d6k Jn V, E'k = 1 (4)

n

Note that to ensure a proper APS process, the sum over
the final electron states in (3) must be greater than the
Fermi momentum and the plasmon momentum can only
go up to the cutoff q, =mcus/kz. ' In the RPA, this is
the maximum wave number for collective excitations.
Beyond this wave-number plasmon production is heavily
damped as the plasmon dispersion line merges into the re-
gion of single-particle excitations.

Diagrams that describe the APS matrix elements S„ for
the zeroth-order (main band) and one-plasmon processes
are shown in Figs. 1 and 2. In these diagrams, a single
line pointing up represents a conduction electron; a double
line pointing down, a core hole,' and a wavy line, the

Let us consider an incident electron, having wave vector
k and energy ek ——k /2m, pointing in a small element hk.
The electron enters a semi-infinite metal normally at
z=O, where the metal extends between z=O and z = —Oo.

The strength of the main band ( n =0) and one-plasmon
process (n= 1) can be written as

0
I„(ek)= I dzp(z)J„(z, ek),

=ur f dip(r)J„(r, ek), (1)

where z = —uTr (ur being the incident electron velocity)
and p(z) is the density of core-hole states, which we will
assume to be a constant in our calculations. J„(1 Ek) is
the probability per unit time that the incident electron
with energy ek travels for a time r and then excites a core
level of energy E, . J„(r,ek ) is related to the S matrix by
the time-dependent golden rule,
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FIG. 1. {a) Schematic representation of the basic APS process
in a simple metal. (b) Feynman diagram corresponding to the
basic APS process.

plasmon excitation. As shown in Fig. 2, the incident elec-
tron enters the metal at time t —~, and the core hole is
created at time t.

For the main band, the zeroth-order matrix element (no
plasmon) of the S matrix can be written as

k+Ec —'p —&

S0 ——3 tg te (5)

with the labels shown in Fig. 1. In (5), g (t) is the adiabat-
ic function' for switching on the Coulomb potential

I
t

I
&to/2g(t)= ~

0, It I
&t, /2

and 3 is the transition probability amplitude between ini-
tial and final states

(p,p, I
vIkc),

where V is the bare Coulomb interaction. Various au-
thors ' have shown that the momentum dependence of A
is weak in the energy range of our interest, and hence A
will be considered constant.

Putting (5) into (2) and using an approximation for
large t (Ref. 11)

2
dt g (t)e' ' =2mt, 6(v),

we have

where (3) has been used. The normalization constant X

IP
P2

P

yq
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k —q k k k
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FIG. 2. (a) Diagrams describing the APS 5 matrix for the
zeroth-order (main band) and one-plasmon processes.

Jp(r&k)= g g 5(ek+E, —e~, e~), —b,k

p) (&kF) p2 (&k~)
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must satisfy the sum rule (4) as has been discussed in de-
tail in several publications related to photoemission. ' As
in the photoemission case, X will be approximated by

I)I =exp[1 *(ek )~],
where

&'(&k ) =~ g &(q)~op(q)5(e ik+qi —ek cop—(q)) .
q (&q, )

This approximation is related to the extrinsic contribution
in the T-matrix formalism, the only term explicitly
dependent on the time r of the APS process. The other
terms left out of the normalization factor X are not r
dependent and only weakly dependent on the incident en-
ergy ek, and hence do not play any essential role in deter-
mining the shape of the intensity of the APS.

Using the normalization condition X and Eq. (1) we
have for the main band intensity

UIo(ek)=, g g 5(ek+E, —ep, —ep ).
(ek) p( (&kp) p~ (&kF)

Since there is no .angular dependence, in (10) we can
change it to an energy integral,

b,k(2m) uT

l +(e )(2~)4 EF PI Ep P2 P) P2de de (e e ')Io(ek) =

1Io(xo)—
I *(z)

xp —2
1/2

2
(xo —1)

+ (&o/2) slI1 (1—2/xo)

where z =klkp and xo =(ek+E, )/Ep.
For the one-plasmon process, the S-matrix elements

(see Fig. 2) can be written as

X5(ek +Eq —ep —ep ) .

Note that this is just the self-convolution of the unoccu-
pied density of states for the free-electron theory of met-
als. Performing the energy integrals we now have the nor-
malized main band intensity function in dimensionless
units as

OO i (ek. +E —e —e )t tS,=A g Ukk dt g (t)e
' ' ' f dt'g (t')e

k' (&kF)

l(e~+E —e, —e )t

Sb ——A g U, f dt g (t)e ' f dt'g (t')e
—l [6 +Et) (q) —6 t ]tP1

1

(14)

l(6k+E, —~ —E, )t

S,=A g U, f dtg(t)e ' f dt'g(t')e
P2 (&kF)

—i fe +co (q) —e, ]t'
2 u p'

2

oo l (Ek+E~ Ep
—6p )t oo fE ( ) E ]Sd ———A g Ucc dt g(t)e ' ' f dt'g(t')e

oo (16)

where U is the transition matrix for exciting a plasmon

Utt = f dxut(x)C(q)W~(x)ut'(x), (17)

with

C(q) = [o)p(q) &(q)/2]' '

(19)

which insures conservation of momentum at the vertices.
In our simple metal the core hole has no structure and

being the plasmon coupling constant, 8'q the plasmon
wave, and ut(x) the conduction-band state [or core state
in the case of (16)]. For plane-wave states, (17) can be
written as

I

therefore can absorb an infinite amount of momentum (no
recoil).

The core structure factor in (17)

dxuc x 8'q x uc x

is equal to 1 at q=O and is a slowly varying function of q.
As was done in a previous paper on Auger spectroscopy, '
we will set this factor to 1. Thus for the core excitation of
a plasmon, (17) becomes

Ucc = [~p(q) &(q)/2]'~'5cc,

which will be used in (16). Putting in the appropriate
terms and performing the t' integration, the total first-
order S matrix becomes

o)p(q) &(q)S, =sW
2

i(~—~ (q) —e —e )tf dt g (t)e

i(~ (q) —ok+~I&—
I1 —e

X
p(q) —&k+e

i k

e(
I p)+q I

—kp)

~p(q)+ep& eip(+qi

e(
I pz+qI kp)—

+ — .(21)
~p(q)+ep eip, +qi
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As with the main band calculation, the first-order intensity function can now be written as

d~ cop(q) V(q)Ii(ek)=
I
A

I
bkuz. f g g g 5(ek+E, —co (q) —e —e

p& &(k+) p2&(k+) q &(q )

e(
I pi+q I

—kp)
X +

~l&—qI ~p(q ~p(q)+~p ~Ip +qI

e(
I pz+ tl I

—kp)
+

~p(q)+ ~p2 ~
I p2+qI

1

cop (q)
(22)

In calculating (22), we use an approximation for large r,
4sin (vr/2)

5
4sin (vr/2) p

2=2rir5 v, (23)

where P is the principal part. Each of the ten terms in (22) can be represented by a closed diagram as shown in Fig. 3.
Figure 3(a) represents the incident electron exciting a real plasmon (extrinsic), and from (22) the intensity function is

written as

I

2 I'mbkuTIi(ek)=, 2 9 f k
d I" flp k

d 7 fl
I

d q5(ek+E, cop(—q) —ep Ep )—
C

X V(q)~, (q)5(~, —~I, , I

—~p(q)) . (24)

Figure 3(b) represents an intrinsic process where the core hole polarizes the conduction band, exciting a virtual plasmon.
This intensity is written as

A l dkUT--"=„(')(, ) fI.I". & fI;I". & fI.I-; '2 (
"'"+E— (25)

P

Figures 3(c) and 3(d), representing the excitation of the conduction band by two final-state electrons above the Fermi
level, are also considered to be intrinsic diagrams. After a simple relabeling of final momenta, Figs. 3(c) and 3(d) are
seen to be equivalent and their total contribution can be written as

I
A

I

zb, kur e(
I pi+a I

—kF )
Iigond(&k)=R. e 9 k

d pi k
d p2I *(eI, )(2~) I»I &kF Ip2I &kF IqI «, [co (q)+e +iX(pi el + I

iX(
I pi+q I )]

X V(q)~p(q)5(&i, +E, ~p(q) ~~ —
&p ) . —(26)

Note that in (26) we have replaced the bare energies by renormalized energies, i.e., ep~ep+iX(p), where X(p) is the
imaginary part of the self-energy on the energy shell. As indicated before, ' ' without these self-energy terms this in-
tensity function would diverge. These self-energy terms take into account higher-order interaction effects and remove
divergences.

The remaining figures represent interference terms between the various processes mentioned above and are given [Figs.
3(e)—3(j)] by

bkur

l *(zk)(2~)9 I pi I &kF '
IP2I »F

2e(
I p, +q

I

—kp)
X P

[~k —~
I
k q I

—p(q)][~, +iX(p ) —e
I p, +qI —iX(

I pi+a I
)+

e(
I pi+a I

—kp)e(
I p2+q I

—kF)
+

I &„+iXV i)—~Ip, +qI
—iX(

I
pi+tl I

)+~p(q)][~„+iXV 2) ~Ip, ~qI
—&X(

I p2+a I )+~p(q)]

2e(
I pi+a I

—kp) —P
1

~p(q)[&„+iXV i) —&Ip, +qI —iX(
I Pi+a I

)+~p(q)] ~, (q)[~k ~I i, qI ~p(q)]—

X V(q)cop(q)5(ok+a, cop(q) —ep Ep )— —
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tailed discussion regarding the origin of this structure. As
can be seen in Figs. 6 and 7, this structure appears as a
change in slope in both 1 s and 2p derivative spectra of Al.

In the experimental 2p derivative spectrum of Al by
Nilsson and Kanski, no significant structure has been ob-
served at an energy corresponding to the plasmon thresh-
old energy co&. This agrees with our calculation that no
major structure is expected at this energy because of
near-complete cancellation of the various terms contribut-
ing to the plasmon satellite. However, in this experimen-
tal 2p spectrum, a structure is present at approximately 21
eV above the threshold. It can be identified with the
structure we have calculated in this paper (see Fig. 6) at
co&(q, ) above the threshold, even though it has traditional-
ly been attributed to the peak calculated near this energy
in the density-of-states function of Al. ' The experimen-
tal ls derivative spectrum dI(ek)ldek of Andersson and

Nyberg of Al is somewhat different. In this case a pro-
nounced peak is observed around 15.5 eV above the
threshold, which can be identified with the threshold
plasmon structure we have calculated at this energy (Fig.
7). A careful study of this experimental derivative spec-
trum indicates that there is a hump near 21 eV above the
threshold. This hump may be associated with the second

plasmon structure we have calculated at this energy in the
1s derivative spectrum of Al.

En conclusion, in this paper we have studied the
plasmon bands in the ls and 2p APS spectra of Al. We
have calculated two structures in the 1s spectrum, near 15
and 21 eV above the threshold, and in the 2p spectrum
one structure near 21 eV above the threshold. These
theoretical results appear to be verified by the presently
available experimental spectra. However, as there are oth-
er structures present in the APS spectra of simple metals
due to band structure and extended fine-structure effects,
it would be useful if further experiments were performed
for more positive identification of the plasmon structures
calculated in this paper. Finally, it is interesting to note
that since the structures are expected to appear at the
threshold and cutoff of plasmon energy, their positive
identification will give an experimental estimation of the
extent of plasmon dispersion in metals.
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