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We present the first study of the effect of interactions on phenomena associated with trapping of diffusing
particles. Specifically, we consider a single trap and a two-component mixture of T and F particles where
only the T particles can be trapped. We show that the trapping rate Q is controlled by the ratio R = ¢z/cp
of the T and F concentrations, and satisfies the scaling law Q ~ R2f(tR*). For tbelow a crossover value
X (which scales as R—%), we recover the conventional result Q ~ t~2. Above X, we find new and

anomalous behavior Q ~ (1/R) ¢~ ¥4,

What are the laws"? that govern the behavior of diffusing
particles in' the presence of random trapping centers? This
question has been the subject of great current interest, in
part because of the large number of applications to real sys-
tems.! Moreover, several novel physical phenomena have
been directly mapped onto trapping models; these include
the Williams-Watt form of dielectric relaxation,® the self-
attracting polymer chain,* and excitation decays in crystals.’®
Essentially all these studies are for systems where the
diffusing particles are noninteracting: they are assumed to
execute a random walk that is completely unconstrained.
This assumption is not justified if one considers real parti-
cles with ‘‘excluded volume,’’ especially for one dimension
(d=1): not only can particles not occupy the same point in
space, but they cannot even pass by each other. For this
reason Fick’s law for noninteracting particles (x2) ~ ¢, is
substantially changed to (x2) ~ /2 on introducing simple
““hard-core” interactions.>™® Although, by analogy, we ex-
pect substantial modifications in the conventional result for
- the number of noninteracting particles trapped per unit time
by a single trap,

Q~ 12 , 6))

this important problem has not yet been addressed. Our
purpose here is to provide the first investigation of how
physical laws governing trapping are modified by the effect
of hard-core interactions between the diffusing particles.

The model. To display the full richness of this problem,
consider two types of particles, 7and F (‘‘thin’” and ‘‘fat™’),
with initial concentrations ¢y and c¢p, which are diffusing on
a linear chain with N sites (see Fig. 1, which also shows
schematically the overall picture developed below). On the
chain we have a single trap which traps only the T particles,
thereby selecting one species over the other. In order to ac-
count for the finite volume of the particles we exclude dou-
ble occupancy of the sites.

We have focused on how the trapping rate depends on cr
and cp. First, sites are picked at random and occupied with

2

T and F particles, avoiding double occupancy, until the
desired initial concentrations c¢r and c¢r have been reached.
To simulate the diffusive trapping process, particles are
selected at random and moved to a randomly selected
nearest-neighbor site. If this site is already occupied, the
move is rejected. When a T particle reaches the trap, it is
removed. After each trial the time is incremented by
1/ Ngyrv, Where N, is the number of surviving particles in
the system. The simulations have been carried out for fixed
total initial concentration c¢=cr+c;=0.8 and we have
varied the ratio R =cg/cr. We have studied lattices with
100, 200, 400, and 800 sites with periodic boundary condi-
tions. For time steps up to 6000 our results were the same
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FIG. 1. Schematic illustration of (a) the model and (b) the
overall physical picture developed in this Rapid Communication for
R =cp/er << 1. For t<t* (the crossover time), the system
behaves as if R =0 so Q ~ t~Y2 As R increases, t* increases; in
fact, t* ~ R ~4.
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. dimension, we recover Eq. (1).

Q Now consider the opposite limit R — oo, where we have
only one 7 particle that can be trapped. Now the trapping
rate is governed by the number of distinct sites (s) 7 visited
up to time ¢ by the ‘‘tagged” T particle in the presence of
hard-core interactions. The time dependence of (s)r can
be deduced by simple scaling arguments.’ In one dimension
we have (s) 7~ ({x2))Y¥2 and therefore we expect

0~ (syr~1d/* . (2a)
The probability Py that a marked particle will return to the
- . . . . origin at time ¢ is proportional to 1/{s)y. We have con-
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FIG. 2. The trapping rate Q vs time ¢ of noninteracting particles Q L (a)
(0) compared with the trapping rate of identical hard-core particles : 4
(®) for a linear chain with 800 sites. The initial particle concentra- 10- :

tion is ¢ =0.8.

for lattice sizes 400 and 800. To improve the statistics, we
binned the results in bins of ten time steps. 5 102}

Consider first the extreme case R =0, where all particles
can be trapped. Figure 2 shows the trapping rate as a func-
tion of time averaged over 6000 initial configurations com-
pared with the trapping rate of noninteracting particles.
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Both rates are identical and are described by the convention- 10-3 2 R 3

al power law (1). This somewhat surprising result can be 0 10 10 t
understood as follows: since for R =0 the trap does not

distinguish between the particles, the trapping rate is .

governed by the density fluctuations of all particles, rather Q

than the density fluctuations of a tagged particle. The evo- 10-1 !
lution equation for the occupation m(f) of site / at time ¢ F
that determines the concentration of surviving particles in
the chain is the same for noninteracting particles and identi-
cal hard-core particles. Therefore, we expect identical trap-
ping rates Q for noninteracting and hard-core particles. 10-2 L
Now Q, the number of particles that have been trapped up b
to time ¢, is proportional-2 to {s), the mean number of dis-
tinct sites visited by a random walk. Since (s) ~ ¢¥2 in one
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) t FIG. 4. Selective trapping rates Q of T particles coupled with
FIG. 3. Selective trapping rate Q of T particles coupled via hard- hard-core interaction to 7 and F particles for a linear chain contain-
core interaction to 7T and F particles with initial concentrations ing 400 sites and the particle concentrations (a) cy=0.75, cz=0.05;

cr=0.05 and ¢y=0.75 for a linear chain containing 400 sites. (b) c¢7=0.74, c¢g=0.06; and (c) c7=0.73, ¢z=0.07.



RAPID COMMUNICATIONS

32 ANOMALOUS TRAPPING: EFFECT OF INTERACTION ... 3369

&
£

PR |

102

107 e ST E—
10 10 ¢ Rb 1

FIG. 5. The trapping rate Q divided by R2=( cr/ cT)2 vs tR* for
cr+cp=08 and ;=005 (A), c¢r=0.06 (0), cr=0.07 (@),
cr=0.08 (x), and ¢7=0.10 (O).
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firmed (2a) by carrying out simulations of P;. From (2a),
we find

0~y 2b)

Figure 3 shows the trapping rate for R =15, averaged over

10000 runs. The result confirms the power law (2b) for all

times longer than 10.

Now let us consider the most interesting regime of small
but finite concentrations of F particles. We have performed
simulations covering a wide range of R values, R << 1 (for

, fixed total initial concentration c¢r+ cr=0.8). Representa-
tive results are shown in Figs. 4(a)-4(c). For small times
the trapping rate is not affected by the hard-core interaction,
so those T particles that do not have an F particle between
them and the trap are trapped easily, thereby obeying the
t~ Y2 behavior of (1). For large times the trapping is deter-
mined by those F particles that hinder the T particles, so we
recover the r~¥* behavior of (2b). The crossover time X

between the two power laws, defined roughly as the inter-
section point between both curves in a log-log plot, depends
crucially on R. Clearly, the average distance / any F particle
must diffuse scales as R~!. Since / ~ /4 the time scales as
R~% For t << t*, Q is independent of R, and for R =0,
0 ~ +~2, Hence,

Q ~ R*f(R*) ~ R*(tR*) "2 ,

which is independent of R only if @« =2. Thus, we conclude
that Q should satisfy the scaling form

0~ RYf(RY) . 3)

Here f(x) ~x~ V2 for x << 1 and f(x) ~ x~¥* for x >> 1.
For ¢ > t*, Eq. (3) predicts the new result Q ~R™Y~4
We have tested the scaling result (3) by plotting Q/R? vs
tR* for five different R values (see Fig. 5). The striking
data collapse confirms Eq. (3). Note that these results have
been obtained for a fixed total initial concentration. The
scaling function itself depends on the total initial concentra-
tion.

In summary, we have elucidated the influence of particle
interactions on the trapping rate of diffusing particles using
a model with two kinds of particles, F and T, and one single
trap which selects the 7 from the F particles. In the particu-
lar case of cr=0, the hard-core interaction does not affect
the trapping rate. In the general case of nonzero cp, we
found a new trapping law, the rate showing scaling behavior
reminiscent of critical phenomena. In the more general case
of a nonzero trap concentration, we expect for ¢y=0 the
same exponential decay of the trapping rate as has been
found by Donsker and Varadhan!® for noninteracting ran-
dom walkers. However, for finite ¢z we expect also this ex-
ponential form to change dramatically.!!
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For noninteracting particles, the exponential decay of the survival
probability (as well as the trapping rate) is of the form
s~exp(—at'/3) in d=1, where a depends on the trap concen-
tration for noninteracting walkers and ¢ scales as x2. Therefore,
we expect s to scale as s ~ exp(ax¥3). For our system, consist-
ing of Fand T particles with hard-core interaction, ¢ scales as x*
and therefore we might expect the exponential part of the trap-
ping to be of the form exp(—ar!/6). Our expectation is con-
firmed by recent unpublished work of L. L. Mosely et al.



