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The equation of state and one-electron properties of fcc and bece Li are calculated for cell volumes
between 0.175 and 3.0 times the experimental zero-pressure volume with use of the linear-

combination-of-Gaussian-type-orbitals technique.

These calculations utilize two distinct local-

density-approximation (LDA) models. The fcc structure is found to be more stable for all volumes
considered and for both LDA models, contrary to a recent prediction of bec stability at high pres-
sures. The bulk properties exhibit LDA-model dependencies similar to those recently noted in Fe,
i.e., the best accord with experiment is achieved with the simple Kohn-Sham-Gaspar model. This
somewhat surprising outcome holds not only at equilibrium but for pressures up to 250 kbar. The
high-pressure band structure of Li is also presented for the first time. That band structure exhibits
rather interesting modifications compared to the zero-pressure band structure.

I. INTRODUCTION

The cohesive properties of lithium were first investigat-
ed by Wigner and Seitz' as part of their pioneering work
on metals during the mid-1930’s. Since that time there
have been numerous theoretical studies of Li, including
one-electron properties,”3 zero-pressure bulk proper-
ties,>*~ 15 equation of state (EOS),'*~! and crystallo-
graphic phase stability.>!8=2! (For an extensive list of
theoretical work prior to 1974 see Ref. 2.) In spite of that
activity, theoretical understanding of this simple alkali
metal remains deficient in three respects. (1) Because rad-
ically different techniques have been used for calculations
of different physical properties, it is impossible to con-
struct a consistent theoretical picture of Li including both
one-electron and bulk properties over a wide range of
pressures. (2) In spite of experimental evidence*? which
indicates that at low pressures and temperatures Li is in a

close-packed structure (hcp or fec), all of the one-electron

results published to date have been for the bcc structure
observed at room temperature. (3) The only two theoreti-
cal investigations of the phase stability of Li as a function
of increasing pressure'®! are in fundamental disagree-
ment.

The third point is particularly urgent. Using model po-
tentials, Young and Ross'® predicted two transitions
‘below 1 Mbar on the 0-K isotherm: hcp-fcc at about 4
kbar and fcc-bee at about 86 kbar. On the other hand, a
very recent calculation by Skriver'® using the linear-
muffin-tin-orbitals (LMTO) method indicates only one
transition, hcp-fcc at about 210 kbar. It is particularly
important that the existence or nonexistence of an fcc-bee
transition should be clarified since the predicted pressure
lies well within the reach of current diamond anvil tech-
niques.?

We have addressed the problems just described by per-
forming high-precision calculations of the 0-K isotherms
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for fcc and bee Li (the techniques used here are currently
restricted to cubic symmetries). These calculations were
performed within the local density approximation (LDA)
to density-functional theory.?#%> In recent years, total en-
ergy calculations based on the LDA have been applied
with considerable success to such sensitive problems as
binding in rare-gas crystals®*=2% and the phase stability of
both crystalline solids'®?~% and thin films.’** To
achieve high precision and therefore a faithful representa-
tion of the physical content of a specified LDA model,
without invoking additional major approximations, we
employed the linear-combinations-of-Gaussian-
type-orbitals (LCGTO) technique.?%?° This approach has
several distinct advantages over more commonly used
methods for a study of this sort. Unlike pseudopotential
methods, 3~ 18323335 the LCGTO technique is an all-
electron method. It is also independent of such potential
and/or charge shape approximations as the muffin-tin ap-
proximation used in augmented-plane-wave>’ (APW) and
Korringa-Kohn-Rostoker'® (KKR) methods or the
atomic-sphere approximation®® (ASA) frequently used in
the LMTO method.!®3*353% Freedom from the above-
mentioned constraints may be of particular importance
for systems such as Li for which the structural energy
differences are believed to be quite small. 151821

In the following section, we briefly discuss some of the
details of our calculations and provide a conservative esti-
mate of their overall numerical precision. In Sec. III,
LCGTO results are presented for the 0-K isotherms of fcc
and bce Li, including both zero-pressure cohesive proper-
ties and high-pressure phase stability. To study any possi-
ble dependencies of the results on the choice of LDA
model, we have obtained the 0-K isotherm for both the
Kohn-Sham-Gaspar (KSG) model,? i.e., Xa with a==%,
and the von Barth—Hedin (VBH) model® using the pa-
rameters suggested by Rajagopal, Singhal, and Kimball
(RSK).** We find that Li exhibits LDA model dependen-
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cies which resemble those recently found in Fe by Jansen
et al.*! In Sec. IV, we briefly examine the one-electron
properties of Li at low and high pressures using the RSK
potential. Conclusions are presented in Sec. V.

II. METHODOLOGICAL DETAILS

The procedures used here to achieve reliable crystalline
total energy calculations are an extensive refinement?® of
ideas introduced by Callaway et al.'* based on the
LCGTO scheme presented by Wang and Callaway.*? (The
full technical details are presented in Refs. 26, 42, and 43.)
The refinements introduced in Ref. 26 were specific to
Xa type LDA models. To extend the total energy calcu-
lations to general LDA models, one must replace Eq. (11)
of Ref. 26 with '

Ee=NQS{[V%(K)— W (K)]p(K)
k
+V3(K)8p(K)+ 26V, (K)8p(K)} . (1)

(Throughout, we shall employ the notation and terminolo-
gy of Ref. 26.) The virial pressure may also be general-
ized* by replacing Eq. (13) of Ref. 26 with

P=(1.47099x 10°)

E+T
3INQ

X + 3[4V (K) =V (K)p(K) | . (2)
K

Note that other expressions which are analytically
equivalent to Egs. (1) and (2) are in practice numerically
unstable.?®

In any LCGTO methodology, the choice of the basis set
is crucial. In this investigation we have used the 10s 6p 3d
basis given in Ref. 26 for all cell volumes greater than
120.0 a.u. This basis set is very nearly saturated?® and
should not have any significant effect on our final results.
For smaller volumes, the basis set was scaled to avoid
near-linear dependencies. The most diffuse Gaussian was
scaled by requiring that its value on the nearest-neighbor

site should remain the same as it was for a volume of

131.072 a.u. (roughly the calculated equilibrium volume
for the RSK model). This corresponds to a (1/a)? scaling
of the smallest exponent. The remaining exponents were
scaled by requiring that no exponent could be less than
twice as large as the next smaller exponent. Diagonaliza-
tion of the overlap matrices at high-symmetry points in
the irreducible part of the Brillouin zone (BZ) shows no
indication of linear dependence at compressed volumes.

In the Wang-Callaway formulation of the LCGTO
method, Fourier-transform techniques are used extensive-
ly and the quality of the results is dependent therefore on
various truncation points in reciprocal space. The impact
of these truncations on structural energy differences was
minimized by choosing analogous truncation points in
both structures. The total number of Fourier coefficients
considered was truncated at K2 =4000 (6300) for the bec
(fcc) structure. These values correspond to 12014 or
12 152 independent Fourier coefficients, respectively. In
the self-consistent cycle 99 (100) independent Fourier
coefficients were allowed to vary for the bee (fee) struc-

ture. Based on prior experience with Li,%6 we estimate
that these truncations may produce an error of 0.3 mRy
in the total energy for either structure. The impact on the
structural energy differences should be much less.

During the self-consistent cycle, the charge density for
the bee (foc) structure was constructed by sampling 55
(20) k points in the irreducible part of the BZ. In earlier
work on fee AL* it was found that increasing the number
of points sampled in the self-consistent cycle from 20 to
89 changed the final energy by less than 0.01 mRy. We
expect Li to be a much better case than Al. Using a
dynamical convergence accelerator,* self-consistency (de-
fined by an iterative shift in total energy of less than 0.01
mRy) was generally achieved within seven iterations. The
one-electron eigenvalues were then recalculated at 506
(505) k points in the irreducible part of the BZ for the bcc
(fcc) structure. Based on convergence studies, we estimate
that this density of k points ensures that the sum of the
eigenvalues (used in the total energy calculation®®) is con-
verged to within 0.5 mRy for either structure and that the
difference between the sums for the fcc and bece structures
is stable to within 0.05 mRy.

In the current LCGTO technique, the most difficult ap-
proximation to control is the linearized density shift ex-
pansion for the exchange-correlation potential,?® which in
turn is the source of the second-order expansion for the
exchange-correlation energy in Eq. (1). The quality of
this approximation was monitored by comparing the sizes
of the first- and second-order terms in Eq. (1) for every
calculation. Taking this approximation and the approxi-
mations discussed above into account, we estimate that
for volumes less than 150.0 a.u. the binding energies ob-
tained are stable to within 1 mRy and the structural ener-
gy differences at equal volumes are stable to within 0.1
mRy. The assessment of imprecision for expanded lat-
tices is more intricate; see below.

III. BULK PROPERTIES AT 0K

The total energy and pressure of Li were calculated for
nine volumes in each crystal structure (fcc and bec) using
both the KSG and RSK models. The raw results are in
Tables I and II. For each LDA model, four of the
volumes were chosen to lie close to the apparent energy
minimum to allow a very precise determination of zero-
pressure properties. The remaining volumes used for each
structure were selected to sample the EOS at reasonably
uniformly spaced volumes ranging from near the experi-
mental zero-pressure volume of 142.44 a.u. (Ref. 46) to
about 0.175 of that volume.

A. Qualitative analysis

Table III compares the structural energy differences ob-
tained from the KSG model with those from the RSK
model at six volumes. Clearly, the fcc structure is lower
in energy for the entire range of volumes considered for
both models, in qualitative agreement with Skriver.!® In
fact, the energy of the fcc structure progressively becomes
lower relative to the bcc structure as the pressure is in-
creased. This finding is in direct conflict with the results
obtained by Young and Ross,'® which indicated that the
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TABLE 1. The calculated total energies per atom (Ry) and pressures (kbar) for fcc and bee Li using
the RSK potential as a function of cell volume (a.u.).

V E(fcc) P(fce) E(bcce) P(bece)
428.686 —14.836796 —36.4 —14.833 679 —32.9
312.416 —14.878482 —44 .4 —14.877950 —42.4
212.443 —14.907 733 —44.2 —14.907 673 —43.3
162.456 —14.919735 —33.3 —14.919280 —32.5
143.748 —14.922 815 —22.7 —14.922 152 —21.8
131.072 —14.923 955 —11.1 —14.923 148 —10.1
128.024 —14.924072 —7.6 —14.923229 —6.5
125.023 —14.924113 —3.8 —14.923235 —2.6
122.070 —14.924 075 0.4 —14.923 164 1.6

99.973 —14.920 104 50.4 —14.919013 52.0
74.980 —14.901 130 193.9 —14.899613 196.7
49.987 —14.835601 691.6 —14.833153 698.6
24.993 —14.542938 3741.0 —14.536 896 3736.0

bece structure was more stable for pressures above 86 kbar.
Young and Ross, however, also found that for any tem-
perature and pressure at which the fcc structure is stable,
a transition to the bcc structure could be induced by in-
creasing the pressure. That result is in disagreement with
the experimental 300-K isotherm published by Olinger
and Shaner*’ which shows that the bce structure is stable
below 69 kbar and the fcc structure is stable at higher
pressures. This disagreement with experiment (at 300 K)
is so fundamental that it renders the entire phase diagram
(including the 0-K isotherm) presented in Ref. 18 suspect.

Although we found no fcc-bece transition at compressed
volumes, there is also the question of how Li would
behave in the expanded lattice limit. To explore this re-
gime, we performed calculations at four expanded
volumes using the RSK model (see Table I). For these
volumes the density shift expansions, Eq. (1), becomes
progressively worse and the results are questionable.
Nevertheless, all of the calculations place the fcc structure
lower in energy than the bcc structure and it at least ap-
pears there are no transitions to the bec structure for cell
volumes ranging from 0.175 to 3.0 times the experimental
zero-pressure volume.

In addition to possible crystallographic phase transi-
tions, we would anticipate that in the expanded lattice
limit there should be a Mott transition*® to an insulating,
spin-polarized state since the free atom is spin polarized.
This possibility was explored by Callaway, Zou, and

Bagayoko'# (CZB) using their original LCGTO techniques
(i.e., without the refinements of Ref. 26). They predicted
that bec Li would have a partially spin-polarized metallic
ground state for lattice constants between 10.7 and 11.3
a.u., while the ground state for larger lattice constants is
fully spin-polarized and insulating. Furthermore, they
also found a shallow energy minimum at about 13.0 a.u.

To test the expanded lattice results obtained by CZB,
using the more refined techniques, we performed both
paramagnetic and spin-polarized calculations (with the in-
itial spin density saturated) for the bcc phase at the re-
ported minimum, 13.0 a.u. The spin polarization of the
ferromagnetic state persisted in the self-consistent calcula-
tion and produced a lower energy than the paramagnetic
state. Although this result is in qualitative agreement
with CZB, there is a severe difficulty. The density shift
expansion for the exchange-correlation energy, Eq. (1),
was clearly unstable. For the majority spin, the second-
order term was larger than the first-order term, with all
three terms being negative. For the minority spin the
first- and second-order terms were positive and negative,
respectively, and both were on the order of 100 mRy.
This suggests that the expansion for the majority spin is a
diverging sum, while the expansion for the minority spin
at best is only conditionally convergent. We were thus
unable to determine the point at which the Mott transition

. occurs in Li using the current approximations.

TABLE II. The calculated total energies per atom (Ry) and pressures (kbar) for fcc and bee Li using
the KSG potential as a function of cell volume (a.u.).

V E(fcc) P(fce) E(bce) P(bece)
147.040 —14.475873 —9.3 —14.475472 —8.4
143.748 —14.475966 —6.5 —14.475 527 —5.6
140.506 —14.475977 —3.5 —14.475481 —2.6
137.313 —14.475 885 —0.3 —14.475390 0.6
131.072 —14.475 586 6.9 —14.474988 8.0

99.973 —14.467039 75.7 —14.466 179 77.3
74.980 —14.442 849 230.0 —14.441514 232.8
49.987 —14.369 403 751.2 —14.367 194 758.1
24.993 —14.061 886 3850.8 —14.056 108 38449
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TABLE III. The structural energy difference E(bcc)
—E(fcc) (mRy) for Li as a function of cell volume (a.u.).

V AE(RSK) AE(KSG)
143.748 0.66 0.44
131.072 0.81 . 0.60

99.973 1.09 0.86
74.980 1.52 1.34
49.987 2.45 2.21
24.993 6.04 5.78

B. Theoretical zero-pressure results

To extract quantitative results from the raw data in
Tables 1 and II, we must fit that data to some analytical
form for the EOS. For each LDA model and crystal
structure we have determined the bulk properties at zero
pressure by fitting the energies at the four volumes nearest
to the energy minimum with the Murnaghan equation.*’
(The quality of the fit achieved here and below was such
that the more elaborate fitting scheme used in Ref. 29 was
deemed unnecessary.) Since the E versus ¥ version of the
Murnaghan equation has four free parameters, we are able
to extract the minimum energy, the zero-pressure lattice
constant, and the bulk modulus from an exact fit. To ob-
tain the binding energy we used the energy of the spin-
polarized atom computed with the enriched basis set
described in Ref. 26. (In that work the paramagnetic atom
was used as reference.) The atomic energies for the KSG
and RSK models are —14.386567 Ry and —14.786 866
Ry, respectively. The results for the equilibrium proper-
ties are given in Table IV together with other LDA re-
sults®”1% and experimental values.*®*® For purposes of
comparison with Ref. 10, we also performed a single cal-
culation for bee Li using the Hedin-Lundqvist (HL) pa-
rameters°! at a lattice constant of 6.40 a.u. Based on the
virial pressure at that single point, we are able to estimate
the equilibrium lattice constant as well as the binding en-
ergy (see Table IV).
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Comparison of the bcc results obtained in this study us-
ing the KSG and HL models with those obtained in previ-
ous calculations using the same models,”1° shows that the
current non-muffin-tin results for the lattice constant are
contracted relative to the earlier muffin-tin results. This
finding is consistent with recent work on Al (Ref. 29) us-
ing the KSG model and may be viewed as a relaxation of
the crystal when the muffin-tin constraint is removed.
For both the KSG and the HL models, the calculated
LCGTO binding energies are in excellent agreement with
the previous results. For the bulk modulus, the present
values are larger than those obtained using muffin-tin
methods (assuming that the RSK and HL bulk moduli
differ negligibly). This discrepancy is due in part to the
lattice contraction discussed above, for as the volume is
decreased the bulk modulus increases.

Comparison of the present RSK results for bec Li with
those of CZB warrants careful analysis. Compared to the
present results, CZB found a larger lattice constant, a
smaller binding energy, and a smaller bulk modulus. In
each instance, the value found by CZB lies closer to exper-
iment. However, the algorithms used here are numerical-
ly more stable than those used by CZB.2® Also, the basis
set used here is richer than that used by CZB and most of
the precision-determining input parameters for these cal-
culations (e.g., the truncation points in reciprocal space
and the BZ scan) are less restrictive. Therefore the
present calculation should represent the physical content
of the LDA models in use more faithfully than the calcu-
lations by CZB. The better agreement with experiment in
Ref. 14 is probably due to a fortuitous cancellation of
LDA and algorithmic deficiencies.

For the bcc structure it is possible to compare the
theoretical results with experiment.**>® Such a compar-
ison reveals some interesting dependencies on the choice
of the LDA model. The simplest possible LDA model
(KSG) produces significantly better results for the
structural properties (the lattice constant and bulk
modulus) than do the more sophisticated VBH-type
schemes (RSK) and HL). In fact, the KSG lattice-

TABLE IV. The lattice constant (ay), static lattice binding energy ( Ej ), and bulk modulus (B) of Li
found in this study for the bee and fce structures compared to previous calculations and to experiment.

Model Method Structure ay (a.u.) E, (mRy) B (Mbar)
KSG LCGTO Present bee 6.59 —88.9 0.147
KSG APW Ref. 7 bce 6.64 —86.7% 0.115
HL LCGTO Present bee 6.35° —124
HL KKR Ref. 10 bce 6.42 —124 0.148
RSK LCGTO Present bee 6.32 —1364 0.158
RSK LCGTO Ref. 14 bee 6.52 —127 0.138
Liberman KKR Ref. 6 bee 6.46 —127 0.131
expt. bee 6.58° —122¢ 0.126°
KSG LCGTO Present fcc 8.28 —89.4 0.187
RSK LCGTO Present fec 7.94 —137.3 0.168

*The energy reported in Ref. 7 was calculated relative to the paramagnetic atom. We have adjusted that
energy by the appropriate spin polarization energy, 37.1 mRy.

bEstimated based on one calculation at 6.40 a.u.

°Reference 46.
dReference 50.
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constant prediction agrees with experiment to within the
numerical precision of the theoretical result (0.01 a.u.),
while the VBH-type models give a significantly contracted
lattice constant. This result is consistent with those of
Jansen et al.*! for Fe. They found that for three succes-
sively more refined LDA models the calculated equilibri-
um lattice constant became successively more contracted.
Jansen et al.*! argued that the problem lies with the
neglect of nonlocal contributions to the exchange-
correlation potential. Although their explanation is quite
reasonable, it does not account for the good theoretical
lattice constants obtained using the KSG model for both
Li and Fe. In spite of the good structural properties ob-
tained with the KSG model, that model also produces a
27% underbinding compared to the experimental estimate
of the bce binding,”® while the HL model is in nearly per-
fect agreement.

In Table V, we compare the zero-pressure structural en-
ergy differences found here with prior results.’®~2! It is
interesting that the differences found in the other three
calculations are significantly smaller than the LCGTO
values. This trend is probably due to the lack of overall
self-consistency in the earlier results. The two model-
potential calculations?®?! were constrained by both the
frozen-core approximation and the form of the model po-
tential. In the LMTO calculation!® not only were the
cores frozen but the total potential was only calculated
self-consistently for one reference structure (the structural
energy difference was found with the so-called force
theorem>?). Presumably the error generated in the three
earlier calculations by not allowing the system to relax
fully accounts for the discrepancy. The LMTO underesti-
mate of the structural energy difference also is consistent
with earlier findings for A1.%°

C. The equation of state

To study the EOS for Li, we fitted the fcc results in
Tables I and II to the E versus V version of the Mur-
naghan equation for the RSK and KSG models. (We only
used the eight smaller volumes for the RSK model. ) The
calculated and fitted pressures are compared in Table VI.
Also included in Table VI are the parameters needed to
construct the entire P versus V curve in the form

(The equilibrium volumes and bulk moduli given in Table
VI differ from those in Table IV because fitting over a
large pressure range has reduced somewhat the quality of
the fit in the equilibrium region.) For both models, the

TABLE V. The zero-pressure structural energy difference,
E(bec)— E(fee) (mRy) for Li found in this study using the KSG
and RSK models compared to previous calculations.

Model Calculation Ref. AE
KSG LCGTO Present 0.47
RSK LCGTO Present 0.87
VBH LMTO Ref. 19 0.16
Model potential Ref. 20 —0.02
Model potential Ref. 21 0.10
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TABLE VI. The calculated virial pressures (P,) compared
with the pressures obtained by fitting the energies to the Mur-
naghan equation (Py) for the KSG and RSK models. Also the
characteristic parameters ( ¥y, B, and y) required to specify the
entire fitted EOS.

KSG RSK
V P, (kbar) P; (kbar) P, (kbar) P; (kbar)

147.0411 —9.3 —10.3

143.7491 —6.5 —6.9

140.5066 —35 —32

137.3132 —0.3 0.6

131.0723 6.9 9.1 —11.1 —12.8
128.0240 : —7.6 —8.5
125.0234 —38 -39
122.0700 0.4 1.0
99.9732 75.7 82.5 50.4 55.4
74.9799 230.0 234.8 193.9 198.6
49.9866 751.2 735.7 691.6 676.7
24.9933 3850.8 4159.5 3741.0 4030.3

Vo=122.6615 a.u.
B =208.994 32 kbar
v=2.43219

Vo=137.8058 a.u.
B=170.90978 kbar
y=2.39004

fitted pressures deviate by no more than 25 kbar from the
calculated pressures up to 700 kbar. For pressures be-
tween 700 kbar and nearly 4 Mbar the deviation increases
to an overestimate of about 300 kbar (a 7.5% error). The
deterioration of the fit with increasing pressure is not
surprising since the Murnaghan equation was originally
intended as a tool for extrapolating low-pressure experi-
mental data to moderate pressures.

The existing experimental data on the EOS of Li (Refs.
46, 47, and 53—57) fall into three categories: piston data
up to 45 kbar (Refs. 46 and 57, see Ref. 57 for a summary
of early low-pressure EOS data), tungsten-carbide anvil
data to 100 kbar,*’” and shock data to several hundred
kbar.”>>* Although the latter two sources of data are par-
ticularly useful in a high-pressure EOS study of this sort,
each suffers from limitations. The tungsten-carbide anvil
data are very reliable but have a rather low limit on the
highest pressure attained. On the other hand, the high-
pressure shock data are of questionable reliability since
the 0-K isotherm must be extrapolated from the Hugoniot
curve (a procedure which is not entirely straightfor-
ward>>36).

For Li all of the existing low-temperature EOS data de-
rived from shock experiments are subject to criticism.®
There is evidence'® that the Hugoniot data taken by
Bakanova et al.’® are in error with the pressures being
significantly too small. This in turn would inevitably lead
to a corresponding error in the extrapolated 0-K isotherm.
In contrast, the Hugoniot data taken by Rice®* should be
more reliable but Grover et al.>®> have suggested that the
technique used by Rice to obtain the 0-K isotherm is un-
reliable and that the deduced 0-K pressures are overes-
timated. They reanalyzed Rice’s data and obtained an
EOS with much lower pressures. Unfortunately, the re-
sults obtained by Grover et al. are presented in a figure
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TABLE VII. The EOS’s for Li found in this stuﬁy for the KSG and RSK models compared to previ-
ous theory and to experiment. (P in kbar and ¥Vin a.u.)

vV P PP pe P4 pe
119.73 33 28.6 ' 5.2
118.32 35 31.4 7.9
114.8 33 39.1 15.0
112.34 47 45.0 20.5
106.68 66 60.3 34.7
103.3 62 70.9 44.6
100.18 80 81.7 '54.7
95.85 98 98.8 70.6
94.73 101 103.6 75.2
91.8 109 117.3 88.0
86.1 143 148.6 117.3
80.4 187 187.7 154.1
74.6 248 238.5 202.1
131.3 8.8 —13.1 16
116.7 34.9 11.1 41
102.1 74.9 48.3 83
87.5 140.2 109.5 157
72.9 256.1 218.7 293
58.4 485.0 436.5 577
43.8 1035.4 965.8 1260

#Tungsten-carbide anvil, 300-K isotherm (Ref. 47).
®Shock data, 0-K isotherm (Ref. 54).

°KSG, 0-K isotherm (present).

9RSK, 0-K isotherm (present).

“Model potential, 300-K isotherm (Ref. 18).

and table (their Fig. 1 and Table I) which are mutually
contradictory. In addition they do not indicate what the
reference volume is for either the table or the figure. For
these reasons we have been unable to make a useful com-
parison with their data and instead have relied on Rice’s
0-K isotherm for high-pressure comparisons.

In Table VII, we compare the present EOS’s with the

300-K isotherm obtained using the tungsten-carbide anvil
technique,*’ the 0-K isotherm extrapolated by Rice,* and
with the theoretical 300-K isotherm obtained by Young
and Ross'® using model potentials. (The other existing
model-potential calculations'®!” were restricted to much
lower pressures and are generally consistent with Ref. 18.)
Over the pressure range of 30—100 kbar, the KSG EOS
for Li is in good agreement with the anvil data.*’ (Note
that the experimental EOS below 69 kbar is for the bce
structure.) It is quite interesting that the 0-K isotherm
deduced by Rice®* lies slightly below the anvil data, since
Grover et al. felt that Rice’s pressures were too high.
This suggests that Rice’s data may in fact provide a
reasonable representation of the 0-K isotherm up to the
highest pressures given (about 250 kbar). In the range of
pressures 100—250 kbar, the KSG EOS is again in excel-
lent agreement with experiment (given the quality of the
experimental data), while the RSK isotherm significantly
underestimates the pressure. Compared to the present re-
sults and experiment, the model-potential calculation!'®
gives pressures which are consistently too large.

In general, the KSG model gives a reasonable represen-
tation of the EOS for Li at least up to 250 kbar. In con-

trast, the more sophisticated RSK model seriously un-
derestimates the pressures over that range.

IV. ONE-ELECTRON PROPERTIES

Although the one-electron eigenvalues obtained in
density-functional theory have no rigorous physical inter-
pretation, the band structure near the Fermi level is gen-
erally believed to correlate well with electronic excitation
energies in metals. Since virtually nothing has been pub-
lished about the band structure of fcc Li, at least a quali-
tative discussion of the one-electron properties is warrant-
ed. For this purpose the RSK model should be superior
to the KSG model and discussion is restricted to the
former (the qualitative features are not affected by the
choice of the LDA model).

The band structure of fcc Li at low pressure
(a=7.9375 a.u.) is shown in Fig. 1. (For a bcc Li band
structure substantially the same as ours see Ref. 10.) The
band structure in Fig. 1 is in qualitative disagreement
with the stereotypical picture of an alkali metal, as might
be expected on grounds of space-group differences alone.
The traditional picture envisions a nearly spherical Fermi
surface which never makes contact with the boundaries of
the BZ,”® ie., the surface is closed. In contrast, the
present band structure for fcc Li has an open Fermi sur-
face with narrow necks centered on the L points touching
the zone boundary. In this respect fcc Li resembles the
monovalent noble metals (Cu, Ag, and Au).>

As fcc Li is subjected to pressure, the qualitative
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FIG. 1. Band structure of fcc Li for P=0.0 Mbar
(a=7.9375 a.u.) using the Rajagopal-Singhal-Kimball (RSK)
model (Ref. 40).

features of the band structure remain unaltered up to at
least 700 kbar. Quantitatively, the sp-hybridized bands
steadily broaden and the diameter of the necks in the Fer-
mi surface increases. However, for extreme high pres-
sures the band structure and Fermi surface become radi-
cally altered. Figure 2 shows the band structure of fcc Li
at 3.7 Mbar (@ =4.6412 a.u.). Although the bulk of the
sp-hybridized bands are qualitatively the same as in Fig.
1, the bands are highly distorted in the region near the
Fermi energy. The occupied part of the conduction bands
is no longer parabolic with the minimum energy at the
zone center. Instead the minimum is at the L point and a
pocket of holes has formed at the center of the BZ. As a
result of these changes, the occupied bandwidth is actually
smaller at 3.7 Mbar than it was at 0.0 Mbar (0.193 Ry
versus 0.266 Ry).

The drastic pressure induced modifications to the band
structure are due to an [/ dependence in the broadening of
the bands. Although all of the bands are broadened by
pressure, the p band is broadened more rapidly than the s
band and hence the bottom of the p band passes through
the s band. Since the singly degenerate state at the center
of the BZ is a pure s state while the lowest state at the L
point is a pure p state, those two states become reversed in
order. One would anticipate that the lowest-energy state
at the X point might also move below the center of the
band for sufficiently high pressures. These qualitative
features of the band structure shown in Fig. 2 have been
confirmed in a recent LMTO calculation performed at a
similar compression.% :

The band structure for fcc Li at 3.7 Mbar appears, at
least superficially, to contradict the general belief that at
high pressures all materials will become free-electron-like.
That is, these calculations show Li to be very free-
electron-like at low pressure and less so for pressures up
to 3.7 Mbar. However, one must note that for sufficiently
elevated pressures the 1s band must eventually broaden
and come in contact with the bottom of the 2p band to
form the expected free-electron-like continuum. (At 3.7
Mbar, the 1s band is 0.306 Ry wide and lies 3 Ry below
the conduction band.) Thus the present work does not
suggest that the free-electron limit is nonexistent but rath-
er demonstrates that limit to be achievable only for pres-
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FIG. 2. Band structure of fcc Li for P=3.7 Mbar

(@ =4.6412 a.u.) using the Rajagopal-Singhal-Kimball (RSK)
model (Ref. 40).

sures far beyond the capability of current experimental
technique, even for the simplest of metals. Although the
predictions made here are less dramatic than the recent
prediction of a high-pressure insulating phase in Ni,®!
they do confirm the existence of more-complicated one-
electron properties at high pressures than might have been
anticipated.

V. CONCLUSIONS

Based on the present calculations, two important con-
clusions may be made concerning the crystallographic
phase stability of Li. The first of these is that a careful
LDA calculation predicts that the zero-pressure and -tem-
perature phase of Li is indeed close packed. This result is
consistent with the available (somewhat ambiguous) ex-
perimental data.

The second important result is the absence of any
T =0-K transition to the bcc structure for cell volumes
ranging from 0.175 to 3.0 times the experimental zero-
pressure volume. The remarkable stability of the close-
packed structure in Li up to at least 4 Mbar is consistent
with existing evidence!®3273% that the phase stability of
elemental solids is intimately related to the d occupancy
near the Fermi level. Since all of the d states for Li lie
well above the Fermi level, the usual sd-hybridization
mechanism is not available to trigger a transition to the
bce structure. One might have anticipated that for Li the
p states would perform the same function as the d states
play in heavier materials. However, in light of the strong
sp-hybridization effects on the band structure of Li at 3.7
Mbuar, it is clear that sp hybridization is not a sufficient
mechanism to induce an fcc-bee transition.

The present values for the zero-pressure lattice constant
are slightly smaller than the corresponding values ob-
tained using muffin-tin methods. It is probable that the
spherical averaging used in the muffin-tin approximation
reduces the effectiveness of the bonding in Li and a simi-
lar effect is likely to occur in all those elemental solids
whose binding is largely due to sp hybridization.

There are systematic differences between the results ob-
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tained using the KSG model and those obtained with the
RSK model. At zero pressure, the KSG lattice constant
and bulk modulus are more realistic, while the RSK bind-
ing energy is substantially closer to experiment. These re-
sults are consistent with the findings of Jansen et al.*! for
Fe. However, the present work also shows that the KSG
model gives a better description of the P versus V curve
up to at least 250 kbar. Whether these differences point
to the need for a better LDA model or to nonlocal correc-
tions is a matter of conjecture.
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