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Novel Lifshitz tricritical point and critical dynamics
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The d-dimensional time-dependent Ginzburg-Landau (TDGL} model is mapped onto a special (d+ 1 j-
dimensional model which exhibits a Lifshitz tricritical point {LTP). Many of the LTP critical properties fol-

low from those of the TDGL model, and are shown to belong to a novel universality class of LTP's which

results from a (previously ignored) relevant, nonlocal, quartic spin operator. These properties are analyzed

with the use of scaling, e expansion, and the n 0o limit.

There has been much recent interest in the mapping of
the critical dynamics of d-dimensional models onto the
equilibrium properties of related systems in D = (d+ 1)
dimensions. ' One way to obtain such a mapping is to con-
sider d-dimensional systems with purely dissipative equa-
tions of motion described by time-dependent Ginzburg-
Landau (TDGL) models. 6 The associated Fokker-Planck
equation is then reduced to an imaginary-time Schrodinger
equation describing a d-dimensional quantum system. This,
in turn, can be mapped onto a classical (d+ 1)-dimensional
equilibrium model. 4 5 Alternatively, the mapping can be ob-
tained directly by integrating over the Gaussian noise field. ~

Thus, the dynamics of an n-component spin model is
mapped onto the' equilibrium statistical mechanics of anoth-
er (n-component) model in d+ 1 dimensions. The coupling
constants of the latter model satisfy specific relations, which
represent competing interactions. ' 5 It follows that as criti-
cality is approached in the dynamic problem, a multicritical
point of the (d+ 1)-dimensional problem is approached
along a special (Riccati ) trajectory.

In this Rapid Communication we elucidate the nature of
this multicritical point. For the standard TDGL model, the
appropriate (d+1)-dimensional multicritical point is a spe-
cial Lifshiftz tricritical point (LTP). LTP's were analyzed
previously by Nicoll, Chang, Tuthill, and Stanley. 8 Howev-
er, the fixed point 8" studied by these authors is unstable.
The critical behavior of the dynamic problem is governed by
a different fixed point, LTP'. This new fixed point is stable
for n = 1 and n ) n, =4+ O(a) (a= 5 —D =4 —d). Thus,
in this range, both the TDGL problem and the Lifshitz tri-
critical one are controlled by LTP'. Although, out of this
range, LTP' is also unstable with respect to a term V (see
below), a special (super)symmetry' on the Riccati trajectory
guarantees that the TDGL problem is still described by
LTP'. The exponents of the TDGL model at criticality
(q, z) thus determine those at LTP'(qs, qq), independently
of the trajectory. Ratios among other exponents also follow.
The properties of LTP" are discussed using both the ~ ex-
pansion and the n ~ limit. The latter analysis resolves a
second problem associated with O'. As shown by Emery, 9

()0' = —AT +v],(t)
Ot QS

~here the Gaussian noise source satisfies

(qa(t)) =0

(s1,(t) q, (t')) =2k' T5(q+q')S(t —t')

(2)

This model has been shown4 5 to be equivalent to a
(d+1)-dimensional static classical model, in which the fre-
quencies co serve as the 0+1 dimension. Using the stand-
ard Ginzburg-Landau Hamiltonian,

(ro+ q') (Sq S,)

~here I =—(2~) f d q (integration over the Brillouin
zone), the effective Hamiltonian is

the usual tricritical points split into critical and critical end
points for n ~ and d(3. The same problem occurs (at
d ( 4) for the LTP associated with W', but not for our new
LTP", which remains tricritical as n ~. Moreover, the
Riccati trajectory, approaching LTP', has interesting analytic
properties which yield new information on exponents and
scaling functions.

In addition to their theoretical interest, LTP's have been
studied experimentally in various systems. ' " Our Rapid
Communication presents new values for the tricritical ex-
ponents, with which these experiments should be critically
compared. We note that similar new universality class arise
for general order Lifshitz multicritical points as well. ~

Our analysis is based on a d-dimensional model, with an
energy functional P I Sal, where Sa is the Fourier transform
of the n-component spin. The time evolution is described
by the Langevin equation,
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=1P;,r= — (Rp+ p, oq2+ q4+ co ) (Sq S „„)
2 ~Q&

+ (Uo+ Vpqt )(Sq, , Sq,„)(Sq,„S q, q q, „„)+WpJ J J J J (S.S)(S S)(S S),

(4)

with the Riccati constraints

Ro = rj —a ( n + 2) uo p o = 2ro Uo = 8 uprp, Vp = 2uo, Wo = 32uJ

and with the generalized Brillouin zone q +co & 1. Intro-
ducing a cutoff on co affects the coefficient a (n+2) up in
the expression for Ro.

As ro approaches its critical value, the scaling fields t, JM, ,
and U (associated with Rp, p,p, and Up), all vanish as well.
Looking at M,fr in the general parameter space (t, p„, U), the
p, =0 plane corresponds to Lifshitz point behavior, while
U = 0 corresponds to tricritical behavior. The point
t=p, = U=O is thus a LTP. The parameter V, related to
the momentum-dependent quartic spin terms, was not in-
cluded in earlier studies of the LTP. The associated opera-
tor has the same upper critical dimensionality as 8', i.e.,
D = d+1=5.

For a general Lifshitz problem, '2 q and co are replaced by
m- and (D —m)-component vectors q" and q~. In our spe-
cial case, D= 1+1, m=d, q =q, q =~. Further, for
na1, one should include an additional term,

V (qI'+qj')'(Sq S„)(S„Sq q q )

Although this term is relevant for LTP' when n & n, (for
m = d = D —1), and is important for all ne 1 for m~d, it
does not arise in the TDGL problem. In what follows we
consider only m = d and LTP", for which V=O.

We start from a scaling analysis near LTP'. The spin-
correlation function has the form

G(q, o), t, p„, U)= (Sq„S q „)

=t "'rg(qt "o~t ~
t t &Ut "),

(6)

where 4„and 4„are crossover exponents. At LTP',
t = p, = U= 0, and Eq. (6) reduces to

(7)

with the usual scaling relations' yLr = v
~~

(4 —rl ~~ ) = vt
x (2 —qq). Equation (7) should be identical to the one ob-
tained for the TDGL model

(S „S „&=q 'z +*'g( /q*)

where z is the dynamic exponent. Comparing (7) and (8),
the LTP' exponents g~~ and qq are uniquely determined by
those known for the TDGL model' via

4 —v) o
= 2 —vj+ z, 2 rt t = (2 q+ z—)/z—

Consider now the Riccati trajectory. In the original Ham-
iltonian (3), there is only one relevant variable, related to
the temperature; we denote the appropriate scaling field by
t. The mapping of the associated TDGL model onto the
(d+ 1)-dimensional system of Eq. (4) implies that t, p„, and
Uall vanish when t=0. Since t, p. , U, and tare all analytic

in the parameters of the original problem (e.g. , rp, up), we
expect t, p, , and U to be analytic in t. In the simplest case
t, p„, and U will be linear in t (to leading order). We can
now use two alternative renormalization schemes. In the
first, we rescale lengths by a factor b in A, obtain P" with
t = b' "t, and then map onto ~,'ff, with t', p, ', arid U' all
linear in b' "t. Alternatively, we can first map ~ onto ~,ff,
and then renormalize. The parameter of the resulting P,'ff

1/y 1/v t t 4 /v t t 4 /'P

will be t"~ b ~~t~ b "t p, "~ b & ~~t U"~ b I' ~~t. Since
t", p, ", and U" are analytic (and therefore, in the simplest
case, linear) in t', p, ', U', we conclude that at least one of
I/v~~, 4„/vp, and C„/v~~ should be equal to 1/v. (In gen-
eral, one might also have rational ratios. ) Both our O(e)
and n ~ results yield 4„/v~~ =1/v, and we expect this
equality to hold in general. With this equality, the Riccati
trajectory is identified as a straight line in the (t, p„, U)
space, approaching LTP'.

The intermediate quantum model in the mapping from
the TDGL system to the (d+1)-dimensional classical and
static model has zero ground-state energy by construction,
implying that along the Riccati trajectory the free energy is
analytic. ~ Writing the singular part of the free energy in
the scaling form

F, = t 'rf (p.t ~, Ut ") (10)

and noting that 2 —o;LT=v~~d+I q is usually a noninteger,
we conclude that, on the trajectory, F, =0. Since, to O(e),
both 4„& 1 and 4„&1, it follows that f(0, 0) =0. This is
a rather unusual and strong constraint of f(x,y).

Our ~-expansion analysis is a straightforward extension of
the renormalization-group study of Lifshitz points' to Eq.
(4). Rescaling q" q'/a, q~ q /b, S p g fS

2-q~ 4-g
))

D —m+2-g~
with b ~=a and )2=a b ~, we find that
near the Gaussian fixed point V'= a + ~ D V; V
= a +~ V, and W'=a2 6+m —2D) W, identifying the upper
critical dimensionality as D„=3+m/2. For the LTP prob-
lem, nonclassical behavior is expected for d = m
=D —1 & 4, the same as for the TDGL model. To order
q =4 —d, V is not generated from (4). Integrating over
spins with b '& q'+~'& 1, it is straightforward to write
0 (q) recursion relations for R, p„, U, V, and W. Our new
fixed point, LTP", has W'=0(q ) and V'=0(e). It is
stable against 8', with the crossover exponent

v~~
'= —(n +26)q/(n +8). The three relevant vari-

ables have exponents

vo '=4 —( n2)+/( q+n8)

) „=4„vo'=2 —(n+2)e/(n+ 8)

Ag=@gv) = 2 —6

and we confirm our (general) result k„= 1/v. To 0 (q), we
also find X v =4 ~vo

' = (4 —n) q/(n + 8), so that V is ir-
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v ii
'=4 —12a-/(22 —m)

X„=4„v~~ '=2 —12e /(22 —m)

X„=C&„v'~ '=2 —2(14+ m)e /(22 —m)

(12)

Note that~for m = d= D —1 these results coincide with our
LTP', Eq. (11). Experimental results'0" should be reana-
lyzed and compared with these corrected exponents.

It turns out that V does not affect critical exponents to
the leading order in the large n limit. Therefore, a single
calculation yields results for all D and m. Following the
usual procedure, '4 the renormalized parameters R, p, , and
U are

with

R =Rp+ UIp(R, p, )+ VI2(R, p, )

p, = p, a+ VIp(R, p, )

U= Uo+ WIp(R, p, )

Ir(R, p, ) =g" dDqlq~~l'(R+ p Iq~~ 12+ Iq I + Iq I )

(13a)

(13b)

(13c)

The LTP surface is identified as ULT= —WIa(0, 0), po'
= —VIo(0, 0). For D(3+m/2, Eq. (13b) yields P,~R'r',

relevant for n ) n, =4+ 0(s). The exponents (11) should
thus be observed in Lifshitz tricritical problems with
m =D —1 and n ) n, . For n & n„a new fixed point, with
V', V ~0 becomes stable.

For m&d, V is important for all n&1, and the LTP ex-
ponents are determined by new fixed points, with both V, V
of order a =3+ m/2 —D, and W of order e2. The situa-
tion simplifies only for n =1, when V and V represent the
same operator. In this case, we find

and Ia(R, p, ) —Io(0, 0)~p/V" R' /V. Substituting into
Eq. (13a), we obtain

1/2+ g~R C VR (2D —m —2)/4 (14)

in agreement with our ~-expansion results and the relation
4„v'~'=(2D —m —4) =1/v. For the fixed point~ W' (i.e. ,
V=O), Eq. (14) is replaced by

g UR( D m 4)/4+ g~R(2D —m —4)/2 (16)

Since 8 ) 0, this equation does not have a solution for R
which vanishes when t 0. The result is presumably a
first-order transition, as in the n ~ limit of the usual tri-
critical point. Fortunately, the introduction of V renormal-
izes p, via (13b), destabilizes (16), and yields crossover to
(14).

After completion of this work we became aware of the
work of Dengler, ' who has investigated the case n = 1 for
LTP's and agrees with our results.

We are grateful to V. J. Emery, M. E. Fisher, and D. Mu-
kamel for illuminating discussions and to the U.S.—Israel
Binational Science Foundation and the Israel Academy of
Sciences and Humanitites for support. A. A. and M. Z. ack-
nowledge the hospitality of the IBM Zurich Laboratory, and
T.S. that of Tel Aviv University and The Weizmann Insti-
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where A, 8, and C are positive numbers and t = R o
—R LT.

We thus identify

yLr = 4/(2D —m —2)

4„=4&„= (2D —m —4)/(2D —m —2)

e„=—(6+ m —2D)/(2D —m —2)
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