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Atom-surface interaction: Zero-point energy formalism
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The interaction energy between an atom and a surface formed by a polar medium is derived with
use of a new approach based on the zero-point energy formalism. It is shown that the energy de-

pends on the separation Z between the atom and the surface. With increasing Z, the energy de-
creases according to 1/Z, while with decreasing Z the energy saturates to a finite value. It is also
shown that the energy is affected by the velocity of the atom, but this correction is small. Our result
for large Z is consistent with the work of Manson and Ritchie [Phys. Rev. B 29, 1084 (1984)], who
follow a more traditional approach to the problem.

I. INTRODUCTION

The van der Waals interaction energy between an atom
and a solid surface is well known to follow 1/Z depen-
dence where the separation Z between the atom and the
surface is assumed to be sufficiently large. The interac-
tion at short separations, which has not received as much
attention, is considerably different from its large separa-
tion behavior. It is the object of this paper to calculate
the interaction for small Z and to show that it saturates
as Z approaches zero, and to show that it depends on the
relative velocity of the atom with respect to the surface.
These considerations are particularly relevant to the re-
cent experimental work involving atoms of low mass and
metal surfaces. ' They would also apply to the case of an
atom interacting with a surface formed by an ionic crys-
tal.

The interaction is derived in this paper using the ap-
proach based on the calculation of the zero-point energy
of the radiation field. The energy given by the sum of the
energies of all the modes of the electromagnetic field is
obtained when the interaction between the atom and the
surface is present and when it is absent. The difference
between the two energies provides the value of the interac-
tion.

This procedure for obtaining the interaction energy be-
tween two atoms is well known in molecular physics. The
extension of the method to the present problem is natural
if we recognize that the interaction energy between an
atom and a surface is equivalent to calculating the in-
teraction energy between the atom and its image formed
by the surface.

The method followed in this paper is not expected to
produce results different from the method used by Man-
son and Ritchie to calculate the energy of interaction be-
tween an atom and a surface. These authors make use of
the interaction Hamiltonian for the atom and the polari-
zation waves of the surface while we obtain the interac-
tion from first principles. To some readers, our method
may appear more lengthy, but this may be partly due to
its unfamiliarity. Our object in writing this paper is to
provide an alternative procedure to calculate the interac-
tion energy with the hope that the procedure might lead

to improved understanding of the present problem. To
avoid unnecessary numerical evaluations we will restrict
ourselves to calculating the interaction energy in the lim-
its of small and large separations. Although our method
and the method used by Manson and Ritchie give the in-
teraction energy in a similar form, for small Z, our
method provides a saturation value while such saturated
value is not obtained by the earlier authors. This differ-
ence, however, is likely to be due to differences in the ap-
proximations used in the two methods.

The plan of the paper is as follows. In Sec. II the zero-
point energy approach is given and a formal result for the
interaction energy between an atom and a surface is ob-
tained. In Sec. III the result of our model is used to ob-
tain explicitly the interaction energy of an atom and a sur-
face. Finally, in Sec. IV, the main conclusions of the pa-
per are presented.

II. ZERO-POINT ENERGY FORMALISM

E= g ,'fico; and Eo g—,'fico;, ——— (2.1)

respectively, where co s are the frequencies of the elec-
tromagnetic field when the system is coupled and co, 's are
the frequencies when it is uncoupled. The interaction en-

ergy Et of the system is given by the difference between E
and Eo and can be written as

Et —— f ln dco,D(co)
4~i D,(~)

(2.2)

where D(co) and Do(co) are, respectively, the determinants
giving frequencies of the electromagnetic field for the
coupled and uncoupled systein. In (2.2), the contour en-
closes the real co axis. Once D(co) and Do(co) are obtained

In this section a sketch of the zero-point energy formal-
ism is presented, while a more detailed analysis is avail-
able in literature. Consider a system consisting of an
atom and a surface forined by an ionic crystal (or by a
metal with some minor changes in the analysis). When
these are coupled and uncoupled, the zero-point energy of
the system is given by
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P(x,co)= J G„(x,x', co)P(x', co)d x', (2.3)

for our system, the interaction energy is determined using
(2.2).

To obtain the secular determinants we proceed as fol-
lows. Let the electromagnetic field potential at point x'
be given by P(x', co). As a consequence of the polarization
of the system and the interaction, the potential P(x, co) at
any point x is connected to the potentials at other points
x' by the relation

~ &n IA fm)&m IH'fn)
E„—E +Ac@

&m IA fn)&n IH'fm)
E„E——Ace

where E is the energy of the mth atomic state.
If we now set in (2.8)

qi* qj b, (co)

X—X X—X-

(2.8)

(2.9)

where the kernel G„depends on the state of the system.
Taking the Fourier components of (2.3), we get

P(k, co) = g G„(k,k', co)P(k', co) . (2.4)

D(co) =
I
5k k

—G„(k,k'. ,co)
I

(2.5)

If the interaction of the system is neglected then the cor-
responding secular determinant can be given by

(2.6)

The expressions for G's occurring in (2.5) and (2.6) can be
obtained using the first-order time-dependent perturbation
theory. If we denote the position coordinates of the parti-
cle forming the atom by xt and the charge associated with
the particles by qt, then the potential energy of the atom
in the presence of the electromagnetic field is given by

The secular determinant D(co) can be written, using (2.4),
according to

P(x, co) =g P(k, co)exp(ik x), (2.11)

and

exp[i k.(x—xj' )]
I
x —x,*.

I 2%2 k
d k, (2.12)

then 3 is the potential energy at x due to image charge
qi* produced by the qjth particle of the atom. The posi-
tion of the image is denoted by xj. The potential energy
A is therefore produced by the surface through the use of
the image atom. If we now identify the induced potential
at x by the surface with the perturbing potential P(x, co)
then a self-consistency condition is realized,

~ &n IA fm)&m fH'fn)
E„—Em +fur

&m IA fn)&n fH'fm)
E„—Em —Ace

If we now write (2.10) in terms of Fourier components us-
ing the following identities:

A ( t) =H'exp( i cot) = g—qtP(xt)exp( i cot) . —
I

(2.7)
(2.13)

The change in the atomic wave function
I
n ) due to the

perturbation (2.7) can be obtained using the standard
method of the perturbation theory. These changes in turn
gives rise to changes in any physical quantity A associated
with the atom. The change b,A„ in the average value of 2
in the nth atomic state can be written as

P(k, co) =g G„(k,k', co)P(k', co),
k

with

(2.14)

where V is the periodic volume used in the transformation
(2.13), we get

( —1)qtqi'4~ &n
I
exp( —ik'xJ")

I
m & &m

I
exp(ik'xt)

I
n &

G„(k,k', co) =
Vk2 n m+

J&m
I
exp( —'k x') In &&n

I
pe(xik )xItm &'

E„—Em —%co
(2.15)

If we neglect the coupling between the atom and the sur-
face modes the G„arises by replacing qj* by qjh( oo ) in
(2.15). Thus

EI —— . tr —1 G„(k,k', co)dco,
b(oo)

4' 6 co
(2.17)

G„(k,k', co) =G„(k,k', co)
&(co)

(2.16)

Substituting the expressions for G„'s obtained in (2.15)
and (2.16) into (2.5) and (2.6), we are able to. rewrite Et
given by (2.2) according to

where the ln term in (2.2) is expanded in powers of the
coupling and only the linear term in the coupling is con-
sidered. This completes our sketch of the zero-point ener-

gy method. Explicit expressions for EI are obtained in
Sec. III.
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III. CALCULATIONS

To apply the result of Sec. II to the present problem, we
define our system as follows. Let the surface be denoted
by Z =0 with an empty space for Z&0 and an ionic
medium for Z &0. An atom is assumed to move in the
empty space and is prevented from entering the Z &0
zone.

The frequency-dependent dielectric constant e(co) of the
medium is assumed to be of the simple form

atom written in the cylindrical coordinate system. For
simplicity we have considered a two-particle hydrogenlike
atom. The energy E„associated with the atom is given by

fi kE„=e„+
2M

(3.6)

where M is the atomic mass.
The positions xj of the particles forming the atom and

the positions of the images xJ can be written in terms of
( r, z) and (R,Z) as follows:

e(co) =e( oo )+ e(0) —e( oo )

1 —(co/co T)
(3.1) m2

x i ——R+ iIZ — (r+ ilz ),M
where coT is the transverse optical frequency of the medi-
um. The longitudinal optical frequency coo is related to
coT by the well-known Lyddane-Sachs-Teller result:

mi
x2 ——R+gZ+ (r+iIz),

M
(3.7)

2
COT

2
COp

e(oo)
e(0)

(3.2)

m2
x i

——R—iIZ — (r—ilz),M

e(co) —1

e(co)+1

so that b, (co), introduced in (2.9), is defined by

E( co) —1

e(co)+ 1

(3.3)

(3.4)

The relevant properties of the atom are as follows. The
wave function consisting of the localized and the free
parts is given by

4„=—
I

n ) = U„(r,z)si (knz„Z)e px(ik~„R), (3.5}

where (r,z} and (R,Z) are, respectively, the internal coor-
dinates and the coordinates of the center of mass of the

For a charged particle qj the image charge qj* produced
by the surface polarization is given by

6( oo ) —5(0)
1 —(co /co, )

(3.8)

where co, is the frequency of the surface excitations and is
given by

2 e( oo ) e(0)+1' E(0) e( )+1 (3.9)

The poles of the integrand in (2.17) occur at co=co, and
co=

I
E„E

I
/iri. T—he evaluation of the residues pro-

duces the result

ilc m)
x2 ——R—iIZ+ (r—ilz),

M

where mi and mz are the masses of the particles.
With the properties of our system defined, the contour

integration in (2.17) can now be performed. Using (3.1),
(3.2), and (3.4) we obtain

( —1) (4'}qiqj ~.&n
I
exp( —ik'xJ }

I
m & &m

I
exp(ik'xi)

I
n &

EI = g, ' [&( oo ) —&(0)]
Vk E E„+A'cog— (3.10)

The result (3.10) is exact but the evaluation Et from it requires considerable computations. Approximations are possible
and these are made to obtain results which are easy to calculate and analyze.

Approximations We may. express the energy denominator in Eq. (3.10) in a descending series following the procedure
introduced by Platzman,

1

Em —E„+fin,
1

Ace, +a
E —E —o. 1

Ac@, +a E —E„+%co,

E E„—a (E —E„—a)—
+ + ~ ~ ~

(flu, +a ) (fico, +a )
(3.11)

where a is chosen in such a way that when the series (3.11) is substituted into (3.10) the term arising from the second
term of (3.11) vanishes. Use of (3.11) allows us to write

&n
I
exp( ik'xj*)

I
m &&m

I
exp(ik'xt

I

" &

Em —E„+fico,
&n

I
exp( —ik xJ )(H —E„a)' 'exp(ik xt)

I

—n )
(A'co, +a)' (3.12)
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where H, the Hamiltonian of the atom, is given by

p 2
H= + +u(r) . (3.13)

2M 2p

P and P are the momentum operators of the center of
mass and relative motion, p is the relative mass, and u (r)
is the Coulombic potential between the particles forming
the atom. We now use the identities

Consideration of the term t =2 in (3.12) would allow us
to determine a occurring in (3.11). Using the relation
(3.7) with xi =x], (3.14) and (3.15), we write

(n
~

exp( i—k x&*)(H E„——a)exp(ik x[)
~

n )

Ak
n exp[ —(k (x"—x~)] —a n),J 2' )

e pe
' =p+—ik.(r+qz)~ ik (r+gz) (3.14) (3.16)

and

—ik (R+qZ)p ik. (R+vyZ) p+gk (3.15)

in (3.12) to evaluate each term in the series. For t = 1, the
term in (3.12) represents the lowest-order effect produced
by the interaction; higher-order contributions to the ener-

gy arise from higher values of t. In this paper we restrict
ourselves to the first three terms.

where the atomic part of the state
~

n ) is assumed to be
symmetric. The expression (3.16) vanishes for
a=(A' k /2m] ) and, likewise for xi =xi, the term
equivalent to (3.16) vanishes for cc=(]ri k /2m'). Thus,
depending on the value for x~, appropriate a can be select-
ed so that the term in (3.16) is zero.

With a so defined, we now substitute the term t =1 in
(3.12) into the result (3.10) to get

( —4ir)(]rico, )qz[b((g) ) —6(0)] I (n
~
exp[ik {x]—x] )]—exp[ik (x, —xi )]

~

n )
Et(t = 1)=

2(8ir ). k []rico, +(i]i k /2m])]

+
(n

~

exp[ik. {xz—x] )]—exp[ik. (xz —xi)]
~
n)

d k
kz[]rico, +(irt k /2m')]

(3.17)

where the summation over k is changed to integration using the result (2.13) and q =
~ qj ~

. The term EI(t =3) w»ch is
of a lower order than EJ(t =1) can also be written but its form is more complex. Nevertheless, the term is important
since it contains the effect of the atomic velocity on the i'nteraction energy. We write this term only partly by consider-
ing its portion which is dependent on the velocity. The rest of the term is not of particular significance to this paper.
Substituting (3.12) with t =3 into (3.10) and selecting the velocity-dependent parts of the term, we write

( 4')(fico, )q [b—( oo ) —i]](0)] (n
~
exp[ik (x]—x] )]—exp[ik. (x]—xi ))

~

n )
Et(t =3)=

2(8ir ) k [fico, +(]]i k /2m])]

(n
~

exp[ik. (xq —x] )]—exp[ik (xz —xz)]
~

n )+
k [fico + (A' k /2m ' ) ]

,
2

fi k j(..

(3.18)
Terms EI(t) for t greater than 4 will not be considered because of their lack of intrinsic value to this paper.

If we now express the interaction energy El as a matrix element of a variable 8't(r, z,R,Z) between the same state
~

n ) =
~
R,Z, r,z, n ) according to

Et ——(n, R,Z, r,z
~

8't(r, z, R,Z)
~
n, R,Z, r,z),

then the integration over the r, z, and R gives

Et ——(Z
i
8'1(Z)

i
Z),

(3.19)

(3.20)

where 8'1(Z) is the energy of interaction between the atom and the surface at the separation Z. Using EI(t) for t =1
and 3 we can obtain the corresponding contributions to 8'1(Z).

IV. CONCLUSION

We integrate (3.17) over d k to write 8'1(Z, t = 1) as

q [6(0)—b( )] [1—exp{
I x]—x]

I /a»j
8'1(Z, t=1)= n

2 Xy —X)

[1—exp(
~
xp —x]

~
/ai ) j+

X2—X2

[1—exp(
~
x]—xz

~
/a] )]

Xj —X2

[1—exp(
~

xz —xt
~
/az)]

(4.1)
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where a& and a2 are the polaron radii given by (fi/2m~co, )'~ and (A'/2m2co, )', respectively. To obtain 8'1(Z, t =1) in
the asymptotic limit we substitute (3.7) into (4.1). For large Z

lim 8't(Z, t=l)= [(r,z
~

(2z +r )
~
r,z)],q 6(0)—6( oo ) (4.2)

16Z

while for small Z

lim N'(Z, t=l)= (r,z I I {2v]Z 2(m2/M)gz
I

12gZ [(mz —m()/M]gz —r
~ ] r, z)q [b,(0)—b,(oo)] 1

Z—+0 2 a1

+&r z
I 12nZ+(2m'/M)W

I

—I»Z —[(mz —mi)/M]nz+r I Ir z&
1

Q2

(4.3)

RK„
X 2M', (z, r

~

z'+r'
~
z, r)

sin 0~ —cos 8~
2 (4.4)

where 8„ is the angle made by the incident direction of
the atom with the Z axis. .

V. DISCUSSION

The interaction energy between an atom and a surface
formed by an ionic crystal is derived using the zero-point
energy formalism. The method was used earlier by
Ritchie in another closely related problem.

The derived results can be extended to the case of a
metal surface by replacing (3.1) by the frequency-
dependent dielectric constant for a metal

2

e(co) =1-
CO

(5.1)

where co& is the plasma frequency of the electron gas. Us-
ing Eq. (5,1) in (3.4) and (3.9), we obtain b, (0)= —1,
b ( oo ) =0, and co, =(co&/2). Making use of these changes,
the expressions for the interaction energy derived in the
previous section can be used for a metal surface if we re-
place [b(oo) —6(0)] by unity and co, by the surface

In the limit of Z approaching zero but keeping Z &z, the
interaction term saturates and the saturated value is ob-
tained from (4.3) by putting Z =0. The result is, howev-
er, unphysical since at Z =0 the atomic wave function
would spread into the surface, a situation precluded by the
assumption that the atom is in the free space (i.e., Z & 0).

The velocity dependence of the interaction energy is
contained in Et(t =3) which can be obtained by integra-
tion over k in the expression (3.18). The integration is
somewhat involved but can be done by using integration
tables. The resulting expression gives 8'(Z) which for
large Z can be written as

3 q [h(ce) —b, (0)]
Z5

plasmon frequency.
Apart from differences in the approaches, there are also

differences in approximations made in this paper and in
the work of Manson and Ritchie. Manson and Ritchie
obtain the interaction energy using the dipolar interaction
between an atom and a surface. This approximation is ex-
pected to hold relatively better for large Z than for small
Z. Although we do not use the dipolar approximation,
we have utilized Platzman's expansion in deriving our re-
sults. This expansion is useful if the unperturbed energy
E„ is smaller than %co, . Alternately if Ace, &

~

E„E—
for those states which are coupled sufficiently strongly by
the interaction then, Platzman's expansion is known to
produce reliable results. Thus if fun, is sufficiently large
then our results are expected to be reasonably accurate
even when only the first term in Platzman's expansion is
utilized.

The use of Platzman's expansion is known to produce
results which are many times difficult to interpret, as is
the case with our calculations. If we consider the first
term in Platzman's expansion, the interaction energy,
given by (4.1), has the dominant 1/Z dependence for
large Z. Unfortunately higher terms in Platzman's ex-
pansion would also contain 1/Z dependent terms, so that
the behavior of the interaction energy for large Z is given
by the sum of all these contributions. The interaction en-

ergy given by (4.1) is therefore incomplete and cannot be
meaningfully compared with the corresponding result of
Manson and Ritchie. A similar difficulty arises when
comparing the results given by (4.3) and (4.4) with the
corresponding results obtained by Manson and Ritchie.
Specifically, the saturation of the interaction energy found
in (4.3) is also subject to a correction, should higher-order
terms in Platzman's expansion produce a divergent term.
We intend to examine this issue in a later publication. In
addition we wish to point out the result (4.4) is smaller
than the result obtained earlier by Manson and Ritchie
and by Ferrell and Ritchie.
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