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Physical content of the orthogonalized final-state rule of Davis and Feldkamp
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The orthogonalized final-state rule for x-ra, y absorption and emission is discussed in the light of
an earlier paper by Friedel, and in the light of subsequent papers by Ramaker, and by von Barth and
Grossman. It is pointed out that the orthogonalized final-state (OFS) rule deals only with the exci-
tonic enhancement of the final-state-rule transition probability. For the models used by Davis and
Feldkamp, von Barth and Grossman, and Friedel, it is shown that the orthogonalized final-state
rule yields an excitonic Fermi-edge singularity which is the logarithm of the generally accepted one,
and thus underestimates the excitonic enhancement near the Fermi edge. Away from the Fermi
edge, the OFS rule should provide a useful evaluation of the excitonic enhancement, as was shown

by Davis and Feldkamp and in their paper proposing the OFS rule.

I. INTRODUCTION

Davis and Feldkamp' demonstrated numerically for a
simple model of x-ray emission and absorption that an
improvement on the well-known final-state rule could be
obtained for absorption by orthogonalizing the final-state
one-electron orbital to all the occupied initial-state one-
electron orbitals. In emission, the orbital of the electron
missing in the final state is orthogonalized to the orbitals
which are unoccupied in the initial state. The numerical
examples given in Figs. 1 and 2 of Ref. 1 show that this
orthogonalized final-state (OFS) procedure, when used in
the one-electron Fermi-golden-rule formula, is indeed an
improvement on the final-state (FS) rule, compared to an
exact evaluation of the many-electron formula.

Since the OFS prescription is quite simple compared to
the exact calculation and since the model used to exhibit
the properties of the OFS rule is a rather restricted one, a
more complete discussion of the OFS rule in relation to
the exact theory is warranted. That is the purpose of this
paper, and it will be accomplished by deriving explicit for-
mulas for the OFS absorption and emission matrix ele-
ments which apply to several of the models currently be-
ing used in the discussion of x-ray edge effects.

Two points about the OFS rule can be made immediate-
ly. The first point, established by Ramaker, is that the
OFS matrix element is in error by terms of second order
and higher in the off-diagonal one-electron overlap matrix
elements, because terms of these orders from the many-
body expression are omitted. Since these overlap matrix
elements are proportional to the strength of the core-hole
potential, this puts a limitation on the use of the OFS
rule, a point already discussed qualitatively in Ref. 1. The
second point, not discussed in Ref. 1, but implicit in it, is
that the OFS rule deals only with the excitonic enhance-
ment part of the x-ray edge effects, and does not include
the effect of shakeup transitions; i.e., transitions accom-
panied by simultaneous excitations of the other electrons
in the system. ' ' " This point needs to be kept in mind
in considering applications to actual systems. It is also
connected with the self-consistency of the OFS rule. The

OFS excitonic enhancement is proportional to the scatter-
ing phase shift induced by the core-hole potential. How-
ever, the contributions from simultaneous excitations de-
pend on the square of the phase shift and are thus of the
same order as terms already neglected in the formulation
of the OFS treatment of the excitonic enhancement.
Thus, some care would be required to generalize the OFS
approach so as to include shakeup effects.

In the next section, formulas for the OFS matrix ele-
ment will be derived which establish a third point con-
cerning the OFS rule. This point is that the OFS rule
yields an excitonic Fermi-edge singularity which is the
logarithm of the accepted excitonic singularity. Thus the
OFS rule is bound to underestimate this aspect of x-ray
emission and absorption edges.

A logarithmic excitonic Fermi-edge singularity for ab-
sorption was obtained by Friedel in Ref. 6 for a model
based on a spherically symmetric coordinate-space poten-
tial using a perturbation expansion in powers of the core-
hole potential. Since, as stated above, the OFS rule is
correct to first order in the core-hole potential, the results
presented in the next section can be viewed, in part, as the
establishment of the connection between the OFS rule and
Friedel's analysis. We shall, however, carry out the
derivation for the separable momentum-space model used
by von Barth and Grossman. This model can be rather
closely related to the spherically symmetric coordinate
space model, '" and it includes the model used in Refs. 1,
2, and 10 as a special case.

II. ANALYSIS QF THE OFS RULE

The main ingredient of the OFS rule is the overlap ma-
trix between the one-electron orbitals calculated in the ab-
sence or presence of the core hole. Therefore, we start by
defining the model from which this matrix is obtained.
I.et the one-band Hamiltonian H in the absence of the
core hole be defined by

Ã~= g ~k&k&k (1)
k=1

where ak is the creation operator for the state whose

32 3442 1985 The American Physical Society



32 PHYSICAL CONTENT OF THE ORTHOGONALIZED FINAL-. . . 3443

eigenvalue 1s tg and the number of states is X. Let the
Hamiltonian H in the presence of the core hole be defined
by

H=H+ g vkk. ~kak .
k, k'

(2)

These are Eqs. (2.8) and (2.9) of Ref. 8. In Ref. 1, H is
designated as H; and H is designated as Hf, as would be
appropriate for x-ray absorption. Following Ref. 8,

~kk = ~Ouckuek

where

p,k
——(core

I
T

I
k ),

(3)

(4)

S„„=(k
I

n )=-
&n —&k

which, however, still contains S,J. through
p,„=(core

I
T

I
n —). If we set c„—= —Vop,„,we can find

c„ from the required unitarity of the matrix IISk„ll . '
The e„are sandwiched between consecutive ek, ' and
they satisfy the eigenvalue equation, ' '

Vo I p.k I'
(6)

k=i (&.—&k)
=I, 1&n&N.

We are now in a position to discuss the OFS rule of Davis
and Feldkamp.

By definition in Eqs. (14) and (28) of Ref. 1, the orthog-
onalized final states for absorption

I
n )and em-ission

I
k ) are given by

I
n —) =

I
n —) —g Sk„ I

k) (absorption),

I k) =
I
k) — g Sk„ I

n —) (emission) . (7b)

As in Ref. 1, the bar above n or k identifies the OFS.
These OFS are used in the Fermi golden rule formula,
Eqs. (21b) and (29) of Ref. 1 to find the x-ray absorption
and emission rates. In these formulas, electron shakeup is
neglected so L, +1&n &N and 1&k &L, where I num-
bers the highest occupied orbital in the initial state. The
final-state rule is obtained by using the states

I
n —) and

and, in the notation of Ref. 1, (core
I
T

I
k) is the one-

electron dipole matrix element between the core orbital
and the eigenfunction

I
k) of H. Once N, Vo, the ek

and the p,k are given, the model is defined. The model
used in Refs. 1 and 2 can be described by
ok=(W/N)(k ——,'X——,

'
), where W is the bandwidth,

p,k=T~/N', and VOTd —U. H——ere Td and Uare con-
stants. In Ref. 8, the spacing of the levels ek is assumed
to vary slowly with k. Adopting a notation similar to
that in Ref 8, .we define a density of states D(e'k)
=(&k+i —e'k) —1 12

The statement of the OFS rule requires the expression
for the overlap matrix elements Sk„. Let the eigenfunc-
tions and eigenvalues of H be designated by

I
k —) and

e~, respectively. From Eqs. (1)—(3) one obtains the con-
venient expression,

(corel T fk) 1 lcm I=1——
(corel T Ik) Vo „

(emission)

(Sb)

are obtained. In Eq. (7a), L+1 &n &N and in Eq. (7b)
1&k (L.. Since in applications Vo &0, the sums in Eqs.
(7a) and (7b) are positive. The squares of the right-hand
sides of Eqs. (7a) and (7b) are the OFS rule excitonic
enhancement factors to be applied to the final state rule
transition rates for x-ray absorption and emission.

Equations (Sa) and (Sb) exhibit the logarithmic Fermi- .

edge singularity of the OFS excitonic enhancement fac-
tors. Since the factors Ip, k I, I

c„ I, and e„—e„are
slowly varying functions, the essential part of the sum-
mands in Eqs. (Sa) and (Sb) is (6„—Ek) ', which 'leads to
a logarithmic singularity at the Fermi edge. This estab-
lishes the third point described in the introduction. The
logarithmic Fermi-edge singularity resulting from the
OFS rule was not discussed in Ref. 1. However, Fig. 1 of
Ref. 1 exhibits this behavior for K =60 . '

It is straightforward to relate the OFS excitonic
enhancement given in Eqs. (Sa) and (Sb) to the result ob-
tained by Fried el for a spherically symmetric
coordinate-space potential. We evaluate Eqs. (Sa) and (Sb)
to first order in Vk k. Then e„=e„+Vo

I p« I

I
c

I
=Uo Ip „ I

Vo Ip,„I, and near the Fermi edge
e„—e =(n —k)/D(eL). Also,

—Vo
I P,L, I

D(el )=5(E )/7T,

where 5(eL ), is the scattering phase shift. ' ' Inserting
these approximations into Eq. (8a) and squaring, one ob-
tains, for n close to L and L large,

2
(core

I
T

I
n )—25(&L)

] + ln
(core

I
T

I
n —) m

(9)

Equation (9) exhibits the replacement collision ' enhance-
ment given in Eq. (10) of -Ref. 6, where the symbol N
stands for our L and N, is a cutoff of order L As.
Friedel points out, this is the first term in the expansion
of the accepted edge singularity

I
k) in the golden rule expressions .In addition to the

neglect of shakeup transitions, the many-electron overlap
determinant which appears in Eqs. (15) and (19) of Ref. 1

is eliminated in the formulation of the golden-rule equa-
tions, so that the Anderson nonorthogonality factor' has
been set equal to unity. Thus, as stated in the introduc-
tion, the OFS procedure based on Eqs. (7a) and (7b), is an
approximate treatment of the excitonic enhancement of
the final-state rule matrix elements. When Eqs. (S), (7a)
and (7b) are used to compute the dipole matrix elements.
When Eqs. (7a) and (7b) are used to compute the dipole
matrix elements (core

I
T

I
n —) and (core

I

T
I
k ), the

equations

(core
I
T

I
n —)

1
VO IPck I

absorption6„—Ek

(Sa)
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25(el )/m
25(eL, )

ln
&n —&i.

(10)

where

+m VoA(e„) (12)

and A(ek)= ~p,k ~

D(ek). ' The logarithmic Fermi-edge
singularity of the OFS rule is apparent. Section VI of
Ref. 4 salves the excitonic enhancement problem accurate-
ly far the model considered here by evaluating the many-
body overlap matrix determinants through the solution of
the integral equation (6.9) of Ref. 4. The results given in
Eqs. (6.14) and (6.15) of Ref. 4 are an excitonic enhance-

Thus, the OFS rule exhibits the same logarithmic Fermi-
edge singularity for absorption and emission as results
from first-order perturbation theory. This is not surpris-
ing in the light of Ramaker's error estimate. On this
basis, one should be able to obtain the main content of the
QFS rule to first order in Vo by carrying out the ap-
propriate simplification of the overlap determinants in the
many-body theory. This is what Friedel did for absorp-
tion, and it is not hard to recognize Eq. (7a) above in Eq.
(7) of Ref. 6. ' Equation (9) was obtained here from the
momentum-space model defined in Eqs. (1)—(4). It can
also be obtained from the OFS rule formulated directly
for a spherically symmetric coordinate-space poten-
tial, ' "' starting with Eqs. (7a) and (7b). In place of
Eq. (5) for S~„one uses large N the structurally identical
expression,

Sk„——sin5(e„)/[(k —n)m+5(e„)],

derived in Refs. 6 and 15.
A completely analogous comparison can be made with

the results of Ref. 4 for x-ray emission, this time in the
context of a continuous single-band spectrum. Appendix
8 of Ref. 4 gives the required expression for Sk„and all
the other relations needed to evaluate Eqs. (7b) and (Sb).
Retaining in part a discrete notation for ease in compar-
ison with Ref. 4,

ment with the correct Fermi-edge singularity analogous to
the left-hand side of Eq. (10). It is readily seen that the
OFS result from Eqs. (11) and (12) is equivalent to solving
the integral equation (6.9) of Ref. 4 to lowest order in Vo
and using the result in Eq. (6.2) of Ref. 4 for the transi-
tion rate.

III. DISCUSSION

As shown above, the orthogonalized final-state rule of
Davis and Feldkamp yields transition rates close to those
obtained by an evaluation of the excitonic enhancement of
the final-state rule to first order in the core-hole potential.
The Fermi-level-edge singularity resulting from the OFS
rule is the logarithm of the accepted singularity. There-
fore, as already shown in Ref. 1, the OFS rule works best
away from the Fermi level. Exact calculations are possi-
ble for the models discussed here. Therefore, the sphere
of application of the OFS rule would naturally be to more
complex Hamiltonians for which the overlap matrix in
Eqs. (7a) and (7b) is available; for example, from self-
consistent-field calculations.

If the important scattering phase shifts 51(eL ) are avail-
able, a completely different approach to the final-state

rule is possible. ' ' In this method, the final-state rule
transition rates are corrected for excitonic enhancement
and shakeup effects by multiplying them by the asymptot-
ic Mahan —Nozieres —De Dominicus Fermi-edge fac-
tor. ' ' In the cases studied thus far, the result is a rath-
er accurate shape for the emission and absorption bands.
An independent determination of the overall normaliza-
tion is required in this approach, if absolute transition rate
are desired.
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Ref. 1 to be misplotted. A corrected graph is available from
the authors. The last six values in the OFS bar graph should
be 1.25, 1.29, 1.33, 1.40, 1.51, and 1.80, and the last six exact
values should be 1.34, 1.39, 1.47, 1.58, 1.78, and 2.40, as com-
municated by the authors of Ref. 1. These values suffice for
intercomparison of the OFS and exact results near the Fermi
edge. Elsewhere, the two are in close agreement.
In Eq. (7) of Ref. 6, the left-hand absolute-value bar should be
placed to the left of d and u,„,which corresponds to our S„„,
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mulation in Eq. (8b) by expanding Eq. (6) in powers m of
(e„—e„)/(e„—eI, ) for each k&n and keeping just the powers
m =0 and 1. By solving the resultant quadratic equation for
e„—e„and using the results to evaluate c„ in Eq. (8b), one ob-
tains Eqs. (11) and (12) in the limit of large N, thanks to the
result that gP k =n /6.


