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Alloy broadening of impurity electronic spectra:
One-dimensional-model calculations for a ternary alloy
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The embedded-cluster method is used to investigate the inhomogeneous alloy broadening of im-

purity spectral lines in substitutional crystalline ternary alloys, within a simple model. The model
considered is that of a defect in a tight-binding, one-state-per-atom, one-dimensional ternary alloy
A„B& „Cwith nearest-neighbor interactions. The dependences of the impurity energy levels and the
alloy-broadened linewidths on the composition x, the alloy tight-binding parameters, and the impur-
ity site are discussed and compared with previous results obtained for defects in binary alloys.

I. INTRODUCTION

Fluctuations of local potential energy in the neighbor-
hood of a defect in a disordered alloy can both inhomo-
geneously broaden the defect spectral lines lying within a
band gap and produce local environments which can im
mobilize and hold excitations for relatively long times as
they move from one defect site to another. A few years
ago, the importance of this alloy-broadening effect on
luminescence spectra of impurities in semiconducting al-
loys was convincingly demonstrated by Wolford et a/. ' in
their experiments on excitons bound to nitrogen in
GaAs~ „P„. They determined that the alloy fluctuations
which broaden the nitrogen impurity line can also greatly
inhibit exciton transport to traps, thereby enhancing the
luminescence yield for this material. Wolford et al. mea-
sured the alloy-broadened width and shape of the nitrogen
luminescence line as a function of the host-alloy composi-
tion x. Although a few semiempirical theories have been
proposed to treat alloy-broadening effects on defect spec-
tra in semiconducting alloys, to our knowledge a satis-
factory microscopic theory of the line shape observed by
Wolford et al. ' does not exist. In previous work, the
foundations for such a theory were developed. In that
work, a quantitative theory of inhomogeneous alloy
broadening of impurity electronic spectra was developed
and applied to impurities in a one-dimensional binary al-
loy. The purpose of the present paper is to use that theory
to investigate such alloy-broadening effects in a simple
model of a substitutional crystalline ternary alloy, present
some results based on this simple model, and contrast
these results with the previous results for defects in binary
alloys. In a later work, we plan to present a detailed
theory of the inhomogeneous alloy broadening of deep en-
ergy levels in real semiconducting alloys.

In this paper, we treat the effects of alloy disorder on
impurity spectra in a one-dimensional, one-state-per-atom
ternary alloy in the nearest-neighbor tight-binding approx-
imation. This model contains much of the essential phys-
ics of the effects of alloy disorder on impurity spectra in
ternary alloys without the mathematical and computa-
tional complexities inherent in a more, realistic model.

The treatment of such a simple model, while certainly not
allowing us to make any quantitative statements about al-
loy broadening of impurity electronic spectra in real al-
loys, enables us to obtain a qualitative understanding of
such effects in ternary alloys and to compare these effects
with those found previously for defects in the binary-alloy
system. The technique used here is based upon the
embedded-cluster method, which was originally developed
for alloy systems by Gonis and Garland and by Myles
and Dow and which has been subsequently applied to a
number of alloy problems by several workers. " Much
of the formalism and many of the equations needed for
carrying out the calculations described here may be found
in Ref. 5, where a discussion of the embedded-cluster
method applied to the treatment of alloy-broadening ef-
fects on impurity spectra is given, and in Ref. 11, where a
detailed discussion of the present model of the alloy host
is given.

II. MODEL AND METHOD

U= ~0 a~(~t —e'o )(O,a
~

(lb)

Here
~

O, a) and eo are the atomiclike orbital and corre-

In this paper, we consider a ternary alloy 3 8& C
which serves as the host for an isolated impurity, I. All
of our calculations are done for a one-dimensional, one-
state-per-atom, nearest-neighbor tight-binding-model alloy
system with diagonal disorder only, although most of the
formalism is, in principle, generalizable to more realistic
models. The alloy-host one-electron Hamiltonian for this
model is discussed in detail in Ref. 11. Here we will use,
where possible, the notation of that reference. Inserted in
this host at the origin on sublattice a (a = 1 or 2) is an im-
purity with on-site tight-binding matrix elements er and a
nearest-neighbor transfer-matrix element which is taken
to be t, the same as for the rest of the crystal. The Hamil-
tonian for the alloy plus impurity system is thus

H =HO+ U,
where Ho is the host Hamiltonian shown in Eq. (1) of
Ref. 11 and Uhas the form
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sponding on-site tight-binding matrix element of the
alloy-host atom on the ath sublattice at the origin and
a=1 (a=2) refers to the sublattice with 3 or B(C)
atoms. The quantity co~ is equal to ec if +=2. On the
other hand, if a=1, it is a random variable taking on the
values e~ and e~ with probabilities x and 1 —x, respec-
tively. Here ez, e~, and e~ are the atomiclike energies
characterizing atoms 3, 8, and C of the alloy.

In this paper, we seek the configuration-averaged local
density of states at the impurity site for energies E in the
band gap of the pure alloy. This quantity is defined by
the equation

lo (E)= ( ( (O,a
~

5(E H)
~

—O, a ) ) ), (2)

where the double angular brackets denote an average over
all alloy configurations. We compute this quantity using
the embedded-cluster method as developed by Gonis and
Garland and Myles and now. Subsequent workers have
also found this method to be useful in a number of appli-
cations to problems in alloy physics. " The basic idea
of this method is that the host alloy is treated by embed-
ding a finite cluster containing Nc unit cells of alloy con-
stituents in an effective medium, described here by the
coherent-potential approximation (CPA). ' '" The host-
plus-defect problem is then solved by replacing one of the
atoms in the central cell of the cluster by an impurity and
by then applying Koster-Slater defect theory. ' This im-
purity is responsible for the persistent defect level. Fur-
ther, every distinct configuration of the Xc alloy constitu-
ent unit cells which surround the impurity leads to a de-
fect level at a different energy. ' The levels associated
with these cluster configurations are the components of
the inhomogeneously broadened impurity line shape.

A. CPA and embedded cluster theories
for the alloy host

In the single-cell CPA, one approximates the disordered
alloy by a self-consistently determined, translationally in-
variant effective medium. The CPA Green's function go,
defined as the configuration average of the alloy Green's
function Go, is approximated as

go=((Go))=(E —((H ))+ o)

where Go is defined in the usual manner, ' i 0 is a positive
imaginary infinitesimal, and ( (Ho ) ) is the self-
consistently determined configuration-averaged alloy
Hamiltonian discussed in Ref. 11.

In order to account for the clustering effects of alloy
constituents which are responsible for inhomogeneously
broadening the defect spectral lines but which are not ac-
counted for by the CPA, we treat the alloy host via the
embedded-cluster method. " In order to implement this
theory, an ensemble of clusters is embedded in the CPA.
medium. Each particular member of the ensemble con-
tains X& unit cells with the alloy constituents arranged in
a specific configuration. ' Following Ref. 5, here we in-
clude all possible configurations for a given cluster size,
even those whose compositions differ from the average
composition x. ' It should also be noted that, in contrast
to the cluster CPA theories, ' ' in this theory the cluster

is not included self-consistently in the medium. This ap-
proximation makes the method computationally tractable,
even for large Xc, and furthermore, it has been shown to
be accurate in application to a variety of alloy prob-
lems.

In this approximation, the Green s function which de-
scribes the alloy-host has the form

Go =(I g—o V) 'go

where Vis a scattering potential which is defined as

V=H, —((H, )),

(4a)

(4b)

for sites inside the cluster and which is equal to zero out-
side the cluster. For large enough cluster size Xc and if
all possible configurations of, alloy constituents for a given

are considered, the number of local environments
sample by an impurity placed near the center of the clus-
ter will approach that seen by an impurity in a random al-
loy.

The embedded-cluster method calculations in Refs. 5
and 11 have shown that, for one-dimensional models, the
properties of interest do not change appreciably if the
cluster size is changed from Xc——6 to Nc ——8. Thus, for
the calculations discussed below, we have fixed the cluster
size at N~ ——6 unit cells. This enables us to obtain almost
the same accuracy as one would obtain for Nc ——8 but
saves a considerable amount of computational effort.

B. Defect theory

det[I —Go(E; ) U] =0, (5a)

where Go is given by Eq. (4a), I is the unit matrix, and E;
is the bound-state energy desired. This is the standard re-
sult of Koster-Slater defect theory. ' In the present case
Eq. (5a) reduces to the scalar equation

(O,a
~

U
~

O, a) [(O,a
~
Go(E; )

~
O, a) ] (5b)

An impurity whose defect potential is described by Eq.
(1b) is placed in the alloy host at the origin on sublattice
e. With the alloy-host modeled by the embedded-cluster
method discussed above, this is accomplished for a given
cluster configuration by replacing one of the atoms in the
central cell of the embedded cluster by the impurity. Fol-
lowing essentially the same procedure as is commonly em-
ployed in the theory of deep levels in semiconductors, '

the persistent defect level which is produced by this im-
purity for this configuration is then found by application
of the defect theory due originally to Koster and Slater. '

Every distinct cluster configuration for an Nc unit-cell
cluster' which surrounds such an impurity will give rise
to a defect energy level at a different energy. The levels
which result from following this procedure for all possible
cluster configurations are the components of the alloy-
broadened local density of states at the impurity site, Eq.
(2). In the following discussion, this local state density
will be referred to as the impurity "line shape. "

Within the embedded-cluster formalism, the impurity-
produced bound-state energies for a particular (say the
ith) cluster configuration, are solutions to the implicit
Fredholm determinantal equation
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III. RESULTS

Ip(E)= gP;5(E —E;), (6)

The use of the embedded-cluster and Koster-Slater for-
malisms discussed above results in an impurity line-shape
spectrum lo(E) for energies in the bandgap of the host al-
loy which is a series of 5-function lines, one for each dis-
tinct configuration of the cluster. ' For a given cluster
size X~ and composition x, this function may thus be
written as

electronic spectra. ' ' This choice of parameters also cor-
responds to the case of a ternary alloy A„B& C with
anion disorder. That i.s, the constituent atoms A and B
are both more electronegative than atom C. An example
of this type of alloy is GaAsi ~P„. For this (or any) set
of parameters, there are two cases of interest. These cor-
respond to the case where the impurity is on the ordered
(a =2) sublattice and to the case where the impurity is on
the disordered (a= 1) sublattice. We now discuss results
for these two cases in turn.

with the normalization condition g,. P;=1. Here, P; is
the probability of occurence of the ith cluster configura-
ton, the sum goes over all possible cluster configurations'
and E; is the solution to Eq. (Sb). Because we are in-
terested only in persistent impurity spectra in the band
gap, if a particular cluster configuration produces an ener-

gy E; which is resonant with one of the host-alloy bands,
that configuration is excluded from the sum.

Because of the form of Eq. (6), it is of interest to
characterize the impurity line shape in terms of its
configuration-averaged moments. Of particular interest
in the present paper are the first moment or
configuration-averaged energy, the square root of the
second moment about the mean or linewidth, and the cube
root of the third moment about the mean, or skewness.
For these quantities we use the symbols

and

L, =&«»,
&=[«(E—L )'»]'",

=[(((E—L, )'» ]'" .

(7a)

(7b)

(7c)

It is sometimes useful to artificially broaden the 5 func-
tions in Eq. (6) to enable one to "see" the line shape. This
is also physically reasonable, since for a real impurity in a
real alloy, effects other than the alloy-broadening mecha-
nism under consideration here will also contribute to the
width of the impurity line. In this paper, we thus artifi-
cially broaden the 5 functions in Eq. (6) by convolving
that equation with a Gaussian of width I", which we take
to be an adjustable parameter. The line shape which we
display in the discussion below thus has the form

1. et —— 0.5t o—n the ordered (a=2) sublattiee

Since the nearest neighbors to the impurity are disor-
dered in this case, we expect that the primary contribution
to the alloy broadening will come from this nearest-
neighbor disorder. Further, the atomiclike energy el of
the impurity has been chosen to be halfway between the
atomiclike energies, e~ and e~, of the alloy constituent
atoms B and A, making the impurity I similar to atoms
3 and B and very dissimilar to atom C. Thus, this case
corresponds to that of a very electronegative (anionlike)
impurity occupying a cation site in a ternary alloy with
anion disorder. An example of a similar case for a real
system would be an As or P antisite defect in GaAsi „P .

In Fig. 1 we show the results of this case for the depen-
dence of the configuration-averaged energy L i on the al-
loy composition x. The defect potential produces an im-
purity spectral line in the band gap of the alloy. The host
energy bands are shaded and the band edges are the same
as those predicted by the CPA. The conduction (valence)
band is mostly C-atomlike (A- and B-atomlike) and is so
labeled in the figure. The conduction-band edge is essen-
tially independent of x on the scale of the figure. The
first moment Li varies approximately linearly with x in
the region 0.167 &x & 0.833 which is the range
1/Xc &x &1—(1/Nc) for Nc 6. This is t——he region in
which we expect our calculations to be most accurate, al-
though we have also performed calculations for x outside
of this range. By performing an exact calculation for an
appropriate isolated impurity in a pure BC or AC lattice,

CPA
- -. CONDUCTION BAND

(C -LIKE)

lo(E) = g P;e2~r

We now present some results for some specific alloy pa-
rameters.

I.O

0.6-

LL)

0.2-

e'~ — —0.5t, ON C SUBLATTI CE

A. Results for impurities in an amalgamated alloy,
ec ———&~ ——t and e~ ——0.0.

-02-

-0.6-

This choice of alloy parameters corresponds to the case
of a ternary alloy in the "amalgamation" limit, ' where
the band spectra of the unalloyed crystals AC and BC
overlap and where the alloy band spectra for A„Bi „C
are characteristic of the alloy as a whole rather than of
any component. " Most of the technologically important
semiconducting alloys are expected to have amalgamated

—I.O
0.0 0.2 0.4 0.6

X
0.8 I.O

FKx. I. The first moment L l of the alloy-broadened impuri-

ty line shape as a function of alloy composition x for A„Bl C
in the case e~ ———ez ——t, eq ——0, Xc——6, and el ———0.5t for the
impurity on the ordered (a=2) sublattice.
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it is possible to extrapolate the present results to x~1
and x~O, respectively. We have done this for the case
shown in Fig. 1 and in that figure the results of the
embedded-cluster method have been joined smoothly to
these isolated impurity results. At large (x &0.833) and
small (x & 0. 167) compositions, it is clear from Fig. 1 that
L~ shows significant deviations from linear behavior. Fi-
nally, it is clear from the figure that the impurity line L

&

is not attached to either band edge as x is varied. This is
characteristic of a deep level. '

In previous work on alloy broadening of impurity spec-
tra in binary alloys, it was possible to resolve the impuri-
ty line into three distinct components, corresponding to
configurations in which the impurity atom I is surround-
ed by its three possible nearest-neighbor environments:
two A atoms (AIA ), two B atoms (BIB), and one A and
one B atom (AIB or BIA). The present case presents a
stark contrast to the binary-alloy case. We find that,
while it is both formally and computationally possible to
follow these component lines as a function of x, the spec-
tra of the AIA, BIB, and AIB components are sufficiently
overlapping that they have no distinct meaning. This is
primarily due to the fact that the alloy under considera-
tion here is amalgamated. (Reference 5 considers a binary
alloy in the persistence limit. ) Thus, the difference in the
atomic potentials of the randomly placed A and B atoms
which surround the impurity in the various cluster config-
urations are not great enough to cause a splitting. In ad-
dition, the presence of atom C on the ordered sublattice
also affects the potential at the impurity site, tending to
reduce the differences in the AIA, BIB, and AIB com-
ponent lines.

In Fig. 2, we display the x dependences of the linewidth
b, and the skewness a for the same parameters as were
used in Fig. 1. Since the impurity occupies a site on the
ordered sublattice which is between two disordered sites,
and since the atomiclike energy el ———0.5t, associated
with the impurity, lies halfway between the corresponding
quantities, e~ ——0.0 and e~= —t, for the atoms on the
disordered sublattice, this case should be analogous to the
case of the "symmetric" impurity discussed in Ref. 5 for
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FIG. 2. The linewidth 6 (solid curve} and the skewness or
asymmetry a (dashed curve) of the alloy-broadened line shape as
functions of the alloy composition x for the same parameters as
used in Fig. 1.

the binary-alloy impurity system. As can be clearly seen
from Fig. 2, our results for this case predict a linewidth b,
and a skewness a which have marked asymmetries about
x=0.5, in sharp contrast with the symmetries about
x =0.5 which were found for these same quantities in
Ref. 5. The reason for this asymmetry is due to the pres-
ence of C atoms on the ordered sublattice between each
pair of disordered sites, which strongly affects the random
potential seen by the impurity and causes the asymmetry.
Thus, the differences between the binary- and ternary-
alloy cases should not be too surprising because the analo-

gy between the two cases is actually a poor one.
It is also worth noting that the linewidth and skewness

displayed in Fig. 2 both show considerable deviations
from the [x(l —x)]'~ and [x(1—x)]' dependences ex-
pected for 6 and a on the basis of a perturbation theory
in powers of the minority concentration. s Such deviations
are not too surprising since that perturbation theory is ex-
pected to be strictly valid only in the limits x~0 and 1.
Because our embedded-cluster calculations are expected to
be most accurate in the range 0.167 &x &0.833, however,
in these extreme (x —+O,x~1) composition limits our re-
suits have been smoothly joined to the perturbation-theory
results.

We have also calculated, but not displayed, the fourth
root of the fourth moment about the mean for this same
case and find that it is of the same order of magnitude as
and that it has a composition dependence which is similar
to the linewidth- A. Because the line shape in this case has
significant third and higher moments, it is clear that it is
probably not representable by a simple function. In fact,
the usual moment expansions of impurity line shapes
would probably be, at best, slowly convergent in this case.

2. eI 1 5t on the——dh.sordered (a =1j sublattiee

Because the impurity is on the disordered sublattice in
this case, the primary contribution to the alloy broadening
will be expected to come from a second-neighbor effect.
Furthermore, the impurity's atomiclike energy parameter
eq has been chosen to be more electropositive than that of
any of the alloy constituents. The impurity is most simi-
lar to atom C and very different than atoms A and B.
Thus, this case corresponds to the case of a very electro-
positive (cationlike) impurity occupying an anion site in a
ternary alloy with anion disorder. An example of a simi-
lar case for a real system would be a Ga antisite defect in
GaAs) „P„.

We have calculated the x dependences of the
configuration-averaged energy L&, the linewidth b„and
the skewness a for these parameters. The results we have
obtained for these quantities, while differing in quantita-
tive detail from those obtained for the previously dis-
cussed case, are qualitatively very similar to the results
presented in Figs. 1 and 2. In particular, the average ener-

gy L
&

is an essentially linear function of composition, ex-
cept for large and small x, and the linewidth 6 and skew-
ness a are very asymmetric functions of x which cannot
be described by a simple perturbation theory in powers of
x or (1—x). Of particular importance is the fact that b,
and o. are both of the same order of magnitude for this
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case of an impurity on the disordered sublattice as they
were for the previously discussed case of an impurity on
the ordered sublattice, showing that a moment expansion
theory of the line shape would again be slowly conver-
gent. The fact that 6 are a are of the same order of mag-
nitude for the two cases is surprising, since one would ex-
pect that because the alloy broadening in the previous case
was a first-neighbor effect and that in the present case it
is a second-neighbor effect the broadening in the present
case should be smaller. This result thus shows that the
physics of alloy broadening of impurity electronic spectra
is not intuitively obvious.

As our only illustration for this case, in Fig. 3 we
display Gaussian-broadened impurity line shapes, com-
puted by the use of Eq. (8), for alloy composition x =0.5,
which is the case where the 1ine shape contains the most
structure. The vertical scale in this figure is arbitrary; the
curves are normalized so that the highest-peak height is
unity. The line shapes for three different choices of the
Gaussian width I are shown. The narrowest peaks in
Fig. 3 (solid curve) correspond to r =(2.0&(10 )t, the
next-narrowest peaks (dashed curve) to 1"=(1.8&& 10 )t,
and the wide envelope (dot-dashed curve) correspond to
I =(1.6X10 ')t It is. clear from the figure that the
predicted line shapes arh very rich in structure that would
be missed by most simple perturbation or moment-
expansion approaches.

The finest resolution curve (solid curve) for the line
shapes shows the existence of many impurity energy lev-
els. Each level corresponds to the solution of Eq. (5) for a
different configuration of alloy constituents within the
cluster. Some of these levels are, of course, degenerate or
nearly degenerate because of the physical equivalence or
almost equivalence of particular configurations. The in-
termediate resolution curve (dashed curve) in Fig. 3 tends
to smooth out all but the gross features of the energy-level
structure, but still clearly reflects the fact that the spec-
trum is made up of multiple components. The curve in
Fig. 3 with the largest broadening (dot-dashed curve)

shows only an almost featureless Gaussianlike bump
which forms an envelope over the curves for the smaller
broadenings. In a real alloy, the actual alloy-broadened
impurity line shape could range anywhere from that
shown in Fig. 3 for the finest resolution to that shown for
the broadest resolution, depending on the physical mecha-
nism responsible for this level broadening.

B. Results for impurities in a persistent alloy

We have also calculated results analogous to those dis-
cussed above for impurities in a ternary alloy in the "per-
sistence" limit, ' where the band spectra of AC and BC
are nonoverlapping and where the alloy band spectra for
A„B& „C thus display characteristics of both AC and
BC. The results of these calculations show that the im-
purity line shapes and moments are all qualitatively simi-
lar and have similar magnitudes as the corresponding
quantities presented and discussed above for impurities in
a ternary alloy in the amalgamation limit. We find that
this is true for an impurity on either the ordered or the
disordered sublattice. Thus these results wi11 not be
shown here. Furthermore, we also find that none of the
results obtained in this case are very similar to the analo-
gous results for the case of an impurity in a persistent
binary alloy. In particular, even for the choice of param-
eters Eg = —6'g = —2.0t, ez ——0.0, and el ———1.0t, on the
ordered sublattice, for which atoms 3, B, C, and I are
very different from one another, the alloy-broadened line
shape does not split into three distinct groups, correspond-
ing to the three possible nearest-neighbor environments of
the impurity as it does in the analogous binary-alloy case.
Thus, the alloy-broadened line shapes of impurities in
binary and ternary alloys are very different in this respect,
even when the alloy and impurity parameters are chosen
so that the two cases appear to be analogous. This is due
to the presence of the ordered C sublattice in the present
case.

IV. SUMMARY AND CONCLUSIONS
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FIG. 3. Gaussian-broadened impurity line shape for the alloy

~o.s&o.sc in the case ac= —&a=t ~~ =0 &c=6 an«I=1 5t
for the impurity on the disordered (o.= 1) sublattice. Three dif-
ferent Gaussian broadenings are displayed: I =(2.0)&10 )t
(solid curve), I ={l. 8 & 10 )t (dashed curve), and
I =(1.6& 19 ')t (dot-dashed curve).

We have used the theory of inhomogeneous alloy
broadening of impurity electronic spectra developed in
Ref. 5, to investigate this effect for impurities in ternary
alloys, within a simple one-dimensional model where the
electrons are treated in the nearest-neighbor tight-binding
approximation. By embedding an ensemble of clusters
containing Xc unit cells in a CPA medium and then by
replacing one of the central atoms of the cluster by an im-
purity and solving for the impurity levels using Koster-
Slater defect theory, we have shown that one-can calculate
the alloy-broadened line shape of the impurity. We have
furthermore presented results for impurities on both the
ordered and the disordered sublattices. Although the
model used here is a simple one, the method does produce
accurate alloy broadened line shapes and shows promise
for application to impurity spectra in real semiconducting
alloy systems.

The results presented here enable us to make some gen-
eral conclusions regarding the alloy broadening of impuri-
ty spectra in substitutionally disordered one-dimensional
ternary alloys, which should also be qualitatively correct
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for impurity spectra in real ternary alloys. These are the
following: (i) disorder in either the nearest-neighbor or
the second-neighbor environments of an impurity greatly
affects persistent impurity lines and can appreciably
broaden them; (ii) this alloy-broadening effect is both
qualitatively and quantitatively similar for the impurity
on either the disordered or the ordered sublattice; (iii) dis-
order in the higher-neighbor environments of the impurity
also contributes significantly to this effect and can often
asymmetrically broaden the impurity lines; (iv) in contrast
with the case for binary alloys the impurity spectra in ter-
nary alloys are not in general split into distinct com-
ponents corresponding to the near- or second-neighbor en-
vironments of the impurity, even when the alloy is in the
persistence limit, and (v) the approach outlined here, while

somewhat tedious, will usually produce an adequate
alloy-broadened line shape.
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