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Critical dynamics in d dimensions can be mapped onto a supersymmetric equilibrium problem in d+1
with a Lifshitz tricritical point. The existence of such a point is demonstrated for the Ising model on the

hcep lattice by Monte Carlo simulation.

Mapping the dynamic properties of models in d dimen-
sions onto the static equilibrium properties of related
models in d+1 dimensions is often an informative pro-
cedure. One way to establish such a mapping proceeds by
relating the (continuous-time) dynamics to a quantum
Hamiltonian in d dimensions which commutes with the
transfer matrix of some (d+ 1)-dimensional classical
model.l'2  Alternatively, one can map the discrete-time
Glauber dynamics of a d-dimensional classical problem onto
the statics of a (d + 1)-dimensional one.>*

Through this type of mapping, the dynamical critical prop-
erties of the exactly solvable Ising model on a honeycomb
lattice were used to predict some critical properties of the
so-far unsolvable Ising model on a hcp lattice.* These prop-
erties were predicted along a line

exp(4J) =coshD/cosh(3D) )

parametrized by J and D, the temperature-reduced,
nearest-neighbor, in-plane (1), and out-of-plane (1) cou-
pling constants for the Ising model. It was also shown* that
along (1) a transition from a paramagnetic (D < D.) to a
ferromagnetic phase exists, where Dc=‘71n(2+\/§ ) is the

critical value of the coupling constant for the Ising model on
a honeycomb lattice.

The mapping, however, also predicted several surprising
properties for the hcp lattice: along (1), even at the transi-
tion point (J.,D.), where J,=J(D,), the free energy is ana-
lytic, and at this transition between two spatially homogene-
ous phases the static, spatial correlations are anisotropic
with correlation lengths &, ~|D—D.~* and &,~|D
— D.|~#*, where v =1 and z equals the dynamic exponent of
the two-dimensional (2D) problem. The anisotropy is easily
understood if the transition point is identified®** as a
Lifshitz point® of the 3D problem with m =2 soft directions.
At such a point three lines of transitions meet: the
paramagnetic (P) to ferromagnetic (F), P to modulated
(M), and M to F lines. The modulated phase is character-
ized by a wave vector k}f, and on the P-M transition line
kM — 0 as the Lifshitz point is approached. In this picture,
the special line (1) corresponds to a trajectory in the (J,D)
plane of the hcp Ising model that lies in the P phase (for
D < D), passes through the Lifshitz point at (J,,D.) and
either continues into the F phase (for D > D.) or serves as
its boundary. At such a point anisotropic scaling is expect-

2

ed. However, when the claim that the dynamic-static prob-
lem in d (spatial) dimensions is equivalent to the standard
Lifshitz problem in d +1 dimensions is scrutinized, several
apparent inconsistencies are encountered.

First, the classical result for the dynamic-static problems® is
vf=+, v{=2zvfi=1. For the Lifshitz problem, however,
vii= %—, vi= -i—; that is, the exponents are off by a factor of
2 and only their ratio, z=2, is the same in the classical lim-
its of the two problems. A second and more serious incon-
sistency concerns the upper critical dimension, below which
exponents deviate from their classical values. For the
static-dynamic problem this is d,=4, while for a Lifshitz
point with m = d “‘soft” directions

dl=d,+1=4+m/2=4+d,/2 , )

yielding d,=6. Third,* even though the system undergoes a
phase transition, the free energy is analytic along line (1).

In this Rapid Communication we offer a resolution of
these inconsistencies by identifying the transition point as a
Lifshitz tricritical point and substantiate this claim with
Monte Carlo simulations of the Ising model on a hcp lattice.
We first motivate the claim by considering the mapping for
the ¢* field theory in the continuum limit and at the same
time show that the resulting Hamiltonian in d+1 dimen-
sions is supersymmetric, which accounts for the analyticity
of the free energy.

We start by noting that for a d-dimensional model charac-
terized by a Hamiltonian density #[¢(x)] the Langevin
equation for the time evolution of the field ¢ (x,?) is

=47, (3

where {(x,?) is a random Gaussian noise, described by the
probability

Pglg(x,t)]—vexp[——i{}—f ddxdt§2(x,t)] , )

with o =2kg7. Changing variables and expressing the pro-
bability of observing a space-time history of the ¢ field’-® as

D

De |l - ©)

Plo(x,0]1=Ps{tls]}

3354 ©1985 The American Physical Society



32 CRITICAL DYNAMICS, LIFSHITZ TRICRITICALITY, AND . ..

we find from (3) that

P[¢]~exp[—%fd‘xdt[[§£+%i—/ ] , (6)

where exp(—#5/20) represents the (formally) exponentiat-
ed form of the Jacobian ||D¢/D¢||. Obviously, since
¢ (x,1) appears in the dynamic process with probability P{¢]
and the latter can be viewed as

2
+#;

exp[—f d¥tly Held (y) ]] ,

we have mapped the dynamic problem in d dimensions onto
an equilibrium problem in d+1, with y,=x (d com-
ponents) and y; =t Derivations of #y in this manner ap-
pear in the literature in various forms.”® Often ||D¢/D ||
is expressed®?® as a functional integral over fermionic vari-
ables ¢, leading to a supersymmetric #o5l¢,¢]. However,
if the continuum limit in time is taken for a spatially
discrete lattice, the integration over the fermionic variables
can be carried out, and one finds
— (1/20)%; = % (8°#/8¢?). Furthermore, since #y is su-
persymmetric, its lowest eigenvalue is zero,'® and the free

energy of models defined in this manner, such as the hcp -

Ising model on the line (1), is analytic.

Concentrating in (6) on the term (8¢/dy, +8#78¢ )%, we
note that the cross term is a complete time derivative, and
as such yields to ) d?*ly#; a surface term with no bulk
contribution to the free energy.

Considering now critical dynamics of the d-dimensional
Hamiltonian

= Ll (T49) ]+ ugt ™
kgT
we obtain using (7) in (6), an #5y in d+ 1 dimensions of
the form

Hp= 7R+ u(V16)2+ (V)2 + (V1 6)?]
+v¢’Vio+ Upt+ wob+55 | ®)

with R ~ 2, u~r, and U~ r. For the moment disregard-
ing #5 and shifts caused by fluctuations, we see that the
r =0 critical point of the d-dimensional model corresponds
to a Lifshitz tricritical (LTC) point with R=u=U=0 in
d + 1 dimensions, and that two terms, ¢® and ¢$*V3 ¢, desta-
bilize the classical (e.g., Gaussian) LTC fixed point. These
destabilizing terms become relevant for d=d +1 < 5, that
is, when d <d,=4. This agrees with the upper critical
dimension of the static-dynamic problem, thereby resolving
one of the inconsistencies. The term &5 can shift bare cou-
plings from their classical LTC values, but this appears to
be!! precisely the shift needed to account for the effect of
fluctuations, at least to order e=4—d. For d > d, fluctua-
tions can be neglected, and the behavior is that of a Gauss-
ian LTC model with R = 2, which accounts for factor of 2
inconsistency between the classical values of the exponents.
We now report on the first stage of standard Monte Carlo
simulations of the Ising model on the hcp lattice aimed at
substantiating the claims made above, namely, that (J,,D,)
is a LTC point. Our findings do support this claim. The
phase diagram, obtained from simulations with 2x 10°— 10*
spins with 10* Monte Carlo steps per spin, is shown on Fig.
1. Three phases are clearly identified: paramagnetic (P),

RAPID COMMUNICATIONS

3355

Yo magmmm ==X

1 "
-1O 05 Jo O J,

FIG. 1. Phase diagram of the Ising model on the hcp lattice.
J(D) are the in-plane (out-of-plane) couplings divided by kg7. The
ferromagnetic phase (F) can be reached from the paramagnetic (P)
phase by a continuous transition (solid line) or a first-order one
(dashed line). The heavy dot at (J,,D,) is the Lifshitz tricritical
point. The ordered phase (O) is separated from P by a first-order
line. Points a—e indicate where the data of Figs. 2 and 3 were col-
lected. The dotted line corresponds to Eq. (1).

ferromagnetic (F), and an ordered, possibly commensurate
phase (0). The special line (1) indeed lies in the paramag-
netic phase for D < D,. For D > D, it is very close to the
boundary of the F phase, and probably coincides with it. A
continuous transition line from P to F, of (3D) Ising char-
acter, passes between the critical point of the d=2 Ising
model on the triangular lattice, (Ja,0), and the LTC point.
However, the P-F transition becomes first order for
D > D,, as seen in a jump in the magnetization, and in a
double-peak structure of the energy histograms (see Fig. 2).
These observations confirm the tricritical nature of the spe-
cial transition point.”> To confirm its Lifshitz nature, we
calculated the structure factor G (k)= (S(k)S(—k)),
where S(k) is the Fourier transform of the Ising spins.
Our observations indicate that the paramagnetic phase ex-
tends to low temperatures, way beyond the LTC point.
Thus, the modulated phase (expected classically) seems to
be washed out by the strong fluctuations.

In the paramagnetic phase we identify a Lifshitz line:’ to
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FIG. 2. Energy histograms taken at (a) J= —0.3464, D=0.8
(point e on Fig. 1) and (b) J= —0.2892, D=0.7 (point d on Fig.
1). No double peak is seen for D < D,.
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FIG. 3. Structure factor G.(q) (taken at points a,b,c on Fig. 1).
approached.

its left, G (k) has a ring of maxima, centered around k=0.
As the Lifshitz line is approached, the ring shrinks (see Fig.
3), towards k=0; a single peak is found on the line and to
its right. The Lifshitz line lies between (1) and the P-F
transition line. These lines meet at the special transition
point (J,,D.). Similar small deviation of the Lifshitz line
from the disorder line was observed in a two-dimensional
model.”* In our case (1) cannot be called a disorder line,
since the system orders on it for D > D,.

These observations clearly indicate the Lifshitz nature of
the special transition point, and therefore the claim of it be-
ing.a Lifshitz tricritical point is most strongly supported by
our numerical findings. We have also found anisotropic
scaling of the specific heat at (J,D,), for system sizes rang-
ing from 10% to 30%, again confirming the Lifshitz nature of
the multicritical point.'*

A number of points have not been addressed in detail.
One is to determine whether or not the paramagnetic phase
extends all the way to 7'=0. So far we concentrated on
temperatures close to the LTC point, and we can only say
with certainty that the paramagnetic phase - becomes nar-
rower as 7T decreases. Another concerns the nature of the
phase denoted by O. Arguments!® similar to those used for
the fcc antiferromagnet!é suggest that at a sufficiently low
temperature a commensurate phase with k, = (—%—,0) should

exist. This structure consists of identical xy planes that
have straight rows of spins of alternating sign. Instead of
straight rows, we observe kinky lines, corresponding to vari-
ous degenerate ground states of the hcp lattice. Whether
these states with kinks constitute a genuine thermodynamic
phase that undergoes a transition to the (%, 0) phase at low

The maxima form a ring that shrinks towards q=0 as the LTC point is

) temperature, or defects that should disappear with sufficient

annealing, is unresolved. Along the line D =J our system
is equivalent to the standard hcp Ising antiferromagnet.
This, in turn, is closely related to the fcc antiferromagnet;!6
indeed we find that the transition temperatures for both sys-
tems are very close: —J/kgpT =0.56. A third issue for fu-
ture study is the possible existence of a modulated phase
with algebraic decay of correlations.

In summary, we found strong numerical support of the
claim that the Ising model on the hcp lattice has a Lifshitz
tricritical point. As has been shown, the critical dynamics of
the d=2 Ising model correspond to static critical behavior
on a special line that goes through the LTC point. The part
of this special line that lies in the paramagnetic phase is
close to the Lifshitz line. The low-temperature part of the
special line is very close to the first-order boundary of the
ferromagnetic phase. The fact that a two-parameter model
contains a LTC point (for which in general three parameters
must be properly tuned) is probably due to some ‘‘hidden”’
symmetry of the hcp Ising model that reflects the supersym-
metry of the continuum model discussed above. We note
that a physical system with a LTC point, with m =2 ‘“‘soft”
directions, will provide a direct experimental realization of
supersymmetry.
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