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Existing theories for the effective optical properties of a ceramic-metal granular medium (cermet)
are discussed within a multiple-scattering analysis and used as the starting point for including corre-
lation effects. Analysis of the nucleation and growth process in cermets indicates that the correla-
tion between the islands of the less abundant material are important in the study of optical proper-
ties. Multiple-scattering corrections are considered by solving the field equation in the first smooth-
ing approximation. The results obtained with this model are compared with other theories and
against experimental data of real cermets. Quantum-size-effect corrections to the dielectric constant
of the metallic grains in dielectriclike cermets and their effect on the results of the theory are also
analyzed. Finally, renormalization effects introduced through a T-matrix formalism are discussed.
Comparison between the results of the proposed model and the experimental data for different cer-
mets shows that the theory developed has better predictive value than earlier models and good agree-
ment is obtained with experiment even when the metal concentration is large.

I. INTRODUCTION

Cermets are inhomogeneous materials consisting of im-
miscible mixtures of insulators (i.e., ceramics) and metals.
The optical properties of cermets have been extensively
researched because of their potential application to the
development of optically selective surfaces.! Considerable
work has been performed to develop theoretical models
which will correctly predict the optical properties of cer-
mets when the bulk dielectric constant of the constituents
is known experimentally. It has been found that the opti-
cal properties of cermets can be modified by changes in
the relative concentration of the constituents and the con-
comitant change in microstructure.? Based on constituent
concentration, cermets are classified into three general
types: (a) metallic cermets, where the dominant volume
fraction is metallic and, as a consequence, metallic proper-
ties dominate the optical properties of the material; (b)
dielectric cermets, where the dielectric constituent is dom-
inant and, as a result, metallic inclusions are formed in a
dielectric matrix; (c) intermediate cermets, where an inter-
connected metallic network develops—in this region per-
colation effects are observed.> At opposite extremes when
the volume fraction of the metallic or dielectric constitu-
ents is very high (~98%), the optical properties are deter-
mined by the major constituent. But when the concentra-
tion of the dominant constituent is less than 98%, the ma-
terial develops a distinct resonance which is not charac-
teristic of either one of the constituents. The prediction
of this resonance has been the goal of all theories
developed for the optical properties of cermets.

Since for the region of interest in the electromagnetic
spectrum the wavelength of the radiation is large com-
pared to the metallic islands, an electrostatic approxima-
tion can be made. In this regime a simple relation be-
tween the internal (E;,) and the external (E,) electric
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fields for a single spherical island can be made, yielding
the relationship*

3
=—FE .,
T 2 pelw) M
which predicts a resonance when the dielectric constant
Ree(w)= —2. Essentially this singularity is responsible

for the resonance structure in cermets. ,

The technological usefulness of cermets when applied
to optical devices comes from their optical response in the
region 0.8 um <A <2.5 um. Since in the spectral region
of interest the wavelength is larger than the microstruc-
ture, an effective-medium dielectric constant can be used
to characterize the optical response of the materials.
Based. on this idea, several theoretical models have been
proposed to obtain the effective dielectric constant of cer-
mets in terms of the dielectric constant of the constituents
and other parameters describing the microstructure, such
as island radii, relative concentrations of the constituents,
and the shape of the islands. Two basic and widely used
models are the Maxwell-Garnett (MG) and the Brugge-
man (B) models.” The MG model is asymmetric, since it
considers the cermet as being composed of the less abun-
dant constituent embedded in a matrix of the most abun-
dant material. The effective dielectric constant is then ob-
tained by performing a volume average over the local
fields. While the B model is symmetric, since it considers
the two constituent materials as spheres embedded in an
effective medium, a volume average is also performed to
obtain a self-consistent expression for the effective dielec-
tric constant. In both theories a resonance in the spectral
response of the cermet is obtained, but neither result
agrees with the experimentally measured complex dielec-
tric constant (Fig. 1). For example, comparison between
the experimentally obtained imaginary part of the effec-
tive index of refraction and the MG model reveals that
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FIG. 1. Real (N;) and imaginary (N;) parts of the index of
refraction for Au-ALO; (90 vol% Al,O3) using the Drude
model with an effective mean free path of 10 A. Dashed curve
represents the B calculation, the dashed-dotted curve is the MG,
and the dots are experimental data from Craighead (Ref. 21).

the theoretical resonance is too narrow and in many cases
blue-shifted with respect to experimental results. Several
papers, like those of Grangvist,® show that the magnitude
and position of the resonance is a strong function of the
inclusion’s shape. Corrections to the dielectric constant of
metallic grains for size effects have been extensively used
to reduce the magnitude of the resonance, but they fail to
produce enough red shift and broadening to explain exper-
imental data.

The objective of this paper is to show that corrections
due to the correlation between the position of the metallic
islands, resulting from the formation process of the cer-
met, can move and broaden the resonance obtained by the
traditional mean-field theories of Maxwell-Garnett and
Bruggeman. In order to perform this correction, a
multiple-scattering theory has been developed that starts
from an effective dielectric constant that is calculated as-
suming no correlation between the metallic islands and la-
beled in this work as the zeroth-order approximation.
Nonrenormalized and renormalized theories will be dis-
cussed in which correlation effects are taken into account.
The final result for the effective dielectric constant will be
expressed in terms of the zeroth-order effective dielectric
constant &, (which contains no correlation effects but has

GOMEZ, FONSECA, RODRIGUEZ, VELAZQUEZ, AND CRUZ 32

been renormalized), the relative concentration of the con-
stituents f, the dielectric constant of the less abundant
constituent corrected for size effects ¢,,, the radius of the
inclusions a, and a correlation length L.

Existing theories, including those that take into account
the shape of the islands in an effort to improve the
predicted value of the mean-field theories will be analyzed
and discussed. Also corrections for size effects to the
dielectric constant of the metallic grains will be studied
and it will be shown that it is necessary to take into ac-
count quantum size effects for metallic islands of good
metals with radii less than 100 A.

A. Mean-field models

In order to explain the characteristic resonance peak of
cermets and other nonhomogeneous media two basic
mean-field models have been proposed by Maxwell-
Garnett and Bruggeman. Many derivations of these
theories have been made by several authors,”® and it has
been shown that the MG theory is a zeroth-order approxi-
mation of more complex multiple-scattering theories.>!°
The authors have been able to show that the Bruggeman
theory can also be reduced to the zeroth-order approxima-
tion in a multiple-scattering formulation of the problem.
Both theories are effective-medium theories within the
electrostatic approximation and are obtained from volume
averages. The Maxwell-Garnett theory is an asymmetric
model considering the cermet as being composed of is-
lands of the less abundant constituent embedded in a ma-
trix of the most abundant material, while the Bruggeman
model is a self-consistent theory and assumes that both
constituents form spheres that are surrounded by the ef-
fective medium: The response of islands in the cermet to
an external electric field produces a resonance in the com-
plex dielectric constant. In general, the Maxwell-Garnett
theory produces resonance peaks that are too narrow and
usually shifted towards the blue region of the spectrum
with respect to the experimental results, while the Brugge-
man theory tends to underemphasize the structure.

Several modifications have been performed in an at-
tempt to obtain better agreement with experimental re-
sults. In particular, considerable effort has been invested
in correcting the theory for effects of changes in the shape
of the islands in the cermet.!! Granqvist® has taken into
consideration not only shape effects, but the contribution
of chains, double spheres, fcc clusters, and even combina-
tions of these shapes in order to bring mean-field-theory
calculations closer to experimental results. In particular,
he calculates the logarithm of the transmission for
metallic-type cermet (Ag-SiO,, 17 vol % SiO,) using the
MG model, under the assumption that the dielectric in-
clusions are ellipsoids instead of spheres, and expressing
the effective dielectric constant as

14+ 3 fa

1—+fa '
where €, is the bulk dielectric constant of the matrix, f
the volume fraction of the dielectric, and « is proportional

to the polarizability. Under the assumption that ellipsoids
are randomly oriented, the value for « is given by

€MG =€ma
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i €mi— €ma . ,

=1 €ma~+Di(€mi—€ma)

w|_

where the D; are the triplets of the depolarization factors,
€mi is the bulk dielectric constant of the less abundant
constituent, and the % factor is a consequence of assum-
ing a random orientation of the ellipsoids. He then uses a
log-normal distribution for the ratio of the major semiaxis
a to the minor semiaxis ¢, a ratio that is directly connect-
ed to the D’s, to calculate the effective dielectric constant
of the cermets. Grangqvist centered his log-normal distri-
bution on a value of D that corresponds to the ratio
{a/c)=28.7; with 'this ratio he weighted he distribution
towards oblate ellipsoids. Following this procedure, he
obtained better agreement with experiment than when all
the inclusions were assumed to be spheres.

Figure 2 illustrates the dependence of the imaginary
part of the dielectric constant €, on the depolarization fac-
tor D when it is varied from 0.2 < D < 1.0. From the fig-
ure it can be seen that €, is strongly dependent on the
depolarization factor. Several distributions were used by
us to perform the average, with the depolarization factors
assuming values between 0.2 and 0.8, values that were
considered to be consistent with observed micrographs.
By taking a log-normal distribution with a D value cen-
tered at an average D value that corresponds to a ratio
{a/c)=1 (spheres), it was shown upon calculating the
logarithm of the transmission that the result corresponds
to the one obtained if only spheres had been used for the
metallic inclusions. In fact, we were able to show that
averaging over a distribution of shapes was not sensitive
to the type of distribution or the average value of the a /c
ratio used, unless a highly asymmetric distribution or one
strongly weighted towards oblateness was utilized. We
concluded that the average polarizability equals the value
obtained for spherical grains as long as distributions con-
sistent with observed micrographs are used. For this

FIG. 2. Changes in the imaginary part of the dielectric con-
stant due to the use of different depolarization factor D in the
Maxwell-Garnett equation for the dielectric constant of Ag-
MgO (80 vol % MgO).

reason, it was decided that all multiple-scattering calcula-
tions would be performed only for spherical islands, since
on the average, due to the random distribution in shape
and orientation, the system behaves like a cermet made up
of spherical islands.

II. SIZE CORRECTION TO THE DIELECTRIC
CONSTANT OF THE METALLIC INCLUSIONS

A. Quantum size effects

In order to calculate the effective dielectric constant of
cermets, it is necessary, in general, to correct the bulk
dielectric constant of the minority constituent for size ef-
fects. Normally the insulator has a dielectric constant
that is essentially frequency independent in the spectral
range of interest, while the metallic constituent has a
strong frequency dependence in the same region. When
the metal is the minority constituent, its bulk dielectric
constant must be corrected for size effects when the bulk
mean free path becomes comparable to the size of the
grains. Traditionally, the Drudes model together with ex-
perimentally obtained interband contributions is used to
calculate the dielectric constant of the metal. In this pro-
cedure, the mean free path of the electrons in the metallic
island is corrected for boundary scattering at the interface
between the island and the external medium. Many
researchers!> have observed that in order to obtain a
reasonably good fit between theory and experiment, it is
necessary to use mean free paths that are considerably
smaller than the ones attributed only to the size of the is-
land. These corrections can be explained as the combina-
tion of boundary scattering at the metallic-grain surface
and scattering inside the island due to internal imperfec-
tions and faults. Apparently, the contributions from these
faults and imperfections is the dominant factor in deter-
mining the mean free path in most materials. This is not
surprising since in many cases the formation process is
based on the coalescence of small islands to form larger
ones, a process that should produce substantial amounts
of imperfections in the metallic grains. The Drude theory
with these corrections is satisfactory for metallic grains of
metals such as gold, silver, or copper with radii of more
than 100 A. However, when the size of the metallic parti-
cles become comparable to the electron wavelength, quan-
tum corrections become mandatory if a realistic dielectric
constant is to be obtained.

Until recently, no good theoretical models existed for
calculating the dielectric constant of metallic particles
with a radius of the order of 100 A or less.!* To solve this
problem several researchers have used the quantum-box
method within the random-phase approximation to calcu-
late the dielectric constant of the metallic particles.

Kawabata and Kubo'* have corrected the dielectric
constant for size effects, ‘assuming that the spectrum of
the quantum levels form essentially a continuum, while
Wood and Ashcroft!® carefully reworked the quantum
size method, fully taking into account the spectrum re-
sulting from the box quantization, and obtained a dielec-
tric constant for the particles that can be expressed as
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where

O=A(A?—x?4T?)*+4xT?], A=(m')?—m?
x =2thwma’/Bmw?, T=tm2/rep, m,=I(Kpa/7m) .

€r is the Fermi energy, Ky the Fermi wave number, a is
the size of the grains, ey the Bohr radius, and the func-
tion I takes the integer part of the argument.

Recently this formalism has been applied by the au-
thors of this article to real cermets in the region where the
metallic inclusions in the cermets are smaller than 100 A
(Ref. 16), and better results have been obtained for the
dielectric constant than when the Drude model is used.

Figure 3 compares the imaginary part of the dielectric
constant, taking into account quantum size effects (QSE’s)
following Wood and Ashcroft as expressed in Eq. (1), and
the Kawabata and Kubo model (KK) with the one calcu-
lated using the Drude model. In the calculation of the
Drude model the size of the silver particles is taken to be
30 A and no interband contributions to the dielectric con-
stant have been included. This model was corrected for
size effect, using an effective relaxation time that correct
the bulk result with boundary scattering through the rela-
tionship

I/Teff=1/Tb+Vp/a ,

where 7, is the bulk relaxation time, ¥V is the Fermi velo-
city, and « is the radius of the silver grains. The multiple
peaks appearing in the QSE calculations are due to the
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FIG. 3. Comparison between the imaginary part of the

dielectric constant as a function of frequency for QSE, the solid
curve; D, the dashed curve; and KK, the dashed-dotted curve.

discrete energy spectrum of an electron in a box. These
peaks tend to decrease in magnitude as one moves from
the infrared to the visible region of the spectrum.

Extensive computer calculations were made to compare
the KK, QSE, and the Drude model for good metals such
as silver, gold, and nickel, and it was found that in all
cases, when the size of the islands exceeded 100 A, the
three models coincide in the value obtained for the dielec-
tric constant of the metallic inclusions, provided that the
KK model is corrected for a geometric factor of 7/6."7
For that reason the Drude formula, which is the simplest
one, will be preferred for metallic islands of radii larger
than this value.

B. Applications of the QSE to real cermets

We will now apply the QSE result to the calculation of
the optical properties of real cermets and compare the re-
sults with those obtained using the Drude model. In this
section interband contributions to the dielectric constant
of the metal grains will be fully taken into account.'® Ex-
perimentally, the resonances observed in the dielectric
constant of an isolated metal grain due to quantum size
effects are not observed in the effective dielectric constant
of a real cermet. The disappearance of these peaks is due
to the fact that the metallic grains in a real cermet do not
have a unique size, but instead have a distribution of sizes
as can be verified by micrographs of the materials. For
this reason the dielectric constant obtained from the QSE
calculations for one isolated particle was averaged over a
distribution that realistically represented the variations in
size of actual cermets.

If a histogram of the observed radii of the metallic
grains is made, a distribution of the form illustrated in
Fig. 4 is obtained, showing that the distribution is skewed
towards large radii. The skewedness is consistent with the
formation process of the inclusions, in which large parti-
cles are formed from smaller ones by coalescence. Actual-
ly, a log-normal distribution of the following form is usu-
ally used to fit the experimental results:!°

F(R)=(1/VZP)1 /o(exp{ —1/2[In(R /Ry) /o T}) ,

where R, is the average radius of the grains and o is a
measure of the width of the distribution and is given by
o=Inoy, Experimentally, the value oy, is found to be be-
tween 1.1 and 1.5 for most cermets.?® Averaging the
dielectric constant of one metallic grain with a log-normal
distribution function, an effective dielectric constant for
the metallic grains in the cermet is obtained. This average
QSE result is then used to calculate the effective-medium
dielectric constant using the Bruggeman mean-field and
multiple-scattering-correction theories.
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FIG. 4. Comparison between the experimentally obtained
histogram (Ref. 21) and the log-normal distribution function of
metallic-grain radii in a Ni-Al,03 (20 vol % Al,O;) cermet with
a geometrical standard deviation oy, of 1.3 and an average grain
size of 30 A.

In Fig. 5 the unaveraged and averaged quantum calcu-
lations are compared for a particle of average radius
Ry=30 A. As seen from the figure, the effect of taking
the average with the log-normal distribution is to smooth
out the quantum structure of a single particle when using
the QSE approximation. Since experimentally the dielec-
tric function of a cermet is found to be a smooth function
of frequency, this is the correct dielectric constant to be
used for the metal in calculating the effective dielectric
constant of cermets. For radii in excess of 100 A it is
found, as expected, that the Drude and the averaged quan-
tum results coincide.

Before applying these results to real cermets, it is im-
portant to discuss the relaxation-time concept as used in
the Drude and the QSE methods. Usually the Drude
model utilizes an effective relaxation time that corrects
the bulk mean free path of the electrons for collisions

0 2
(0] 1 2
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FIG. 5. Unaveraged and averaged QSE dielectric constant of
Ag metallic grains for a grain distribution with average radius
of 30 A and a geometrical standard deviation of 1.3. Solid curve
is the unaveraged value and the dashed curve the averaged one.
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with the grain walls. However, the relaxation time is not
well understood for particles of radii below 100 A. Ac-
cording to Wood and Ashcroft, surface-scattering correc-
tions in terms of a mean-free-path concept are not ap-
propriate when the presence of the surface actually deter-
mines the eigenstates of electrons within the particle’s
volume. The mean free path of electrons in the bulk met-
al for the case of silver is of the order of 100 A, while for
smaller metallic particles grown by sputtering processes,
the mean free path is reduced due to imperfections within
the metallic grain that result from the fabrication process.
Small metallic inclusions in cermets are known to grow by
coalescence of smaller inclusions which diffuse on the
substrate and, as a result, a significant number of imper-
fections are trapped within the metallic grain during the
formation process. To take into account the effect of
these imperfections, we will introduce a restricted mean
free path smaller than the bulk mean free path when ap-
plying the QSE calculation to obtain an effective complex
dielectric constant.

We now compare with experimental data the results ob-
tained when the QSE dielectric constant is introduced into

1
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FIG. 6. Imaginary part of the index of refraction for Au-
Al,03 (90 vol % Al,O;). Interband contribution was taken from
H. Ehrenreich et al. (Ref. 18). (a) compares BD, BQ, and ex-
perimental data (Ref. 21). (b) compares MGD, MGQ, and ex-
perimental data. Dotted curves are used for D, solid curves for
the QSE model, and dots for experimental data.
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the calculation of the effective dielectric constant of the
cermet. The theoretical calculations will be compared
with the measured refractive index for the Au-Al,0; and
Ag-MgO cermets obtained by Craighead.?! This experi-
mental data was selected because it is obtained from cer-
mets with metallic grains of average radii less than 50 A
and, consequently, the QSE method should contribute sig-
nificantly to the complex index of refraction.

Figure 6(a) compares the experimentally measured
imaginary part of the complex index of refraction for
Au-Al,0O; cermets with a 90% volume fraction of the
dielectric constituent with the Bruggeman theory using
the Drude model (BD), and with the Bruggeman theory
using the QSE correction (BQ). The average radius for
the calculations was taken to be 20 A, and the value used
for the limited mean free path was also 20 A. As can be
observed from the figure, the BD model exaggerates the
"magnitude of the observed resonance in the imaginary
part of the index of refraction N,. The BQ model greatly
improves on the BD for N, by reducing the magnitude of
the peak and approximating much better the actual values
of N, in the infrared region of the spectrum. However, in
this case there is no appreciable shifting of the position of
the peak. Figure 6(b) shows the same experimental result
for the Au-Al,O; cermet but now compared with the
Maxwell-Garnett theory, using for the metal the Drude
dielectric constant (MGD) and the QSE (MGQ) values.
As we have anticipated, MG predicts a too narrow and
generally blue-shifted peak. In this case, QSE also
reduces the magnitude of the peak, and a measurable red
shift of the curve and a broadening effect is observed.

III. MULTIPLE-SCATTERING THEORIES

A. The first smoothing approximation

When thin films of cermets are grown by cosputtering
or coevaporation methods, nucleation processes are re-
sponsible for the formation of metallic or dielectric is-

* lands in the matrix of the corresponding more abundant
constituent. Since the nucleation process is governed by
diffusion effects, relative island positions must be corre-
lated. Several authors have developed a method to mea-
sure this correlation and demonstrated its existence.?
The multiple-scattering theories developed here will as-
sume that the islands of the minority constituent are
correlated and that the corresponding correlation length is
sufficiently large to make important contributions to the
calculation. Thus, the purpose of the multiple-scattering
calculations will be to correct the mean-field theories for
the contribution of the correlation to the effective dielec-
tric constant of the medium. It will be shown that these
effects are important in obtaining a model with predictive
value for the optical response of cermets.

The theory is based on the concept of a local dielectric
constant that fluctuates around an average value €, that is
independent of position. This position-dependent dielec-
tric constant can be written as

e(r,0)=¢plw)+8€e(r,w) ,

where Se(r,w) corresponds to the spatially fluctuating
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term. The equation governing the electric field of the
electromagnetic wave can then be written in terms of this
spatially dependent dielectric constant as

VXVXE—(0/c)ueE—pu~ 'Vu X VXE=0.

Rewriting this equation explicitly in terms of the fluctuat-
ing part of the dielectric constant, it can be expressed as

VXVXE—KZE=K3(8¢/€,)E ,

where K, is the average propagation in a medium with
average dielectric constant €. In terms of operator for-
malism the field equation can be defined as a nonstochas-
tic operator

H=VXVX—K3}
and a stochastic term
H,=K3%(8€¢/¢p) .
The field equation then becomes
E=E,+G\H,E, (2)

where E, is the electric field that results from solving the
nonstochastic operator. Since we are in the presence of a
random medium and we will assume that an effective-
medium dielectric constant can be defined, an average of
this equation can be performed to obtain

(E)=Ey+G,(HE) .

From this expression an infinite multiple-scattering ex-
pansion in terms of H; can be performed with the condi-
tion that the fluctuating term is centered around the aver-
aged dielectric constant and therefore (H,;)=0. Di-
agrammatically this expansion can be represented as fol-
lows:

s FESRTEC S SORTRIC S o SR )

where the dashed line represents the Green’s function as-
sociated with E,, the rectangle represents the Green’s
function . associated with (E), and the open circle
represents H ;. The dashed line indicates correlation be-
tween local scattering points. The above equation, al-
though exact, cannot be solved. In order to be able to ob-
tain useful values for the effective dielectric constant, the
first smoothing approximation (FSA),*»?* which only
takes into consideration pair-correlation functions, will be
used. This approximation yields the equation

E=Ey+G,(H,GoH,){E) ,
which upon interaction can be expressed diagrammatical-
ly as
SRR, S SSERND, dh SIS o RIS
This diagram contains the pair correlation functions
(8e(r;)d€(r;))

represented by the dashed lines. Following the procedure
of Karal and Keller,? this approximation was used to ob-
tain an effective-medium dielectric constant €. To do
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this, it was necessary to assume a plane-wave solution for
the macroscopic field with an effective propagation con-
stant

KZE((U/C)ZGeff .

Previous work by the present authors? indicates that the
pair correlation can be expressed as an exponential rela-
tionship with a correlation length L in the following
form:

(8e(r;)8e(ry) )y =Ae "L |

r=|r,—r;|, and A is shown to be well represented by
the square of the standard deviation of the fluctuations.
In the spectral range of interest the final dispersion rela-
tion becomes

_ A (2 1+ia 2a?
Ctr=cot 5 13V 2 T 1 iz
2 .
~[i+1+3rz cor-1 | 1=ia ||
a a a
where

al=ew?L%/c?.

The new effective dielectric constant includes the aver-
aged dielectric constant plus a term that is a function of
the correlation length L. This calculation is conceptually
based on the assumption that there is an averaged dielec-
tric constant around which local fluctuations due to the
metallic and dielectric islands occur and is known as the
random-continuum model. Since this is precisely the
model that is described by the Bruggeman theory, we have
chosen as the averaged dielectric constant €, the one ob-
tained from that theory. This is perfectly consistent with
multiple-scattering theory since it can be shown that the
Bruggeman model is a zeroth-order approximation of
multiple-scattering theories. The proof consists in assum-
ing that both the metallic and the dielectric constituents
form spherical scattering sources in an average medium,
and then, in the absence of correlation, the average of the
T matrix {T) can be written as the volume fraction aver-
age of the single-metal-particle T matrix T; and the
dielectric-particle T matrix T, as (T)=fT;4+(1—f)T>,
where f is the volume fraction. Then taking the long-
wavelength limit and assuming the self-consistent condi-
tion {T') =0, the Bruggeman equation is immediately ob-
tained.

The theoretical predictions of both the Bruggeman and
FSA models will now be compared with experimental
data for Ag-MgO, 80 vol% MgO, and Au-Al,O;, 84
vol % Al,0;. Figures 7(a) and 7(b) show the imaginary
parts of the index of refraction of these cermets. For the
calculation, as presented in Fig. 7(a), the dielectric con-
stant of the metallic islands was obtained from the Drude
model corrected for a restricted mean free path due to size
effects and due to impurities and defects. As observed,
the Bruggeman model predicts higher values for the imag-
inary part of the index of refraction, N,, than those ob-
tained experimentally, whereas the FSA model fits the ex-

o8l b)
o8|
= L
04l
o2l
0 , .
0
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FIG. 7. Comparison between experimental data (Ref. 21) and
calculations for N,. (a) Ag-MgO (80 vol % MgO) cermet com-
pared with B (dotted curve) and FSA (solid curve) model with
L =125 A, and a restricted mean free path of 10 A. ) Au-
AlL,O; (84 vol% Al,O;) cermet compared with BD (dashed
curve), BQ (dotted curve), and FSAQ (solid curve) models with
L =80 1&, a =30 A, and restricted mean free path of 10 A.

perimental data very well in almost all the region in the
case of Ag-MgO where the radius of the islands is of the
order of 80 A and a restricted mean free path of 5 A is
used. In the case Au-Al,O;, it is necessary to make quan-
tum corrections in order to obtain the best fit because the
islands in this case are of the order of 30 A. In this
second case, the resonance in the imaginary part of N, is
shifted towards longer wavelengths with respect to the ex-
perimental results.

B. Renormalized FSA approximation

The results obtained using the QSE and multiple-
scattering corrections in the FSA approximation to the B
model show improvements on the predicted value for the
imaginary index of refraction, but these corrections, al-
though they affect the magnitude of the resonance, do not
broaden or shift the resonance peak. In general, the B and
MG models do not predict correctly the position nor
width of the absorption peak. This suggests that a renor-



3436

malized approach to the multiple-scattering calculation
may be the correct path toward obtaining the necessary
corrections to the position and width of the resonance
peak. A renormalized procedure can be devised?* starting
from the field equation (3) and then using a T-matrix cal-
culation for single spherical scatterers. Contrary to the
case of the FSA approximation, the cermet is conceived
here as spherical islands of the minority constituent em-
bedded in a matrix of the dominant constituent. Each one
of these spherical islands is then taken to be a scattering
source from which the overall scattering wave for the ran-
dom medium can be obtained. Since this model of the
cermet is consistent with the MG model, the whole pro-
cedure will be constructed on a zeroth-order scattering
dielectric constant that is obtained from a MG theory,
thus assuming a noncorrelated medium in which the
spherical grains serve as scattering sources. Equation (2)
can be written in diagrammatic form as

B
-5 E B LE e W

where the superscripts on each point refer to a specific
scatterer that produces a local fluctuation H in the back-
ground medium. The single-scattering T matrix is. de-
fined as

TanzHlaE
or
a a a a a a
T,=0+ O0--0+ O--0--0+ ' =®,
a

where the symbol ® represents the new renormalized po-
tential for single-scattering spherical sources. In terms of
this new renormalized potential, Eq. (4) becomes
G=-rt-® - t+-@ @t~ R @~
a a B a B vy

Naturally, in this equation the subscripts cannot be identi-
cal on two consecutive points since these terms have al-
ready been taken into account in the single-particle-
scattering T matrix. If the statistical average is per-
formed on this Green’s function, the following statistical-
ly averaged Green’s function is obtained:

— E R ST S SR S
a a B a B

This expression contains both correlated and uncorrelated
terms. A renormalized propagator that only takes into
account uncorrelated terms is then defined as

Gr=r=--+-@ -+~ Q-+~ Q- -+ """,
a a B a B a

where G| is the renormalized uncorrelated Green’s func-
tion identified with the propagation of an electromagnetic
wave in an uncorrelated medium. In terms of the renor-
malized Green’s function and scattering potentials, the
general correlated Green’s function can be expressed as

{::=J‘+J‘®J‘<%>~l‘+m®3§%;}®w+-~ :
a a a

This expression is formally equivalent to the random-
continuum final equation (3) that was used in the FSA ap-
proximation with the difference that now the scattering
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sources ®, and the intermediate propagation Green’s
functions have been renormalized taking into account all
uncorrelated terms. A simple correspondence can be
made between the previous and the present equation
through the following symbolic equivalences:

—_——>~, that iS, Go——-)Gb N

O—®, thatis, H—T .

As previously stated, in the absence of correlation effects
or, equivalently, in an uncorrelated medium, a zeroth-
order dielectric constant is obtained that corresponds to
the MG model.'® Applying now the first smoothing ap-
proximation to this diagram, which is equivalent to
neglecting all correlations higher than the two-point
correlation and also neglecting unlinked and nested two-
point correlations, yields an equation that is formally
equivalent to the FSA but renormalized and written in the
following form:

(E)=Ey+G,(TG,T)(E) ;

diagrammatically this can be written as

(E)=(Eo) + % (E), (5)
0 zﬁob—§

(B+#a)

where (E,) is the statistically averaged field propagating
in the uncorrelated medium and (E) the effective total
field. The second term on the right-hand side this self-
consistent equation represents scattering processes where
the effective total field (E) is scattered by pairs of corre-
lated islands a and S located, respectively, at r; and T;.
In order to apply this formalism, an explicit mathematical
representation of the diagram in the second term of the
right-hand side of Eq. (5) must be obtained. Peterson and
Strom?’ developed a formalism to obtain the T matrix for
an array of n scattering objects with well defined spatial
coordinates. Their formalism is an extension to a multi-
ple number of scatterers of the one developed by Water-
man®® for a single scatterer. In Waterman’s formalism,
the T matrix for a single scatterer is obtained expanding
all the local fields in terms of spherical harmonics and
Bessel or Hankel functions. The term describing this
double-scattering process in the Peterson-Strom formal-
ism is given by

®—® — R (1;)T%(r; —1;,)TPR (r; —1;,)R (—1;) , (6)

where T and TP are the single-scatterer T matrices of is-
lands a and B, respectively, expressed with their center at
the origin of the coordinate system. The formalism then
translates the particle through matrices R and o to their
correct position r; and r;. Expressions for T¢ are
described in several articles,2”:28 and expressions for ma-
trices R and o can be found in the article of Peterson and
Strom.?” Using Eq. (2), the field equation can now be ex-
pressed as
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(E() =(Br)) +(1/V) 3 [ [ glryt)R(x)) T (x;— ) TPR(r;—1,)R (—1;)(E)dr;drx; , (7)
a,B .
(B#a)

where g (r;,1;) is the two-point correlation function and ¥ is the volume of the film. Considering the spheres as impe-
netrable and the medium as isotropic, an exponential metal-metal correlation function can be defined as

g(ri,rj)ze(r—Za)exp(* Iri—rj /L),

where © is the Heaviside function, L the correlation length, and the correlation function measures the excess of the met-
al density with respect to its average; for this reason the function goes to zero at large distances. To simplify the calcula-
tion we assume all the metallic grains to be spherical in shape and of equal radius, which allows us to write 7%=T"# and
make them diagonal matrices. Assuming a macroscopic volume, we can replace (1/ Vz)z by 87, where 8 is the density

of islands in the cermet. With this approximation the field equation can be written as

(E(r)=(Eo(r)) +8 [ dr;R(r)) [, dlexp(— 1| /L)Ta(NTR(~DR(—1;){E) ,

where the substitution I/=r; —r; has already been per-
formed. The field (E) and (E;) will be expanded in
terms of the basis functions {5 8(K,r)} that are regular
solutions to the Helmholtz equation described by Water-
man.?® The ¢, are known as the elementary fields and
K, is the propagation constant of the electromagnetic
wave in the zeroth-order effective medium. In terms of
this basis the fields can be expressed as

(Eo) =3 d, ¥y 8(Kor)

~and
( E(r)>=2XntlJ§fg(Kor) ,

while the total effective field (E) in the second term of
the right-hand side is expanded in a base centered at one
of the correlated islands:

<E> =an1/l§,eg(Ko(f—fj)) .

Substituting these expansions for the fields in Eq. (7) and
performing the integration over the relative coordinate be-
tween correlated islands, we obtain

S X, P Kor) =3 d, PyEKor)
+83 M, [ B, (Ko(r—1)))dx; .

(8)

Matrix elements M, contain all the correlation effects
and can be written in terms of the elements of the single-
scatterer 7 matrix. Since the wavelength of incident radi-
ation relevant to our problem is A > 0.3 um and the radii
of islands for typical cermets are of the order of 0.01 yum,
the long-wave limit can be utilized, thus reducing the ex-
pansion of the electromagnetic field to the magnetic and
electric dipolar terms. In this limit only the first six
terms of these matrices are necessary:

M =M;=Ms=A,T}+4,T,T,,
My=M;=M¢=A,T5+A4,T,T,,

where

[
A= —(227i /5Ky L% +2aL)exp(—2a /L) ,
Ay =(5/11)4, , '
T1=i(2/15)(Koa)’(1—¢,) ,
T,=i(2/3)(Koa) (e, —1)/(€,+2) .

€, is the ratio of the dielectric constants of the metallic is-
lands and the external medium, and it represents -the
source of the multiple-scattering processes. To perform
the integral over the r; coordinate, the properties of the
translation matrices” o must be used to displace the ¥,

~ from position r; to the origin:

P (Ko(r—1;)) =23, 0n (Kot JWrE(Kor) ,
-
then Eq. (8) reduces to
ZXnRe1/I,,(K()r)
n
=2, dn P (Kor)
n
+823 M, [ B,o,n(Kor)WiEKor)dr; . (9)
n,n'

All terms in Eq. (9) are now written in the same orthogo-
nal basis and, therefore, can be reduced to an equivalent
set of scalar equations:

X,=d, +83 [ M,B,0,drx; .
“

The limits of integration in the above expression must be
restricted to values |r;—r| >a in order to avoid having
the scattered field inside the scattering island located at
r;. Since in the long-wave limit the electromagnetic wave
tends to average the microstructure at the scale of island
sizes, it can be assumed that the wave propagates in the
effective medium as a plane wave. The coefficient d,
representing the unperturbed wave can be written in terms
of the effective propagation constant K as

d, =dlexp(iKyr) ,

while the coefficient representing the total average field
(E) can also be expressed in terms of the effective propa-
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gation constant K of the correlated medium as
X, =X exp(iK-r)

and
|
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B, :X,?exp[iK‘(r—rj)] .

In terms of these expressions the field equation now be-
comes

X,?exp(iK-r):d,?exp(iKo'r)+82EM,,:X,?' f|r~r~ | >a exp[iK+(r—r1;)]o,, (Kor;)dr; .
, n' J

Following the procedure described by Varadan et al.,'® the scalar Helmholtz operator can be used in the zeroth-order ap-
proximation to simplify the above equation and reduce the volume integral to a surface integral:

Xr(l)=2 Mn'Xt(t)’Innf ’
n

where

Onn o —

_ 82 2 g2
Ly=8/(K K(,)fmﬂ

Equation (10) represents a system of homogeneous cou-
pled equations with unknown coefficients. By solving the
associated secular equation, a new dispersion relationship
was obtained that took into account pair correlations in
the scattering medium:

K?—K3=(—im8Mg/Ko)[2+(K/Ky)?] .

In terms of the dielectric constants this expression can be
written as ‘

e=8&(1+2Fk?ey)/(1—Fk?) , (11)

where € is the new effective dielectric constant in the
correlated medium of the film' obtained from the renor-
malized FSA model, k =w/c is the propagation constant
of the electromagnetic wave in vacuum, and F contains all
the effects due to correlations between islands and its ex-
plicit form is

F =2 f%xp(—2a/L)(L*+2aL)[(e,—1)/(e,+2)]* .

IV. RESULTS AND CONCLUSIONS

The classical approach to the theory of the optical
properties of cermets has traditionally used the Drude
model corrected for interband transitions to obtain the
complex dielectric constant of the metallic constituent
with an effective relaxation time that takes into account
surface scattering but fails to consider quantum effects:
From the present work, it is evident that this approach is
valid when the radii of the metallic inclusions are larger
than 100 A and when the metals used are good metals.
We have shown that when the radii of the metallic grains
are smaller than 100 A, QSE become an important correc-
tion to the effective dielectric constant of the metallic
grains when calculating the optical properties of cermets.
When using the QSE results, it is necessary to average the
discrete absorption peaks with a log-normal distribution
of island sizes. This average is necessary, since experi-
mentally no structure is observed in measured optical con-
stants of cermets. In general, the ability to reproduce the

(10)

K- 30, (—K
Kor) aex E();K D ~exp(iK'r)M ds .

or

experimentally observed optical properties of cermets is
considerably improved when the dielectric constant of the
metallic constituents for islands less than 100 A is
corrected for quantum size effects.

The next step to improve the calculation of the optical
properties of cermets is to include two-point correlation
between neighboring grains. Under this condition a
multiple-scattering theory must be developed that will
take into account interference effects between the scatter-
ing produced by neighboring metallic grains that are
correlated. In order to simplify the multiple-scattering
correction, the first smoothing approximation was used,
thus limiting the calculation to pair correlations through a
self-consistent equation. In performing this calculation,
an average dielectric constant is assumed that is conceptu-
ally compatible with the B model of a cermet. Multiple-
scattering corrections in the FSA approximation, with a
metallic dielectric constant corrected for QSE in the cases
where the islands are smaller than 100 A, were shown to
improve the predicted value of the B theory but were un-
able significantly to shift the position or broaden the reso-
nance peak of the complex index of refraction. For this
reason, it was considered necessary to improve further the
calculation by taking into account renormalized effects in
a T-matrix context. The result of this calculation, shown
in Eq. (11), permits the calculation of the complex effec-
tive dielectric constant of cermets, taking into account
correlation effects that include renormalization correc-
tions. This equation is expressed in terms of the following
basic physical parameters obtainable from experimental
data: the average radius of the metallic island a, the
correlation length L, the volume fraction of the metallic
constituents f, the bulk dielectric constant of the metallic
grains €,,, and the bulk dielectric constant of the dielectric
material. As the metallic concentration is reduced, the
correlation length tends to vanish and we recover from
Eq. (11) the zeroth-order approximation &, the effective
dielectric constant of the uncorrelated medium. Since in
the renormalized calculation, islands of the minority con-
stituent are assumed to be the scattering sources embed-
ded in a medium of the majority constituent, the proper



starting zeroth-order-approximation dielectric constant is
the MG one.

As previously stated, the bulk metallic dielectric con-
stant must be corrected for size effects for islands of 100
A or less. We have applied this refined calculation to
Ag-MgO and Ni-Al,O; cermets where experimental data
is available from the work of Craighead.?! The volume
percentage of metallic constituent is 20% in Ag-MgO and
between 39% and 46% in Ni-Al,0;. These concentra-
tions are considered to be high and are normally not
predicted well by mean-field theories. Since as metal con-
centration increases correlation effects become more im-
portant, it is expected that multiple-scattering effects
should be more significant in these high-concentration re-
gimes. In making the calculations, the average radius of
the islands were estimated and the mean free path and
correlation length were then adjusted to obtain the best fit
with experiment. When the Drude model was used in the
Ag-MgO cermet [Fig. 8(a)], it was necessary to utilize a
3-A mean free path in order to obtain the best fit with the
experimental imaginary index of refraction. This was
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considered to be too short a mean free path, even after
taking into account the fact that silver tends to have a
large number of internal imperfections as mentioned by
H. Craighead.?! In the calculation, the optimal radius for
the metallic islands was 80 A a value considered to be
somewhat small according to estimates made from micro-
graphs. An improvement in this calculation was obtained
when the average radius of 125 A for the islands was used
and the QSE corrections were made [Fig. 8(b)]. For this
case, the shift in the peak was in good agreement but rela-
tively narrow compared to the experimental results. In
both cases the correlation length was equal to six islands,
a value that is compatible with experimentally measured
correlations in other cermets.

The main conclusion that can be obtained from this cal- -
culation is that our renormalized FSA theory makes the
best correction to the MG mean-field theories. It is possi-
ble to adjust the three adjustable parameters to obtain
better fits, but what is significant is that all values are
compatible with experimentally known facts.

Figure 9 is a similar comparison for Ni-Al,0; with me-
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FIG. 8. Real (V) and imaginary (N,) part of the refractive index is drawn for a Ag-MgO (80 vol % MgO) cermet. Solid curve is
the renormalized FSA calculation, dotted curves represent the MG model, and dots are for the experimental results (Ref. 21). @ N,
and N, using the D model with 7=2.1410~!¢ 5 in both MG and renormalized FSA. The radius of the islands is taken as 80 A and
L =6 islands. (b) Ny and N, usmg QSE with a restricted mean free path of 10 A for dielectric constant of the metallic grains. The

island radius is taken to be 125 A and L =6 islands.
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FIG. 9. Real and imaginary part of the index of refraction for Ni-Al,Os, dotted curve is MG]OD, solid curve is renormalized FSA,
and dots are experimental results (Ref. 21). (a) 61 vol % Al,O3; with 7=5.6X10"1 5, ¢ =60 A, and L =4 islands. (b) 54 vol %

ALO; with 7=3.5X10"1%s, ¢ =75 A, and L =4 islands.

tallic concentrations of 39 and 46 vol%. Very good
agreement for the position of the resonance peak and
overall width was achieved with a reasonable value for the
mean free path of 10 A, and with radii consistent with the
micrographs.?! The fit between theory and experiment
obtained in this figure is particularly significant, since the
metallic concentrations used are close to, if not within, the
percolation regime, a region where the mean-field models
totally fail to reproduce experimental results. Probably
this regime is close to the limit of concentrations for
which the renormalized FSA approximation will be valid
since we do not expect our calculations to be applicable in
the percolation region.

The results of this and another recent paper?® lead us to
conclude that correlation effects and multiple-scattering
corrections make important contributions to the optical
properties of cermet materials and need to be included in
theories with predictive value. Equation (11) is restricted
to spherical shapes in the long-wave limit, but the formal-
ism as presented here can be extended to include other is-
land shapes and to permit corrections for higher multipo-

lar contributions to the field equation. These multipolar
corrections may become important when the metal con-
centration increases to the point that island proximity is
no longer compatible with the dipolar approximation.
The proposed dispersion relations depend strongly on the
model used for the zeroth-order dielectric constant and
the values used for the dielectric constant of the metallic
grains. Other zeroth-order models for the effective-
medium dielectric constant are being studied as possible
starting points for the application of the dispersion rela-
tionships presented in this paper. These new calculations
may permit the use of a longer and more realistic mean
free path. Recently, other models have been developed for
& that could help moderate the height and broaden the
resonance with larger values for the mean free path.*
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