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The two-Quid theory of phonon transport and thermal conductivity recently proposed by the au-
thor is refined, with the major source of error identified as the previous neglect of the subset of nor-
mal processes called XN processes. A correction is provided for these processes, which are mainly
those of phonon splitting. This correction, based on the Callaway approximation, utilizes two shift
parameters in the displaced Planck distribution, one for low-frequency modes and one for high-
frequency modes. Comparison with experiment is performed on a group of LiF specimens of vary-

ing isotopic purity. The results demonstrate that the refined theory explains the behavior of the
thermal conductivity across the region of peak value with high accuracy for the purer specimens.
The role of the single-mode relaxation-time approximation is clarified as well as the significance of
the linearly-frequency-dependent Landau-Rumer transition rate which tends to dominate the
thermal-conductivity calculation. As in the earlier treatment, no explicit account of U processes is
required. They are included implicitly in the Landau-Rumer rate along with XR processes, which
are N processes ending in reservoir modes. The new formulation, dependent only on known
transition-rate expressions, appears to provide a framework for systematic approximation to the
Peierls-Boltzmann integral equation.

I. INTRODUCTION

In the theory of lattice thermal conductivity, one must
distinguish between processes that conserve phonon quasi-
momentum (normal anharmonic or X processes) and pro-
cesses that do not (anharmonic umklapp processes and
phonon scattering by boundaries and imperfections). The
latter are resistive or R processes. It was already pointed
out by Peierls' that normal processes cannot be disregard-
ed, but that they contributed to thermal resistance by
transferring momentum from one group of modes, where
R processes are weak, to other modes where R processes
are strong. This effect should be particularly important
for point-defect scattering, since that scattering probabili-
ty is strongly frequency dependent.

In spite of a general understanding of the underlying
physics of this problem, there has been no completely sa-
tisfactory solution. An early attempt by Klemens divides
the modes into two groups: low-frequency modes, which
are brought by X processes into equilibrium with the
high-frequency modes, and the high-frequency modes,
whose equilibrium depends only on R processes. Howev-
er, this division into two groups at an angular frequency
roz is arbitrarily taken at co~ klan

"rifi (kii, T, and —f—i are
the Boltzmann constant, the absolute temperature, and the
reduced Planck constant, respectively).

The present author advanced a similar model, again di-
viding the modes into two groups, but paying detailed at-
tention to the choice of co~. The criterion for choosing
co+ at low temperature was that at this frequency the re-
laxation rate due to anharmonic X processes with modes
of final-state phonon frequency above co~ should equal
the relaxation rate of R processes (at higher temperature
co+ is determined by the dispersion of the lattice waves).
Not only is this a more realistic criterion, but it was corn-

bined with an improved theoretical knowledge of relaxa-
tion rates, and used advances in computational tech-
niques.

Another approach, due to Callaway, makes N process-
es relax towards a quasiequilibrium distribution, i.e., one
shifted in momentum space, while R processes tend to re-.

store true equilibrium; the shift of the quasiequilibrium
distribution is chosen so that N processes conserve
momentom in the aggregate.

The Callaway theory, definitely superior to that of Kle-
mens, has been widely applied, and the majority of mea-
sured low-temperature thermal-conductivity curves have
since been analyzed in this manner. However, it does
have limitations, and the apparent success of the method
is partly based on the fact that the strength of X processes
is usually not known, but is treated as an adjustable pa-
rameter. The most rigid test of the theory consists of ap-
plication to a series of different isotopic compositions of
the same crystal. This has been done for LiF. In the
analysis of Berman and Brock based on the Callaway
theory, for example, it was necessary to choose a form for
the N-process relaxation rate which differed from theory.
The other comparably detailed study of the isotope effect
in solid helium is complicated by an uncertainty in the
strength of the isotope scattering.

A single-parameter shifted distribution as adopted by
Callaway is not completely realistic. The high-frequency
modes cannot be shifted as much as the low-frequency
modes, but should be nearly in equilibrium. The differ-
ence in effectiveness between X processes involving a
low-frequency phonon and those involving high-frequency
phonons, which formed the rationale of Refs. 2 and 3, is
not present in the Callaway theory. Yet X processes do
conserve momentum, an effect not considered in Refs. 2
and 3.
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The purpose of the present paper is to improve the
author's earlier theory by including the momentum-
conservation criterion of the Callaway theory, while at the
same time accommodating the difference between low-
and high-frequency N processes by use of different
quasiequilibrium shift parameters for each "fluid, " or
group of modes. To do so, one has to consider not only
the effect of N processes on a low-frequency mode, but
also the effect on high-frequency modes due to N process-
es involving two modes of lower frequency, the "phonon
splitting" processes.

The author's theory divides modes into a group with a
large departure from equilibrium and a "reservoir" group
which is practically at equilibrium, either because the
group velocity is small or because modes of the group are
strongly affected by R processes. The anharmonic pro-
cesses are thus no longer divided into % and U processes
but into processes involving only modes of the lower
group (NN processes) and those linking the two groups
(NR processes). It thus does not matter whether the
final-state mode in an extended zone representation lies on
one side of the zone boundary or the other, since its
departure from equilibrium will, in either case, be small.
All NR processes are thus treated on the same footing.

The present paper not only considers the possibility of a
small average shift in momentum space of the reservoir
modes, but also recognizes that there are different polari-
zation branches. Thus, over some range of frequencies
the longitudinal modes have a large group velocity, while
transverse modes are either highly dispersed or have the
top of their spectrum below those frequencies. There is
consequently an "overlap" region where reservoir and
propagating modes coexist.

This new approach is applied to a series of LiF speci-
mens differing only in isotopic constitution. The modifi-
cations of the theory are of most importance when the
strongly-frequency-dependent point-defect scattering is
strong, i.e., near the conductivity maximum. At high
temperature the correction is small.

Since the Boltzmann equation is a linear integral equa-
tion, one can, in principle, express the solutions as a set of
eigenfunctions of the integral operator. A formal, unified
theory along these lines has been developed by Guyer and
Krumhansl, encompassing not only steady-state heat
transport, but also time-dependent problems as well.
They were able to identify the Callaway treatment as a
first approximation in their general scheme. Unfortunate-
ly, it is not clear how higher-order eigenfunctions may be
obtained nor how rapidly the theory converges.

For that reason, the present approach may be generally
useful in pointing the way to the next approximation
beyond the Callaway theory. Alternatively, with the ad-
vent of numerical methods such as have been employed in
the photon Boltzmann equation, it may provide the
framework for an iterative numerical process.

In Sec. II immediately following, a brief review is given
of the two-Auid theory. Section III presents the generali-
zation of that theory, introducing the correction for &N
processes including phonon splitting. In Sec. IV, the new
approach is applied to LiF, and Sec. V concludes the pa-
per. The Appendix is devoted to a discussion of entropy

production by X processes based on a simplified crystal
spectrum which relates this production to the strength of
the frequency dependence of the resistive transition rate.

II. THE TWO-FLUID MODEL

The theory of Ref. 3 divides the normal modes (or the
phonon gas) into two groups, the propagating modes and
the reservoir modes. The propagating modes contain the
momentum of the phonon gas in a temperature gradient,
and the reservoir modes, which are close to equilibrium,
act as a momentum sink in the anharmonic processes be-
tween these two groups.

The departure of the phonon occupation number from
thermal equilibrium can be written in the following
form: '

and

Nq —No ——4(q) [BNq /B(%co )]

N(q) = —Acta(co)cq. VT/T, (2)

(3)

where q"=q+q', the integration is over all values of q',
but P is nonvanishing only if co+co'=co". Quasiequilibri-
um occurs, i.e., the integrand vanishes everywhere, if
c~a(co) is the same for all modes. Another case of in-
terest is when N(q') and 4(q") are both much smaller
than @(q), so that

BNq = J 4(q)P(q, q';q")d'q' .
AN

The relaxation rate thus calculated equated to
(Nq No)/r defines the "si—ngle-mode relaxation time" 7.

At high temperatures, the reservoir modes are the high-
ly dispersive, high-frequency modes for which @ is small
because the group velocity is small [because of Eq. (2) and
because elastic scattering processes are then strongest]. At
low temperatures extrinsic scattering becomes important.
It increases strongly with frequency, makes a(co) small for
high-frequency modes, and extends the reservoir boundary
uz to lower frequencies. The propagating modes undergo
anharmonic interactions with modes in their own group
(NN processes neglected in Ref. 3), and also interact
anharmonically with reservoir modes (NR processes).

At low temperatures co+ is determined by the condition

~&R(~~ )

where ~z is the relaxation time due to non-momentum-

where q is the wave vector of a mode, co its angular fre-
quency, cq its group velocity, VT the temperature gra-
dient, and a(co), a parameter of the dimension of time, is
the effective relaxation time which formally describes the
solution of the Boltzmann equation.

The rate of change of the distribution function due to
anharmonic processes can be written in the form

ax, = f [@(q)+@(q')—@(q")]P(q,q', q")d q',
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conserving processes and v&& is the relaxation time due to
anharmonic processes linking the propagating group and
the reservoir group.

Since co~ thus determined increases with temperature,
at sufficiently high temperature co+ is taken to be co~U,
the threshold frequency for U processes, and approxi-
mately the highest frequency of the lowest transverse
acoustic branch. As a further approximation, co+ at low
temperature was taken to be proportional to T, as it was
found that Eq. (5) did not depart significantly from this
proportionality. The constant ratio x~ ——Ace~/k~r was
taken as an adjustable parameter when fitting thermal-
conductivity curves.

The present treatment dispenses with the need to choose
x~ as an adjustable parameter. Also, in Ref. 3, the relaxa-
tion rate of propagation modes above the reservoir thresh-
old was treated the same as the rate for propagation
modes below this threshold. This is in error because long-
itudinal and fast transverse propagating modes that over-
lap the reservoir region will have shorter relaxation times
owing to anharmonic processes which terminate in disper-
sive, or near-equilibrium, modes below them.

It was also assumed in Ref. 3 that X processes entirely
within group 1 (the "NN processes") do not contribute to
entropy production. The variational principle was in-
voked after making this hypothesis, and the conclusion
reached that thermal resistance was independent of NN
processes. In fact, this use of the variational principle is
tautological. The entropy production rate summed over
group-1 modes can be expressed as an integral over a
non-negative integrand (Ref. 8, Ch. VII, Secs. 7 and 8).
Thus, a complete cancellation of entropy production is
possible only for a special set of distribution functions
(quasiequilibrium or shifted distribution), and this is also
the condition that c}N&/dt ~& vanishes (N~ is the occu-
pation number of the mode with wave vector q). All oth-
er distribution functions lead to entropy production.
Therefore, the theory of Ref. 3 has merit where the dom-
inant entropy production of N processes occurs in NR
scattering, and XX scattering produces a relatively small
effect.

The entropy production due to XX scattering in the
Callaway approximation is calculated in the Appendix. It
is shown there to be proportional to the difference be-
tween a direct and an inverse mean of the resistive relaxa-
tion time. This difference is greater, the greater the fre-
quency dependence of the relaxation time. This brings
out the need to include the effect of NN processes at low
temperature when point-defect scattering is important.
The discussion in the Appendix also confirms some earlier
comments of Klemens on circumstances under which N
processes are important.

where Xo is the equilibrium occupation number, Nq the
actual occupation number, 1/roc is the single-mode relaxa-
tion rate obtained from Eq. (3), while 1!re denotes the re-
laxation rate due to all resistive processes. The term N(P)
in the first relaxation rate term is inserted to account for
the return scattering terms N(q") —4(q') in Eq. (3). It
has the form [see Eqs. (1) and (2)]

N (P) No ——— (c&—.V T)(fico/T)(dN&/d [fico] )P, (7)

and in principle P is a function of co. Since the operator
(3) is an integral operator, Eq. (6) is an integral equation
the solution of which is equivalent to finding the magni-
tude and frequency dependence of P(co).

The Callaway approximation divides anharmonic pro-
cesses into U and N processes, ascribes the effect of U
processes to 1/rid, and chooses P, assumed independent of
co, so that N processes conserve momentum in the aggre-
gate. In the previous two-fluid model, the modes were
divided into two groups: the propagating (nondispersive)
modes for co&cop and the reservoir (dispersive) modes
co & ~~, where generally co& & co~ and the region between
co& and co& contains modes of both groups. For the prop-
agating modes, it was assumed that N(P) =N& for N pro-
cesses whose resultant (final) phonon has frequency less
than co~. Those processes linking the propagating modes
to the reservoir modes (resultant phonon with frequency
greater than co~) called NR processes were counted to-
wards 1/roc, viz. , N(P) was taken as No for these process-
es. U processes were not explicitly considered. They were
lumped in with the XR processes which have the same
combination threshold requirement, and the sum of the
two was represented by a modified Landau-Rumer' tran-
sition rate.

In that model, all modes were treated as having the
same polarization and the same anharmonic relaxation
rate, which is inconsistent in the frequency region
COg (CO (COp.

We now adopt a more realistic model in which there is
a spectral range where longitudinal modes are propagating
but transverse modes are dispersive. There are thus three
spectral regimes as shown in Fig. 1: region 1, ~(co+,
where all modes are propagating; region 1A, co+ (co (mz,
where longitudinal modes are propagating and transverse
modes dispersive; and region 2, co&co& where all modes

2-RESERVOI R

1A-MIXFD RESERVOIR
AN D P ROPAGAT I ON

III. GENERALIZED TYCHO-FLUID MODEL

A. General scheme

The Boltzmann-Peierls equation for phonons can be
written in the following approximate form:

63R

/

1-P ROPAGAT I ON

Nq N(P)—
+1'

Nq —Xo de=c, .VT
dT

FIG. 1. Illustration of phonon propagation and reservoir
spectral regions as a function of temperature.
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B. NR process transition rate

We expect KR transitions, i.e., transitions transferring
momentum from propagating to reservoir modes, to be
dominated by processes in which a low-frequency mode co

combines with one of much higher frequency co'. Since
this is also the assumption of the Landau-Rumer' transi-
tion rate calculation, except that co+co' must now exceed
coR, we can modify that relaxation rate to

Tc07T
2 ~C(~~ ~c)

AU
2 (9)

where y, the Gruneisen constant, is a measure of anhar-
monicity, p is the mass density, and U is the Debye aver-
age of the phonon velocity. The specific heat per unit
volume C is broken up into spectral components, and
bC(co~, coc) denotes the contribution to C from all the
reservoir modes, i.e., modes for which
Methods of calculating hC over various frequency
domains and the temperature dependence of r&z are dis-
cussed in Ref. 3.

Although Landau and Rumer considered only X pro-
cesses explicitly, Eq. (9) also accounts for U processes if
the locus of q' is defined in an extended zone scheme.
The approximation made in (9) is that the locus of q', a
cone in the nondispersive regime, maintains that shape to
the highest spectral frequency roc, where the locus abrupt-
ly terminates. In reality, the locus is such that the half-
angle of the cone gradually decreases, and vanishes when
the group velocity of q' becomes small enough; the locus
is thus a closed curve. Nevertheless, Eq. (9) is a reason-
able approximation over a wide range of frequencies and
temperatures;. in particular, it leads to the correct high-
temperature limit.

are dispersive reservoir modes. Here cop is the highest fre-
quency for which longitudinal modes have significant
group velocity. Crystal isotropy is assumed throughout.

Furthermore, we combine the Callaway method and the
two-fluid model as follows. We adopt Eq. (6) but assume
that 13 is not constant but has constant values in three re-
gimes as follows:

13(co)=f3 for co&co+ (region 1),
/3(co)=P' for co+ &co&coz (region 1A),

P(co)=0 for co&cop (region 2) .

The theory thus contains three parameters P, P', and co~
which must be determined, while mz is indicated by the
form of the dispersion curves. Before discussing the
method of determining 13, P', and coR, one must determine
how the various relaxation rates entering Eq. (6) are es-
tima, ted.

1+—
exp[fico/(2k& T) j —1

+F T (10)

Th first two terms in the large parentheses correspond to
the X-process splitting rate where it is assumed that the
phonon co splits into two phonons of equal frequencies
co'=co"=co/2. The Debye frequency is designated coD, uL

and U~ are the longitudinal and transverse sound speeds,
respectively, m is the molecular weight, R is the gas con-
stant, and y& is a Gruneisen constant. The function F(T)
brings in the contribution of combination transitions,
which was estimated by Klemens to be the same as for
transverse phonons when x =fico/k~T & 1. Thus, he used
F(T)=x for x&1. For x&1, he used the Pomeran-
chuk formula for the longitudinal rate which is equivalent
to F(T)=40/x.

For present purposes, we now estimate a mean rate for
the transitions included in Eq. (10), in order to maintain
the same level of polarization approximation as employed
in Ref. 3. To do this, we take —, of the phonon splitting
contribution to Eq. (10) since transverse phonons do not
split, and use F(T)=x when x & 1 now for both longi-
tudinal and transverse combination processes. For x & 1,
we depart from the Pomeranchuk result used by Klemens,
since we now want to include a transverse phonon contri-
bution. Instead, we take, for x & 1,

'=(myTco/4pu )b, C(O. , coI )

as the NÃ contribution of phonon combination processes.
This form of the Landau-Rumer result is an average over
longitudinal and transverse contributions corrected for
thermal phonon interactions. ' ' The portion of ~ ' due
to final-state modes between 0 and co&, which would be
represented in the formula by the specific-heat factor
b,C(O, co~), is the complement of the NR transition rate,
Eq. (9). The portion between co+ and cup has been added
as an arbitrary correction for Klemens's class 1c transi-
tions which are otherwise not included in the Landau-
Rumer (lb) expression, as discussed above. The final for-
mula for r~~, therefore, becomes

—1

'lT y iR (A'/kg )ro
AN = ~ ( VL /V T )4~2 lOU COD

co « co' =co" (class lb in Klemens's notation) but
co'=ca" &co+. Unless co «co~, the only processes are of
type 1c and of these the most important are those for
which mode q splits into two modes q' and q" so that
co =co'+co". Following Klemens, " the transition rate for
longitudinal phonons at low temperatures is

37T y iR (A'/ks )co'
~ (VL, /ur)4v2 WU COD

C. XXprocess transition rate

The %% processes are normal processes amongst the
propagating modes. They contain processes such that all
three modes are of comparable frequency (class lc in the
notation of Klemens ) as well as processes such that

X 1+
exp[Ace/(2k' T)]—1

+G T

In this expression

G(T) =3/x, x & 1

(12)

(13)
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D. Modified Callaway method

One now uses Eq. (6), but divides the frequency spec-
trum into three regions (with coR still to be specified). The
following relaxation rates are used. In regions 1 and 1A,
rN is given by Eq. (12), while rR is given by

—1 —1 —1 —1
+R VNR +KB +VI (15)

Here rR
' and rt ' denote the rates for boundary and im-

perfection scattering, respectively, while rNR is given by
(9). Since it is assumed that all modes are in thermal
equilibrium in region (2), Eq. (15) does not apply and the
relaxation rates are not considered explicitly.

Equation (6) is now solved as in the Callaway method.
The effective relaxation time a(co), defined by Eq. (2), is
given by

='rR +(13 'rR )'rcrNN (16)

This is simply a rearrangement of Callaway's result except
that P has two different constant values in regions 1 and
1A. The combined transition rate ~, is defined as

—1 —1 —1
c NN+ R

Callaway's results can be carried over, mutatis mutandis,
to the present case to yield, for the conservation of quasi-
momentum in W processes that

COp

c NN R cc +13 c NN R a)0 COg

The abbreviation

c'(V T/T)' d&.
3 dT

Alp —1
+C7 NNG&dCO

0
(18)

(19)

has been introduced for compactness. The quantity
re(co) is the density of nondispersive modes; 1) is the
number of cells per unit volume and 1)D(co)=co /2m c

1/2y w(TD/T) (vT!vL, )b,C(0,cot )
G(T) = 1 4, x &1 (14)

y2RpX4

so that this contribution to ~NN agrees with Eq. (11) when
x & 1, and with Klemens's F ( T) in Eq. (10) when x & 1 (to
within the polarization weighting factor).

@(q')+@(q")=A'c~. V Tco13/T . (21)

We thus take p to be given by (21) at coR /2, and p' by (21)
at coR/2. However, this procedure neglects the combina-
tion processes, which shift the average value of co to some-
what higher frequencies. We therefore take

P=a(coR/g), (22a)

P'=a(cop/g), (22b)

where g is expected to be somewhat less than 2. Substitut-
ing this into Eq. (16) for the case when co=coR/g and
again when co=cop/g one sees, after some cancellation,
that

P=rR(~RA» (23a)

P'=rR(~PC) . (23b)

Equations (23) can now be substituted into the
momentum-conservation condition (18) to yield

CO~

&R(~R C)
COp COp

+rR(~PC) rcrNNrR Gcgdco f rcrNNG~dco ~

If g is chosen, this condition determines coR as a function
of temperature. However, it is also necessary to choose a
value of the parameter g. This parameter will be chosen
empirically, independent of T and of defect concentration
to give an optimum overall fit.

As the temperature is increased, ~R reaches AU, which
is governed by the dispersion of the transverse waves.
Above this temperature, Eqs. (23) can no longer be used.
Instead, we set coR ——coU, then assume that p=a(coU/g)
and use (18) to obtain P'.

those for which co is large, but still below coR, we focus on
splitting processes. Now

@(q')+@(q")=Pic~ VT [co'a(co')+co"a(co")]/T . (20)

We expect the phonon splitting rate to be strongest for
processes centered about the symmetric case
co~co/2+co/2, in which case

E. Specification of P, P', and coR

at low temperatures

At low temperatures, coR depends on T and must be
determined consistently with Eq. (18); the momentum-
conservation condition. However, this equation also con-
tains p and p' so that additional conditions are needed.
At high temperatures coR is determined simply by the
dispersion of the transverse waves.

Since p and p' in Eq. (18) are averages of the effective
relaxation times, we choose them to be proportional to
average values of C&(q')+C&(q") in processes co=co'+co"
(splitting processes), and N(q') —4&(q") in processes
co+co'=co" (combination processes). Since we are dealing
with NX processes, and the Inost important cases are

IV. APPLICATION TO Lip

A. Computational procedures

R (p —rR)r, t4dt
+ 2sinh (t/2)~NN

f «p (P' rR)~,t4dt-
+ x sl1111 (t/2)rNN

(25)

Equations (8) and (AS) of the Appendix provide the for-
mula for the thermal conductivity Ic:

kR(kR T/A)' f«p rR t4dt

Sm v o sinh (t/2)
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The transition rates rz ', r, ', and'r~& are defined by Eqs.
(9), (12), (15), and (17), with ~1 A——T x, where A is the
Rayleigh scattering strength for isotope plus impurity
scattering. A dislocation scattering term was included in
rz ' and its effect tested in the course of the computations.
No improvement ensued in the fits obtained, so it was not
used in the final calculations. This finding undoubtedly
reflects the success of Thacher's program' to reduce
dislocation densities in his specimens.

Equation (25) was reduced to the form of Eq. (45) of
Ref. 3 for computational purposes and integrated by the
same 48-order Gaussian quadrature scheme used in the
previous work. The calculations, programmed in FOR-
TRAN, were carried out interactively as in Ref. 3.

The iteration to determine xz was carried out as fol-
lows. For temperature close to or below a point where xz
may equal xU, an iteration was performed with the start-
ing value x~ ——xU. The various transition rates were corn-
puted for this starting value along with P' according to
Eq. (23b). A value of P was then computed from Eq. (18).
From this 8, a corrected xz ——xz (new) was computed
from Eq. (23a) and compared to the starting value. If the
new value differed from the starting value by more than
hx =1.0)&10, another calculation was performed be-
ginning with x~(start) = —,

' [xz(new) +. xg(old)]. This pro-
cedure converged for all the LiF cases. The final value of
x~ obtained was then compared to xU to determine
whether or not this frequency lay in the low- or high-
temperature reservoir region. If xz so obtained was
greater than xU, it was reset to xU, and the computation
of the transition rates and betas repeated, followed by the
computation of a.

B. Comparison with experiment

Computations were carried out for four of Thacher's'
LiF specimens of varying isotopic purity which had been
annealed to reduce the dislocation concentration. The
specimens are those whose thermal conductivities are
denoted (A), (B), (C), and (D) in Fig. 4 of Ref. 14. Table I
lists the lattice characteristics of LiF used in the calcula-
tion. The Debye temperature TD ——700 K was selected as
a compromise between low- and high-temperature values.
The computation was not very sensitive to its value ex-
cept, of course, for adjustment of the boundary length
A~ ——Urti. The value of the frequency v, =co, /(2ir) was
selected from spectral data, ' and the sound speed ratio
vt lv~ was taken from Anderson. ' The remaining pa-

rameters were inferred from the fitting process. We note
that v~, vz, and y, which appear in the theory of Ref. 3
are hardly changed from the values 5.46, 10.9, and 1.45,
respectively, inferred there. This is reassuring, since that
theory should still be a good first approximation. The
value of /=1.725 is reasonably close to 2, the value it
would have if all phonons split equally in the absence of
combination transitions.

The value inferred for y from the NR transitions is
slightly lower at 1.36 than the value 1.45 inferred in Ref.
3. This is substantially lower than the experimental
value' which ranges from 1.6 at room temperature down
to 1.7 at 0 K. This result suggests that the XR rate
overestimates the true resistive transition rate; viz. , some
of the momentum supplied by the NR processes is not
completely balanced by resistive processes, but is con-
served and passed on to other modes. Such an effect is
reasonable in view of our crude approximations to the re-
turn flow back to a given state, and would improve in an
iterative computation of @(q) to replace the constant P
and P' values used in the present calculation. The value
1.758 inferred for yi, in contrast, falls close to the low-
temperature end of the experimental range.

Table II lists the extrinsic parameters used in the com-
putation. For case (A), the Rayleigh strength A was in-
ferred from the fit to the data since the isotope scattering
as given by Thacher is below the impurity scattering level.
For the remaining cases, Thacher's theoretical values were
used. The Casimir boundary lengths Aii inferred from
the fit primarily reflect the choice of TD and are, there-
fore, different from Thacher's. They may also be influ-
enced by near-surface dislocations (as discussed by Thach-
er).

Figure 2 shows the results of the computations. For
curve 3, the agreement between the theoretical curve and
the data is considerably better than that obtained in Ref.
3, especially in the vicinity of 20—30 K (the steepness of
the curve in the region along with the inaccuracies of
curve drawing make the comparisons of Fig. 4 of Ref. 3
appear somewhat better than they actually are). Typical
differences are about 2% with a maximum error of 6%.
This level of agreement suggests that most of the possible
sources of discrepancy cited in Ref. 3, such as tempera-
ture variations of TD and y, are less important than the
error caused by the previous neglect of NN processes.
The overall fits for specimens (B), (C), and (D) are superi-
or to that obtained in Ref. 3 for the comparable Berman-
Brock data analyzed there, with the fit for curve (D) being

TABLE I. Lattice characteristics of Lip used in the calculation. TD is the Debye temperature in K,
vU is the high-temperature ( U-process) reservoir threshold frequency, vp is the propagation mode upper
limit, and vc is the crystal phonon spectrum upper frequency limit, all in THz. The Gruneisen con-
stants y and yj are used in the anharmonic transition rates for combination transitions and phonon
splittings, respectively. The parameter g is used to relax the assumption that all phonons split into two
phonons of equal frequency. The longitudinal and transverse sound speeds are denoted uL and uz,
respectively. The sound speed ratio along with vc was obtained from experimental data, while the
remaining parameters were inferred from the fits to the Thacher thermal-conductivity data.

Tg) (K)

700 5.40 10.5 20.0 1.36 1.758 1.725

Vg /Uz.

1.62
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(A) (C)

TABLE II. Specimen characteristics of the LiF samples (A),
(8), (C), and (D), of Fig. 4 of Ref. 14 used in the present
analysis. A& is the Casimir boundary length in mm and A is
the Rayleigh scattering strength in sec 'K . The value of A

listed in parentheses was inferred from the fit. The others are
theoretical values given by Thacher.
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the poorest. Curves (B), (C), and (D) show distinct cusps
at two temperature points; these are artifacts of the ap-
proximations employed. The higher-temperature cusps
are due to the discontinuous onset of the low-temperature
reservoir conditions (or, equivalently, the discontinuity in
beta). The cusps appearing near 15 K were determined by
numerical experimentation to arise from the discontinuity
at x= 1 in the function G(T) used to estimate rz& in Eq.
(12). Curve (D), e.g., was quite sensitive to the position of
this discontinuity and the magnitude of G(T) on either
side of it. This behavior suggests that the error in G(T),
viz. , the phonon combination contribution to ~~& is the
dominant error in the present formulation.

Figure 3 shows the reservoir threshold frequency
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FIG. 2. Comparison of theory and experiment for four of
Thacher's LiF specimens with different isotopic concentrations.
Only the Rayleigh scattering strength is adjusted among the
four theoretical curves. Cusps are artifacts of the approxima-
tions employed.
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10
I .
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FIG. 3. Reservoir threshold frequency v~ as a function of
temperature for the four Thacher LiF specimens whose thermal
conductivity is shown in Fig. 2.

roar/(2~) as a function of temperature for the four cases.
The intersection of the low- and high-temperature reser-
voirs occur at 28.2, 26.1, 25.9., and 25.7 K, respectively,
for cases (A), (B), (C), and (D). The fact that the purest

. case has the highest intersection temperature with the ex-
trinsic reservoir seems surprising, but it is difficult to
draw conclusions on this feature in view of the small mag-
nitude of the effect and the error in our approximations
for P, P', and ~&~, as mentioned above. Below about 15
K, the four reservoir boundaries behave qualitatively as
expected from the interpretation of the extrinsic reservoir
advanced in Ref. 3.

The Callaway p correction to the purely resistive
thermal conductivity, viz. , the second term of Eq. (25), is
commensurate with the resistive contribution x~ (the first
term) at the peak of rc, and drops rapidly in both direc-
tions away from the peak. The peak points of the Thach-
er data set at 15, 15, 13, and 11.2 K, respectively, for
curves (A), (B), (C), and (D), have a/x. z equal to 0.64,
0.46, 0.55, and 0.67. This difference between a and ~~
drops to less than 10% at 50 K in all four cases.

The contribution of the p' correction to a [the third
term of Eq. (26)] is relatively small. From the point of
onset of the low-temperature reservoir conditions (-26
K) downward in T, the ratio of this correction to the total
~ is generally 10 ' or less. From this point upward in T
it stays relatively constant with gradual decrease after 300
K. The p' correction to ~ is negative in all cases comput-
ed, in contrast to the p correction [the second term of Eq.
(25)]. The latter correction is positive above about 45 K
and negative below for all cases.

The behavior of p' relative to p is interesting. Toward
low T, of course, p~rz. Similarly, p' has a low-T limit
by virtue of Eq. (23b), viz. , p'~ri(d'or /g) because the
contribution of ~+& to ~z dies out. This limit is reached
in all four cases just on the high-temperature side of the
peak of x. Starting from this low-temperature asymptote,
p/p' increases. with T toward a high-temperature asymp-
tote which can be obtained from Eqs. (18) and (23a). If
we set r, =r~~ and make use of the simple limiting forms
of the Debye integrals for x «1, the result obtained for
this asymptote is
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4~p~~ ~(3g)
P'~13~ 4 4 (26)

VI. CONCLUSION

The two-fluid phonon theory of Ref. 3 has been extend-
ed to account for the effects of NN transitions ignored in
that approach. The corrected theory (basically now a
"three-fluid" theory) is capable of explaining thermal-
conductivity behavior through the region of peak value
with considerable accuracy in the purest cases. The
analysis also succeeds in identifying dominant phonon
transitions and their roles in determining thermal resis-
tivity. Phonon transition-rate formulas of acoustic at-
tenuation theory are seen to be valid for thermal conduc-

This ratio has the value 0.357 with cop, co+, and g as in-
ferred herein. This high-T asymptote was reached at
—100 K for cases (B), (C), and (D).

In the purest case P' is always positive, whereas in the
other three cases it goes negative just above the low-
temperature reservoir region over the brief span of tem-
perature from about 25—30 K. It then recovers to a posi-
tive value over the range 3S—4S K, and toward higher
temperature, increases toward equality with the pure case.
Such negative values of P' are physically unrealistic since
they correspond to phonon drift from low to high tem-
perature. They indicate that r~(co+/g) which has been
used to estimate /3 in Eq. (18) is too large for momentum
conservation to be achieved. But, the effect is sufficiently
small that we neglect it in order to avoid further adjust-
able parameters or ad hoc assumptions.

Of all the cases treated in Ref. 3, the new theory has
been applied only to LiF because this is the crystal where
not only is point scattering strong, but where it has been
varied in a controlled manner. These LiF measurements
present, therefore, the most stringent test of the theory.
With the new criterion for choosing co+ and the use of
two values of P, the overall fit is improved while, at the
same time, the physics of the problem is clarified.

When more accurate transition rates for phonon decay
and type-1c combination processes become available, the
parameter g and the arbitrary treatment of combination
processes in ~&& can be dispensed with. More complete
spectral data should also permit AU and cop to be stipulat-
ed from the data rather than treated as adjustable.

tivity as well, when account is made for the dispersive
structure of high-frequency spectral branches, although a
more accurate N-process transition rate is still needed for
combination processes involving only phonons in the
propagation region and for phonon decays. Once phonon
modes are separated according to dispersiveness and
departure from thermal equilibrium, and accurate forms
of the dominant transition rates obtained, it should be
possible to solve the Peierls-Boltzmann integral equation'
in a straightforward numerical manner. That is to say,
the new approach appears to offer the necessary frame-
work for a fundamental systematic approximation to this
integral equation such as, e.g., an iterative method of the
type employed in photon transport theory.
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APPENDIX A: N-PROCESS
AND ENTROPY PRODUCTION RATES

IN THE TWO-FLUID MODEL

We consider a simplified crystal with a single acoustic
branch with constant velocity for wave numbers
0& q &qz and a maximum frequency co~. For wave num-
bers q & qp, there are some modes of zero group velocity
and frequency cop. In addition, there may be optic modes
of zero group velocity above cop. This special model per-
mits some general arguments without the complications
of the overlap region between the lowest transverse acous-
tic and the highest longitudinal acoustic Brillouin zone
boundary modes.

The zero-group-velocity acoustic and optic modes are
assumed to be in thermal equilibrium; their small devia-
tion functions C&(q) vanish. Therefore, these modes con-
stitute high-temperature reservoir modes in the sense of
Ref. 3. All modes below cop (region 1) will contribute to
propagation of heat, and since reservoir modes (region 2)
have frequency co)cop, the high-temperature reservoir
boundary frequency co~ for this model coincides with cop.
The total three-phonon anharmonic scattering rate be-
comes

BNq = J, [@(q)+C&(q')—@(q")]P(q,q';q")d q'+ I, [@(q)+4&(q')—4&(q")]P(q,q';q")d q'

+ & f, [C'(q) —@(q')—4 (q")]P(q', q";q)d'q', (A 1)

where P, defined in Ref. 8, is a transition rate which in-
cludes a resonance factor restricting transitions as
described after Eq. (3) of the text. The first two terms of
Eq. (Al) correspond to combination transitions while the
third term is due to phonon splitting transitions.

The notation q'(1) under the integral signs indicates the
collection of all modes below cop (wherein all propagation
of heat takes place). Modes q' and q" in the first integral
of Eq. (Al), viz. , those modes with which q interacts in
combination processes, are restricted to this lower region.
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4(q') = —%co'pc~ V T/T (A2)

and similarly for &b(q"), and it is assumed that p is com-
mon to both expressions. This replacement is made for
modes q' and q", but not for mode q in the first and
third integrals of Eq. (Al). One then treats 'p as a
frequency-independent parameter to be determined by the
condition that the sum of all N processes conserves total
phonon momentum. We now make the Callaway approx-
imation only for the XX processes, treating NR processes
(normal processes with q" in the reservoir modes) by
means of the second integral in Eq. (Al), but taking
4(q') =@(q")=0. That is to say, treating these NR pro-
cesses in terms of a single-mode relaxation time. We thus
have a Callaway-type linearized Boltzmann equation as
given by Eq. (6) of the text with rz' taken as r&~, and
where ~R, the transition rate for modes in region 1 due to
all processes other than NN processes, is given by Eq. (15)
of the text.

The essence of the Callaway approximation is that p, a

The group of modes designated q'(2) under the second in-

tegral constitute those modes with wave number greater
than qp or optic modes; q' and q" here are restricted to
this reservoir group. Because of the assumption of
thermal equilibrium beyond qp, C&(q') and @(q") will
vanish over modes q'(2), and the second integral of Eq.
(Al) becomes a single-mode relaxation rate expression.
Those transitions for which q'&qz and q" &qp will be
lumped with those for which q" lies below qp. Since
these transitions will primarily belong to Klemen's class
1c, this approximation should not introduce much error.

For this primitive "two-fluid" model, the first and third
integrals of Eq. (Al) constitute the scattering rate desig-
nated (dN&/Bt)~~& in Ref. 3 and herein shortened to
(BN/Bt)&z. These terms are due to N processes only.
The second integral of Eq. (Al), designated (BN/dt)zz,
includes in principle both N and U processes, but because
of the validity of the single-mode expression, all transi-
tions contributing to this rate behave as purely resistive
processes so that there is no need to distinguish between
them.

In the Callaway approach one writes

measure of the disequilibrium toward which N processes
tend to drive modes of frequency co, is assumed to be the
same for modes of all co, and the value of P is chosen so
that the total momentum of the phonon gas is unchanged
by the sum of all N processes. Callaway's results can be
immediately translated to the present theory and a correc-
tion obtained for the XX processes. Using his notation,
we have

X —N0 = —ac V'T
q

—
q (A3)

d&q
Nq N (P) = (a——P)cq 'V T

The "effective relaxation time" a(q) obeys the relation

&=,(1+p/ xx» (A5)

where ~, =~NN+~R .—1 —1 —1

The condition of conservation of phonon momentum
imposed on P determines it to be

Np

Vc 7NN G~d CO

p 0

Vc7 NNVR G~dCO
—1 —1

0

(A6)

The abbreviation G is defined by Eq. (19) of the text.
The total entropy production rates can be shown to be

S= f cxG~dco, (A7)

and this yields the thermal conductivity a=S/(T/T) .
One readily sees that this is equivalent to the usual kinetic
theory formulation of v. Equation (A7) can now be rear-
ranged into the form of Eq. (16) of the text in order to
separate the purely resistive effects from the NN process
effects. With this rearrangement, S becomes

COp CtPpS= f ~RG„dc&)+ f (p —rR)r, r~~G„des, (AS)

such that the first term is the result as obtained in Ref. 3,
and the second term constitutes a correction for the NN
scattering. Calling this correction term b,S, Eqs. (A6) and
(A8) lead to

hS= f —1
2

+c+NN Good~ +R +c+NN Gcod~ +R +c+NN Good~
—1 —1 —1

VR 7c7N G~d CO
—1 —1

(A9)

r

f y'd~ f z'd~& f yzd~ (A10)

The choice

We now appeal to the Schwartz inequality to show that
AS is negative, as we expect it must be because it
represents additional scattering beyond ~R

' and, hence,
muses a reduction in the thermal conductivity.

For appropriately integrable functions y(co) and z(co)
(which we assume the functions involved in the present
analysis to be) the Schwartz inequality' states that

AS&0. (A12)

From Eq. (A9) we see that the correction term introduced
by the NX processes depends upon the difference between
a direct and an inverse mean of rz (where the inverse
mean is always smaller). This difference will be greater,
the stronger the ~ dependence of ~R. Conversely, AS van-

y = (&z&.&~xG )'"—z = (re%'r. r~xG~)'"—

shows the numerator in Eq. (A9) to be negative. Since the
denominator is positive, it follows that
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Nq —x (p)
Sex ——T ' Q C'(9)

(&)

(A13)

ishes for an ro-independent rz as the Schwartz inequality
passes over into an equality in this limit. Therefore, the
nearer rx is to being independent of phonon frequency
within group 1, the smaller will be the value of hS, viz. ,
the less effective the NN processes become. This result
provides an alternative basis for the statement made much
earlier by Klemens that N processes are most important
in the presence of strongly-frequency-dependent resistive
scattering. He has also pointed out that the difference be-
tween the direct and inverse. means is small for a linearly-

frequency-dependent transition rate. Thus, we expect b,S
to be relatively small as long as the linear ~N~ adopted in
the text and in Ref. 3 is the dominant resistive rate.

We can also show that the Callaway approximation
preserves the non-negative character of the S-process en-

tropy production rate. For the subset of XK processes
this rate is given by

where the summation as indicated is taken over group-1
modes. Conversion to integral form and elimination of N
in terms of a by means of Eq. (2) of the text yields

S~~ = f G~dro .a(a —p)
+NN

(A14)

P= f «tv' G~dro
—1 —1 (A15)

The preceding arguments follow through for the original
Callaway theory by replacing wN~ and AN by the U- and
N-process transition rates, respectively.

It is straightforward to show that the choice of
y—= (&iv~6„)' and z:a(r—&tqG„)' in the Schwartz in-

equality leads to ES~~) 0, when p is expressed in the
form

~R. E. Peierls, Quantum Theory of Solids (Oxford University,
Oxford, 1955).

P. G. Klemens, Proc. R. Soc. London, Ser. A 208, 108 (1951).
Baxter H. Armstrong, Phys. Rev. B 23, 883 (1981).

4Joseph Callaway, Phys. Rev. 113, 1046 (1959}.
5R. Berman and J. C. F. Brock, Proc. R. Soc. London, Ser. A

289, 46 (1965).
R. A. Guyer and J. A. Krumhansl, Phys. Rev. 148, 766 (1966).

7Dimitri Mihalas, Stellar Atmospheres, 2nd ed. (Freeman, San
Francisco, 1978).

J. M. Ziman, Electrons and Phonons (Oxford University, Lon-
don, 1963).

P. G. Klemens, in Solid-State Physics, edited by F. Seitz and D.
Turnbull (Academic, New York, 1958), Vol. 7, p. 1.
L. Landau and G. Rumer, Phys. Z. Sowjetunion 11, 18 (1937).

P. G. Klemens, J. Appl. Phys. 38, 4573 (1967}.
Humphrey J. Maris, in Physical AcoustIcs, edited by W. P.
Mason and R. N. Thurston (Academic, New York, 1971),
Vol. VIII.
B. H. Armstrong, IBM Palo Alto Scientific Center Report No.
G320-3408 (1980) (unpublished).

Philip D. Thacher, Phys. Rev. 156, 975 (1967).
' G. Dolling, H. G. Smith, R. M. Nicklow, P. R. Vijayaragha-

van, and M. K. Wilkinson, Phys. Rev. 168, 970 (1968).
O. L. Anderson, in Physical Acoustics, edited by Warren P.
Mason (Academic, New York, 1965), Vol. III B, p. 43.
T. H. K. Barron, J. G. Collins, and G. K. White, Adv. Phys.
29, 609 (1980).

Philip Franklin, A Treatise on AdUanced Calculus (Wiley, New
York, 1947).


