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A Monte Carlo simulation was used to determine the critical temperature of a two-dimensional,
ferromagnetic, binary, quenched Ising alloy as a function of the relative species concentration and of
the relative interaction energy between unlike ions. Considering the system to be composed of two
ionic species, 3 and B, we used different B-ion concentrations of 0.25, 0.50, and 0.75. For each of
these, the four different values of the relative A-B interaction energy studied were J~~/J~q ——0, 1, 2,
and 4. The value of J&z/Jzz was set equal to 4 for all cases. Improvements over the results ob-
tained from mean-field theory, the Bethe-Peierls approximation, and the "effective-field" model of
Honmura et al. are discussed.

Over the last several years the theory of phase transi-
tions in ferromagnetic, binary, Ising systems has received
considerable attention from both a bond and a site per-
spective. ' The bond model considers all lattice sites to
be equivalent, but the interaction energy between each pair
of adjacent sites is randomly assigned one of a set of pos-
sible values. In the site model, however, the lattice sites
are randomly occupied by two different species of mag-
netic ions, A and 8, and the interaction between two ions
is determined entirely by the species of those ions. The
Hamiltonian for the system is then

X l JAA5iA ~j A +~BB~iB~jB
(~j&

+J~a(& ~ &ja+ &ia&j~ ) f~ ~,

where the J,J's are the interaction energies between type-i
and type-j ions, the S's are the spin variables ( =+1), and
the sum is over all nearest-neighbor pairs.

The site problem has been solved exactly in one dimen-
sion, but for higher-dimensional systems various approxi-
mations had to be used. In particular, mean-field
theory, ' and the Bethe-Peierls approximation have been
used to obtain solutions. More recently, a new "effective-
field" model has been developed and applied to the site
problem. In addition, combinations of approaches have
been tried, e.g., a three-dimensional, binary, magnetic sys-
tem has been modeled by considering it as a set of one-
dimensional chains coupled by a mean field. But, as it is
well known from the classical monatomic Ising system,
these approximations should be expected to yield results
that are significantly different from those obtained from
an exact solution.

Although the binary magnetic site problem has not
been solved exactly, the method of Monte Carlo simula-
tion can be expected to provide results that would be very
close to any such solution. The only previous Monte
Carlo work done on the site problem has been that of
Tatsumi. His work, however, had different objectives
from that presented here. Tatsumi considered spin-glass
transitions in a binary system arrayed on a simple-cubic

lattice. In order to examine the spin-glass state, an anti-
ferromagnetic interaction must be present. In this work
we deal only with ferromagnetic interactions on a square
lattice and seek to establish the best estimates yet made
for the critical temperatures in the two-dimensional,
binary, magnetic site model.

The critical temperature of a ferromagnetic, binary al-
loy was determined for three values of nominal B-ion con-
centration, 0.25, 0.50, and 0.75. These results, together
with those for the pure lattice cases of pii ——0.0 and 1.0,
were sufficient to establish the behavior of the critical
temperature as a function of concentration. For each of
these pti values, four different values of J~ii/J~~ (=0, 1,
2, 4) were studied. This particular selection was made due
to the choice of Jiiji/J~~ ——4, and arbitrary value, but one
that provided a convenient temperature range in which to
work.

All systems studied consisted of random arrangements
of A and 8 ions on a 40&&40 square lattice with periodic
boundary conditions. The ion types, 2 and 8, were as-
signed randomly, simulating a quenched system. The
Monte Carlo (MC) procedure first developed by Metropo-
lis et a/. ' was used to generate, for a fixed value of
kz T/J„„, successive microstates of the system from
which statistical data on the order parameter and energy
were generated.

The order parameter for the ferromagnetic binary alloy
was defined to be the absolute value of the magnetization:

[M[= QS, /X',

where X is the length of a side of the lattice.
The absolute value was used since, without an external

field, there was no preferred spin direction, and the or-
dered state could appear with the majority of spins point-
ing down, as well as up. Va"ues of the order parameter
and energy of the system were recorded after each lattice
pass, and the final state of the system was used as the ini-
tial state for the next pass. The procedure continued for
3500 passes. Before computing average values of the or-
der parameter and energy for the entire set, the results for
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the first 500 passes were discarded so as to minimize any
effects due to the original spin configuration (all spins
up). In order to compile better statistics, three indepen-
dent sets of data were collected. Therefore, the results for
each reduced temperature were based on a total of 9000
passes.

Another reason for using three independent sets was to
be able to take better account of the correlation effects
known to be present in each set of 3000 data points, i.e.,
since the final spin configuration after one lattice pass
was used as the initial configuration for the next, the
trials were not truly independent. Correlations must be
considered in the uncertainty anal'ysis. The simplest way
to account for these effects was to use the concept of "sta-
tistical inefficiency ' (SI) as discussed by Friedberg and
Cameron" and by Landau' for such MC simulations.
The SI is the factor by which the variance of the mean
(calculated in the usual way assuming no correlations)
should be multiplied to obtain a more realistic estimate of
the uncertainty. The actual values of the SI obtained
from the data depended on the reduced temperature but
were about 100 near the critical point for all cases.

The averages and uncertainties of the order parameter
and energy for the three individual sets then had to be
combined to obtain the appropriate values for all 9000
trials. The overall averages for both quantities were sim-
ply the averages of the set averages. The SI value to be
associated with the variance of the combined data was
taken to be the average of the SI's computed for the three
separate sets. Although this was an estimate of the
overall SI, it should be entirely adequate for this work.

An attempt was made to find the critical temperature
for each case from the peak in the-heat capacity as a func-
tion of temperature. Ferdinand and Fisher' have shown
that for a finite, two-dimensional, square Ising system
with periodic boundary conditions,

( T, —T )/T, = —0.3603/N,

To obtain a value of T„ for a particular case, graphs of
~

M
~

N' versus eN were constructed on a log-log scale
for a series of estimates of T„. For each graph the only
data used were for reduced temperatures below the es-
timated T„and elV values between 0.2 and 10. There
were always at least seven, often more, points which met
these criteria, and, as was the case with Landau's data, '

the points did show good linearity over this range of eN.
The uncertainties in

~

M
~

were taken into account in the
fitting procedure. The best estimate of T„was taken to
be that value for which the slope of the fitted line was
closest to —,. The uncertainty in T„was determined by
the range of estimated T„values whose corresponding
slopes plus or minus the slope uncertainties could equal

1

8 '

As can be seen in Table I, the uncertainties in the T„'s
produced by this procedure were very small, probably too
small. A few cases were completely rerun with different
sets of random numbers. The T„'s for the new runs were
within about 1% of the values shown in Table I, but not
always within the calculated uncertainties. Furthermore,
it will be noted that the T„values computed for the pure
cases were about 1% above the exact values. It is believed
to be coincidental that the Monte Carlo results for T„ex-
ceeded the exact results by approximately the same
amount as Ferdinand and Fisher showed the finite-size
T should exceed T, . Lastly, it should be remembered
that the T„'s were determined for particular configura-
tions of A and 8 spins; some variation in T„would be
expected for different configurations. This is suggested
by the data for the cases of pz ——0.25, J„~/J~~ =4;

TABLE I. Monte Carlo results for reduced critical tempera-
ture, k~ T,/ J», for different values of 8-ion concentration
(nominal and actual) and Jz~/Jz&. The uncertainties listed are
those calculated from using finite-size scaling theory to fit the
data.

Pa
where T, represents the critical temperature for the infi-
nite system and T is the critical temperature for the fi-
nite system as determined by the peak in the heat capaci-
ty. In the present study, with %=40, the expected overes-
timate of the critical point based on the heat-capacity
peak would have been on the order of 1%. However, the
heat-capacity peak for our data was too broad to make
possible a reliable estimate of the critical temperature.

Therefore, it was decided to use finite-size scaling
theory to calculate the reduced critical temperature,
T„=k&T,/Jzz, for the infinite system directly from the

data for the finite system. It has been shown' ' '5
that for a finite, two-dimensional Ising system

~

M
~

N ~ (EN' )~ T'(T,

Nominal

0.000

0.250

0.500

Actual

0.000

0.265
0.263
0.239
0.253
0.260

0.520
0.494
0.497
0.494

2.29+0.01

1.35+0.01
2.54+0.01
3.26+0.02
4.74+0.02
4.84+0.02

3.92+0.01
4.83+0.02
4.90+0.01
6.86+0.03

where

T TC

TC

0.750 0.751
0.744
0.751
0.740
0.751

5.60+0.01
5.82+0.02
5.99+0.03
6.90+0.02
8.63+0.2

and the critical exponents for the two-dimensional lattice
are P= —,

' and v= 1. 1.000 1.000 9.15+0.01
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FICy. 1. Monte Carlo simulation results for reduced critical
temperature, k~T, /Jzz, as a function of B-ion concentration
for different values of J» /J». Key: +, J» /J» ——0; Rl,

JAB /Jgg l + JAB /JAA 2 'e JAB /JAA 4.

FIG. 2. Monte Carlo simulation results for k&T, /J~~ as a
function of Jq~/J~q for different values of nominal B-ion con-
centration. Key: 1,ps ——0.25; X, p~ ——0.50; ~, ps ——0.75.

pg ——0.50, Jgg /Jgg ——2; and pg =0.75, J~g /Jgg ——1.
Note, however, that in each case T„did increase as the
actual pz increased. For all of the above reasons, it is be-
lieved that the uncertainties in the T„'s are actually about
1%.

The results for the critical temperatures as a function of
p~ for the different values of J~~/Jzz are shown in Fig.
1. For the Jzz/J~~ ——0 case, T„ initially drops as pz in-
creases from 0 and would, on the basis of percolation
theory, ' be expected to fall to zero at pz ——0.41. Similar-
ly, as p~ decreases from 1, T„should go to zero at
p~ ——0.59. In other words, no phase transition should be
present for 0.41 &p~ &0.59. With Jz~ ~0 there is a

nonzero T„ for all values of pz. The initial rise in T„as
pz increases from 0 is greater for larger values of Jz~.

The dependence of T„on Jz~ for the different p~
values is shown in Fig. 2. The p~ ——0.25 curve exhibits a
slight downward curvature whereas the pz ——0.75 curve
shows a slight upward curvature. For the pz ——0.25 case
the 8's will exist in many isolated clusters, and for
J~~ ——0 their total contribution to the magnetization
should be zero. Due to the small value of pz these clus-
ters will each contain only a few B ions with practically
every B having at least one 3 nearest neighbor. As Jz~
increases from 0, the B clusters begin to interact with the
A background, and the contribution of the B spins to the
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FIG. 3. Comparison of mean-field, ; Bethe-Peierls, ———;and HKFK, ~, theoretical results with the Monte Carlo re-
sults, $, for ksT, /Jqq as a function of B-ion concentration. Cases shown are (a) Jq~/J~q ——0, (b) Jqs/Jqq ——1, (c) Jqs/J~q =2, and
~d~ J»/J~~ =4-
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FIG. 4. Comparison of mean-field, ; Bethe-Peierls, ———;and HKFK, - . , theoretical results with the Monte Carlo re-
sults, 4, for ks T,/J«as a function of J~~ /Jz&. Cases shown are (a) ps ——0.25, (h) ps ——0.50, (c) ps ——0.75.

system magnetization is no longer zero. It is during this
initial change in J~~, when 25% of the spins suddenly be-
gin interacting with the remaining 75%, that T„will in-
crease the most, relative to other changes in Jzz.

For the case of pz ——0.75, Fig. 2 shows the greatest

change in T„ to occur when Jzz first drops below 4. The
analysis of this case is similar to that of pz ——0.25. Here,
the system consists of isolated 3 clusters in a B-rich back-
ground. When JAz ——Jzz, the 3 ions are strongly coupled
to the B background and many, those with 3 or 4 B

TABLE II. Comparison of ratios of reduced critical temperature (Monte Carlo:theoretical) for
mean-field, Bethe-Peierls, and HKFK theories,

Nominal

PB

Actual

O.OOO

JAB

~AA
Mean field

0.572+0.002

(~BTc / JAA )MC

t ~B Tc / JAA )theory

Bethe-Peierls

0.792+0.003 0.741+0.003

0.250 0.265
0.263
0.239
0.253
0.260

0
1

2
4

0.459+0.003
0.466+0.002
0.475+0.003
0.452+ 0.002
0.457+0.002

0.659+0.005
0.728+0.003
0.692+0.004
0.654+0.003
0.659+0.003

0.685+0.005
0.741+0.003
0.697+0.004
0.691+0.003
0.695+0.003

0.500 0.520
0.494
0.497
0.494

1

2
2
4

0.441+0.001
0.486+0.002
0.492+0.001
0.509+0.002

0.661+0.002
0.698+0.003
0.705+0.001
0.715+0.003

0.719+0.002
0.698+0.003
0.705+0.001
0.699+0.003

0.750 0.751
0.744
0.751
0.740
0.751

0
1

1

2
4

0.466+0.001
0.478+0.002
0.488+0.002
0.536+0.002
0.562+0.001

0.667+0.001
0.681+0.002
0.694+0.003
0.753+0.002
0.782+0.002

0.686+0.001
0.684+0.002
0.696+0.003
0.729+0.002
0.737+0.002

1.000 1.000 0.572+0.001 0.792+0.001 0.740+0.001
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neighbors, effectively act similar to 8 ions. As Jz~ de-
creases, the A ions decouple from the 8 background at a
temperature lower than the ordering temperature of the B
ions. This decoupling of the A's weakens the long-range
order in the entire system resulting in a decrease in the
system critical temperature.

The Monte Carlo results were compared with those of
mean-field theory (MFT), ' the Bethe-Peierls (BP) ap-
proximation, and the recent effective-field theory of
Honmura, Khater, Fittipaldi, and Kaneyoshi (HKFK).
The MFT results for the cases studied in this work appear
in Figs. 3 and 4. Although MFT is analytically simple,
this approximation omits all details of local interactions
and seriously overestimates the value of T„ in all cases.
Furthermore, a fundamental difference between MFT and
the MC results occurs for the case of J~~ ——0. As men-
tioned above, there should be no transition when neither

pz nor pz is below the critical percolation value of 0.59
for the two-dimensional square lattice. Mean-field theory,
however, does not take spatial dimensionality into account
and predicts the existence of two ordering temperatures
for all values of p~ (except for p~ ——0.0, 0.20, and 1.00).

BP approximation treats the interactions between a spin
and its nearest neighbors exactly but considers those
neighboring spins to interact with the rest of the lattice
via a mean field. The results of the BP are more accurate
than those of MFT but are still too high as shown in Figs.
3 and 4. This overestimation of T„ is not at all unexpect-

ed considering that the BP result for the pure two-
dimensional Ising system is significantly higher than the
Onsager (exact) result. As was the case with MFT, the
BP is not sensitive to the spatial dimensionality of the lat-
tice and so predicts two transition temperatures for a
range of p~ values for the J~~=O case. At about the
same level of accuracy as the BP approximation is the
HKFK theory. The only significant difference between
the two occurs for the case of Jzz ——0 as shown in Fig.
3(a), where the HKFK double-transition region is nar-
rower.

A useful quantitative comparison between the Monte
Carlo results and each of the above theories can be made
by examining the ratios of predicted T„, (Table II). The
most outstanding feature is that the T„ratios within each
section of the table are significantly different. That is, the
Monte Carlo results cannot be obtained by simply multi-
plying all the results of any one theory by a scaling factor.
This conclusion remains unchanged even if the error bars
are increased to the 1% value estimated above. In terms
of the phase diagrams shown in Fig. 3, the differences in
these ratios mean that the shapes of the phase boundaries
found from the MC method are actually different from
those predicted by the theories.
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