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Application of the embedded-atom method to liquid transition metals
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The recently developed embedded-atom method (EAM) of Daw and Baskes [Phys. Rev. B 29,
6443 (1984); Phys. Rev. Lett. 50, 1285 (1983)] is applied to the description of liquid transition met-
als. A particular set of RAM functions fitted to bulk sohd properties i.s then used to compute the
static structure factor and theoretical pressure at the experimental zero-pressure density of various
liquid transition metals. The results are in good agreement with experimental data, thus supporting
the overall validity of the approach. Further, a systematic prescription for the determination of ap-
proximate pair potentials, as well as three- or more-body interactions, from the EAM formalism is
presented and shown to give results for the pair correlations in good agreement with the full theory.
Finally, the numerical values of the EAM functions used in the calculations for Ni, Pd, Pt, Cu, Ag,
and Au are given.

I. INTRODUCTION

There is a great deal of interest in modeling the energet-
ics of transition metals. For ideal crystalline solids, vari-
ous band-structure techniques are available. Unfortunate-
ly, the band-structure approach requires a periodic sys-
tem, so it is not suitable for the study of complex defects
or amorphous systems. As an alternative that can be used
in these cases, pair-potential models have received a great
deal of attention. ' However, these approaches require
large volume-dependent terms representing the energy of
the electron gas and the structure-independent portion of
the electron-ion interactions. It is not clear how these
contributions should be treated near extended defects and
surfaces.

Recently, Daw and Baskes ' have proposed a new
framework for calculating the energetics of transition
metals which they call the embedded-atom method
(EAM). In this approach the dominant energy of the met-
al is viewed as the'energy to embed an atom into the local
electron density due to the remaining atoms of the system.
This is supplemented by a short-range core-core repulsion.
The resulting approach combines the computational sim-
plicity needed for defects and amorphous systems with a
physical picture which includes many-body effects and
avoids the ambiguities of the pair-potential schemes. This
method has been applied in the solid phase to such prob-
lems as defects, surfaces, alloys, impurities, and frac-
ture. It has also been used to study the high-coverage
behavior of hydrogen on transition-metal surfaces. '

In this paper the EAM will be used to study the struc-
ture and energetics of the liquid state of some pure-
transition metals. There are two motivations for this
work. First, the liquid state is qualitatively different from
the other applications of the method to date and so will
provide a critical test of the range of applicability of the
method as well as the empirical procedures used too deter-
mine the EAM functions. Second, the structural proper-
ties of the liquid metals are of inherent interest. In partic-
ular, the theory of the liquid state has developed to the

point that the pair structure can be easily calculated given
a pair-interaction description of the energetics. "
Therefore, even for systems in which many-body interac-
tions may be important, such as the transition metals, it is
still useful to find effective pair interactions. Note that
these interactions are generally density dependent' be-
cause of the changes in the electronic structure with densi-
ty and because of the average effects of any three- or
more-body interactions. In this paper, we will show how
an effective pair interaction for the liquid state can be de-
rived from the EAM. These effective interactions depend
on the overall density. Thus this approach provides a
simple way to determine the density dependence of the op-
timum effective interactions.

II. THEORY

Within density-functional theory the energy of a system
of atoms for a given arrangement of the atomic nuclei can
be written as a unique functional of the total electron den-
sity. If one assumes that this functional is semilocal in
nature, i.e., depends only on the local electron density and
its derivatives, and that the contribution to the electron
density at an atom due to the remaining atoms of the sys-
tem is slowly varying, one can argue that the major con-
tribution to the energetics is the energy to embed the atom
into the electron density of the neighboring atoms. ' This
energy is supplemented by a short-range doubly screened
pair interaction that accounts for the core-core repulsions.
These ideas have been developed in detail by Daw and
Baskes, ' who argue that the total energy of the system
can be written as

E„,=g F;(pt, ; ) + —,
' g p,f(R;~ ) .

In this expression, ph; is the total electron density at atom
i due to the host, i.e., the rest of the atoms in the system,
and F; is the embedding energy for placing an atom into
that electron density. Finally, P,J is a short-range pair in-
teraction representing the core-core repulsion, and R,J. is
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the separation of atoms i and j.
In order to apply this formalism, a model is needed for

the host electron density. A simple, yet reasonably accu-
rate approximation is the superposition of atomic densi-
ties:

In this expression, pJ. (R) is the atomic electron density of
atom j at the distance R;~ from the nucleus. This choice
for the electron density makes the actual calculations with
this method not significantly more computer intensive
than the use of pair-potential models.

The other ingredient needed by the theory are the
embedding functions and pair interactions. The embed-
ding function can be obtained for low-Z atoms from
local-density calculations of the energy of an atom placed
in jellium. However for higher Z such calculations are
not feasible though the qualitative form of F should be
the same as for the small-Z elements. The embedding en-

ergy F(p) should start at zero for zero density, decrease to
a simple minimum, and then increase for larger electron
density. The minimum of F(p) should occur for p slight-
ly greater than the average electron density seen in the
equilibrium' solid with the depth of the minimum some-
what greater than the bulk sublimation energy. The pair-
potential term in this model should be short-range and
purely repulsive. (The binding in this picture comes from
the embedding energy. )

The embedding functions are determined by choosing
functional forms meeting these general requirements and
by adjusting them to describe the bulk equilibrium solid.
In particular, they are fitted to the equilibrium lattice con-
stant, heat of sublimation, elastic constants, vacancy-
formation energy, and bcc-fcc energy difference. The de-
tails of the fitting procedure are described by Daw and
Baskes and the parameterizations of the particular func-
tions used in these calculations' are presented in the Ap-
pendix.

Note that in the determination of the embedding func-
tion and the pair potential, only information about small
deviations from the equilibrium solid are used. Therefore
it is not clear that these functions will reasonably describe
a system, like the liquid, that is qualitatively different
from the solid. In particular, the average electron density
seen by each atom in the liquid is less than in the solid be-
cause of the lower overall atomic density. Thus the
liquid-state calculations provide a test of the form of the
embedding function at lower than usual electron densities.
Also, the motion of the atoms in the liquid brings them
much closer together at times than is found in the equili-
brium solid. Thus the pair-correlation function of the
liquid provides a sensitive test of whether the functional
form used for P is accurate for distances less than the
nearest-neighbor distance in the solid. Thus the liquid-
state calculations provide a test of the functional form.
(The forms used here are described in the Appendix. )

Conversely, the liquid data can be used to improve the
choice of the functional forms.

It should also be noted that this formalism does not in-
corporate the thermal excitation of the electronic degrees

of freedom. The total-energy expression in Eq. (1) gives
the electronic ground-state energy for the given ionic ar-
rangement. [There is an adiabatic approximation implicit
in the derivation of Eq. (1), as is usual for the calculation
of the energetics of metallic systems. ) Since this method
gives no information about the electronic density of states
of the metal, it cannot predict the energy of the thermal
electronic excitations. Thus this method by itself cannot
be used to compute the internal energy of the liquid metal.
However, since the variation of the electronic energy with
atomic position should be only weakly dependent on the
temperature for temperatures well below the Fermi ener-

gy, the ionic motion and energies should be well represent-
ed by this approach. Further, simple estimates based on
the free-electron model for the contribution of the elec-
tronic excitations to the pressure show that it should be
only a few kbar. Thus this contribution to the pressure
will be ignored in the calculations below.

III. COMPUTER SIMULATIQNS

Since the EAM energy implicitly includes many-body
terms, the well-developed theory of liquids interacting
with pair potentials cannot be used. Thus molecular-
dynamics computer simulations have been performed to
determine the predictions of the EAM for the liquid
structure and pressures. The simulations consider a cubic
cell of 500 atoms with. periodic boundary conditions.
After an equilibration period, a histogram of atomic
separations is produced in order to compute the pair-
correlation function' g (r). The experimentally measur-
able structural information is the static structure factor.
This is related to g (r) by

S(k)= 1+n I [g (r) —1 Je'"'d r . (3)

Here n is the atomic number density and the integration is
over all space. In order for the Fourier transform to be
evaluated accurately, g(r) is needed at distances larger
than can be measured in the simulation because of the fin-
ite size of the simulation cell. The required extension has
been obtained by a variation of a method due to Verlet'
based on the direct correlation function. The direct corre-
lation function c(r) is defined by the relation

h (r) =c (r)+ n I c (r')h (r—r')d r', (4)

where h(r)=g(r) —1. The direct correlation function is
known to be very small for distances greater than the
range of the interparticle interactions. ' For the parame-
trization used here, the atomic densities and pair repul-
sions are negligible by 6 A and so we assume that c (r) =0
for r &6.5 A. For r &6.5 A, the value of h(r) is
known from the simulation. These constraints along with
Eq. (4) determine g(r) for all r and allow the reliable
determination of the structure factor.

The pressure of the system can be obtained from the
general expression'

(5)

In this expression, E is the internal energy of the system,
V is the volume, and the derivative refers to the change in



32 APPLICATION OF THE EMBEDDED-ATOM METHOD TO. . . 3411

energy due to a uniform expansion of the system. The an-
gular brackets refer to an average computed at constant
number of particles and temperature. For the EAM this
expression yields the following result for the pressure:

P = nkvd T (n j3—N) g [F (pI, ; )pj' (R J )+ ,' p—'(R
~ )]RE.

l,J
g+J

(6)

where X is the total number of particles, R,z is the separa-
tion of atoms i and j, and the primes denote differentia-
tion with respect to the argument.

Simulations have been performed for the following met-
als: Cu, Ag, Au, Ni, Pd, and Pt. In all cases the density
and temperatures were chosen to be close to the melting
points of the metals. (For the cases where experimental
structure data are available, the conditions were chosen to
correspond to the experimental conditions. ) Table I lists
the temperatures and densities used in the calculations
along with the resulting pressures and internal energies
relative to the atomic state. Figures 1—4 present the stat-
ic structure factors computed for Cu, Ag, Au, and Ni
along with the experimental x-ray diffraction results of
Waseda and Ohtani. ' No experimental data for Pd and
Pt could be found. The structure factors computed here
for those metals are very similar to the other four.

The agreement between theory and experiment for the
structure factor is quite good and is comparable to the
agreement between different experimental determinations
of the structure factor. The pressures obtained are gen-
erally negative with a magnitude of about 10—20 kbar.
However, that pressure is fairly small compared to the
typical bulk moduli of 1 Mbar. The magnitude of the
computed pressures indicate that the equilibrium zero-
pressure densities will be within about 1% or 2% of the
experimental values. Simulations performed for slightly
different densities confirm this.

This level of agreement is quite encouraging consider-
ing that the input data to the model are from the solid
state. The liquid samples a very different distribution of
interparticle separations, especially at short distances.
Thus a method fit only to solid data need not give reason-
able results for the liquid state. In particular, while the
pair-potential model of liquid Ni proposed by Baskes and
Melius gives a good description of the solid state, the

10

k(A')
FIG. 1. Static structure factor S(k) for liquid Ni at T =1775

K and ri =0.0792 A . The solid line is the EAM result and
the points are the experimental data (Ref. 19).

structure factor that we obtain for that pair potential is in
very poor agreement with the experimental values. [The
amplitude of the first maximum of S(k) exceeds 3.8 with
the subsequent oscillations also much larger than experi-
ment. ] This problem is inherent in any parametrization
that is based solely on solid data. Thus the calculation of
liquid-state properties provides a crucial test of,the appli-
cability of both the basic model as well as the parametri-
zation of the functions in the model.

IV. PAIR-POTENTIAL APPROXIMATION

While it is known that many-body interactions are not
negligible in transition metals, the approximation of the
energetics by pair potentials is frequently useful since the
statistical mechanics of the pair-potential liquid are well
understood. Therefore we have developed a systematic
procedure for extracting effective pair and three- or
more-body interactions from the EAM. A major advan-
tage of this formulation is that the pair forces are au-
tomatically state dependent in that they depend on the

TABLE I. The pressure and internal energy per atom for the
liquid metals as computed by the computer simulations using
the EAM for the temperatures and atomic densities specified.

Element

Ni
Pd
Pt

CU

Ag
Au

— 1775
1825
2045

1420
1270
1420

(A )

0.0792
0.0595
0.0584

0.0755
0.0517
0.0526

—28.4
—17.4
—22.3

—8.6
—17.2
—3.3

E/N
(e&)

—3.72
—3.18
—4.95

—2.99
—2.33
—3.38

10

k(A )

FIG. 2. Static structure factor S(k) for liquid Cu at
T =1420 K and n =0.0755 A . The solid line is the EAM re-
sult and the points are the experimental data (Ref. 19).



S. M. FQIIES

system. Ef one now k
th rpugh second order o

Taylor expansionnow keePS terms 1n the

pression for the emb dd
0 ta1n the following ex-

»g energy:

~F(PI,&)=NF(p)+y F (
—

)i p p, (R,, )
i,j

J+i
1+ 2 X&i'(p)[p,'( R,, )

E,j
l&i

10

J
—&].P)[Pk(R k ) —$][p~(R. )

kjei~k

k(A )

FIG. 3. Static stic structure factor S(k
= 1270 K d =0 0517
1 h

'
hs are t e experimental data (Ref. 19).

overall density of thee system. En this w
f ofh h e- or more-body terms in a
g p ionar i.n 1 d d'
wa ~ h. "".-.-"for h den

u e tn the effective-
y o

h h -od s so one can check w

p oximation is reaso bl .na e.
-ether a pair ap-

o derive a pair and three- or more- ex-

embedding ener gy since the core-cor
y, e need only look at th e

d i h i d fo Th
1 () ih

age host electron density p. To

p~, =p+ g [p;(R, ) —&J
j (+i3

where 5=p/(N —1). N is theis the number of atommsint e
t.t=N[F(P) —PF'1+ 2 X4«Jlj 7

l,j
i+J

where the pair pot t' len ia is given b

The summation in

tw o of the summati
. d.

c»nctdence of ane ast term avpids

th
a ipn indices.

e irst two derivat
and +" represent

ives p the embe
'th respect to elect d

' g «gy of atom
ron ensit eva]

p tential-like contrib t'
,

ri utions to the em
terms give pair-

that they involve a dpubl
bedding energy in

final term repres t
er pairs of atoms.

sen s t e three-bod c ' . e

purpose of writin th h
o y contributions.

Eq. (7) is so that, f th
nsity» the form ofg e change of den

'

z
I t e perturbation in

'
e system, then the thero over the entir

vplved averages t0

ishes. This leads t
e ree-body term van-

three-body parts of t},
p ation of the two- ando a sensible se ar

series.
s o t e second-order term i th T'n e aylor

The last, ste ip in the evaluation o
the removal of th e quantity 5 from

n o the pair potential1a 1s

that many of th
rom the expression. N ote

» q.

oo, an so can be dro
ynamic

th -bod y interactions, the last
s ould also be dropped. The EAM en e ap-pe . e e egyc t e beap-

f(R)= (R )+2F (p)p'(R)+F"( )p p (R)]

0 2 4
I

6 8

FICi. 4. Static stru
k(A )

a ic structure factor S(k q

s are t e experimental data (Ref. 19).

Note that the above
corn

a ove expression is writ
Th

ponent system is straight orward
e generalization

g orward provided one makes all

The above general procedure can b
orders to define h''

e a ierarchy of n-b ' '
s.

can e extended to hi h

lo t- d h -bree- ody term is the la
However, note that ha t e inclusion of t

'
~ ~

'

y e one- and two-bod
erm

od t '
nd d Th'

to d rib th 1 t o -d
e . is results fr

ens ty ariations. For the
ive pair interaction the

e op-

that are discarded h smae s ould be as sma
erms

bo t'o haa
'

ac ieves this since t
e

ppo y
us t e one-- and two-body terms that re-



32 APPLICATION OF THE EMBEDDED-ATOM METHOD TO. . . 3413

0.4

0.2—

O

0.0

—0.2—

—0.4 0-
0 10 12

FICx. 5. Effective pair potential for liquid Cu computed from
Eq. (10) (solid line) and the empirical pair potentials due to
Baskes and Melius (Ref. 5) {dashed line) and to Johnson (Ref.
21) (dotted line).

FIG. 7. Comparison of the static structure factor S(k) for
liquid Cu as computed from the computer simulation using the
full EAM (solid line) and from the effective pair potential
(dashed line).

suit from expanding the last term of (8) are only appropri-
ate if the corresponding three-body interaction is included
in the energy. %'ithout that three-body interaction, those
one- and two-body terms will lead to a less accurate
description of the energy at the pair level.

The last quantity needed to apply this prescription for
the pair potentials is the average host electron density for
an atom in the liquid, p. This can be computed from the
atomic electron densities and the pair-correlation function
of the liquid by the equation

p=n Ip'(r)g(r)d r . (11)

However, g(r) is generally not available before one has
computed the pair interactions. Fortunately, the pair in-
teractions are not strongly dependent on the exact value of

P. Therefore, we approximate P by the average electron
density for a fcc solid with a lattice constant such that the
overall atomic density matches the liquid-state density.
Since this determines the interatomic separations, p can be
readily computed from the superposition approximation.

The pair potential determined in this manner for liquid
Cu at its melting point is shown iri Fig. 5. Note that the
potential has a simple shape with no 1orig-range oscilla-
tions. For comparison the empirical pair potentials deter-
mined by Baskes and Melius and by Johnson ' are also
included in Fig. 5. The pair-correlation function g (r) and
the static structure factor S(k) have both been computed
from the pair potential [Eq. (10)] in conjunction with the
modified hypernetted-chain equation as described by Lado
et al. " The results are compared with the full simulation
in Figs. 6 and 7. The comparisons for the other elements
considered here are very similar. En all cases the pair ap-
proximation predicts a slightly larger exclusion region at
small separations than the full EAM, but overall the
agreement is quite encouraging. Note that the disagree-
ment between the pair and simulation results is larger
than the typical errors arising from the use of the modi-
fied hypernetted-chain equation to calculate the liquid
structure. "' Therefore the differences do reflect

TABLE II. Parameters used to define the atomic electron
densities and pair potentials used in these calculations. See Ap-
pendix for definitions.

6

w (A)

10 12

Element

Ni
Pd
pt

0.86
0.67
0.96

a&

0.070 937
0.124 715
0.065 699

0.146031
0.041 904
0.110951

R,

3.0045
3.3203
3.3459

FIG. 6. Comparison of the pair-correlation function g {R)for
liquid Cu as computed from the computer simulation using the
full EAM (solid line) and from the effective pair potential
(dashed line).

CU

Ag
Au

1.05
1.3359
0.8454

0.140974
0.132 594
0.105499

0.017 517
0.000000
0.007 250

3.0899
3.4825
3.4739
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TABLE III. Values of the embedding function F(p) and corresponding spline knots used in these
0 3

calculations. The energies are in eV, and the electron densities are in A

0.0
0.01446
0.028 91
0.057 83
0.066 50

Ni

F(p)

0.0
—3.5847
—5.1449
—3.4041

0.0

0.0
0.007 83
0.015 67
0.031 33
0.036 03

Pd

F(p)

0.0
—3.1560
—4.7725
—3.0832

0.0

0.0
0.01140
0.022 80
0.045 60
0.52445

pt

F(p)

0.0
—4.5793
—6.5328
—3.8272

0.0

0.0
0.013 70
0.027 40
0.054 81
0.063 03

0.0
—2.9239
—4.2953
—2.8523

0.0

0.0
0.01048
0.020 96
0.041 92
0.048 21

0.0
—2.4085
—3.6969
—2.5425

0.0

0.0
0.007 28
0.014 55
0.029 10
0.033 47

Au
0.0

—3.2170
—4.6278
—2.7699

0.0

shortcomings of the pair-potential model. However, these
results show that pair potentials deduced from Eq. (10)
provide a realistic description of the pair correlations in
the liquid state.

V. CONCLUSION

These calculations have shown two points. First, the
embedded-atom method provides a realistic description of
the pair correlations as well as the pressure of liquid met-
als. These calculations were performed for functions fit
only to solid data. Since the liquid state samples F(p)
and P(R) in different regimes than the solid, it should be
possible to improve, the functional forms to obtain a better
description of the liquid and still describe the solid accu-
rately. This work is in progress. These results do show
tha. t the EAM formalism is capable of providing a good
description of the liquid state. The second major result is
a simple prescription for determining an effective pair-
potential approximation to the full EAM energy. This
simplification has been shown to work well for predicting
the static structure factor of the liquid and so may be of
use in other situations which are dominated by the pair
forces.
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APPENDIX

This appendix describes the parametrization of the par-
ticular functions used in these calculations. ' The three

quantities needed for the numerical implementation of the
EAM are the atomic electron densities, pair potentials,
and embedding functions. The atomic electron densities
are obtained from the Hartree-Fock calculations of
Clementi and Roetti and of McLean and McLean. As
discussed in Ref. 8, the appropriate atomic configuration
for the condensed state is not known. Here the occupancy
of the outer s orbital is fitted to the hydrogen heat of
solution in the various materials. The atomic density is
then written in the form

p'(R) =(N N, )pd(R) ~—N, p,'(R),

where A is the total number of outer electrons, N, is a
measure of the s electron content of the atomic density, p,

'
is the density of the outer s orbitals, and pd is the density
of the outer d orbitals. The wave functions used to calcu-
late these densities are for the atomic configuration with a
filled outer s shell. The N, values for the various ele-
ments are listed in Table II.

The pair potential is expressed in terms of an effective
charge Z(R) such that P(R)=Z (8)/R. The effective
charge is parametrized by the simple polynomial form

Z (R)=a, (R, —R) +a2(R, —R)

for R &R, and is zero otherwise. The values of a&, az,
and R, are listed in Table II. Distances are expressed in
angstroms and Z (R ) is expressed in units of electron
charge.

The embedding energies are described by natural
splines. The knots used for the spline and the correspond-
ing values of F(p) are given in Table III. Note that we
use the usual convention for spline interpolation of setting
the curvature of the spline fit to zero at the endpoints.
The electron densities are in units of inverse A and the
energies are in electron volts (eV).
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