
PHYSICAL REVIEW B VOLUME 32, NUMBER 5 1 SEPTEMBER 1985

Quantum diffusion in thin disordered wires
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Quantum Ohmic residual resistance of a thin disordered wire, approximated as a one-dimensional mul-

tichannel conductor, is known to scale exponentially with length. This nonadditivity is shown to imply (i) a
low-frequency noise-power spectrum proportional to —in(Q)/0, and (ii) a dispersive capacitative im-

pedance proportional to tanh(v iA)/JIB A. deep connection to the quantum Brownian motion with

linear dynamical frictional coupling to a harmonic-oscillator bath is pointed out and interpreted in physical
terms.

where R,i is the classical linearly additive resistance and
R, = rP/e' sets the scale of resistance with r, of the order of
unity. For a strictly one-dimensional wire R,I= (nit/2e') I/I,
with /, the mean free path for elastic backscattering. For a
thin physical wire we set R,l= (I/t )(vrt/2e2)I/I„where v

counts in some sense the parallel channels in the classical
limit. The point essential to our treatment is the exponen-
tial growth of R(i) with I for R,»& R, . In this note we
derive some physical consequences following from this
nonadditivity which is of purely quantum origin. We be-
lieve these to be of significance to experiments on high-
resistance (R,l» R, ) thin disordered wires at low tem-
peratures, i.e., in the quantum regime when the inelastic
mean free path /;„&& /, . We will demonstrate in particular
the appearance of a (1/f)-type noise, and of dispersive
transport. We will also point out and interpret in physical
terms a rather subtle connection between this and the prob-
lem of quantum diffusion in the presence of dynamical fric-
tional coupling to a harmonic-oscillator bath. The latter has
been and continues to be a subject of intense discussion in
the contest of dissipative quantum motion.

First, let us consider the question of (1/f)-type noise in
such a resistive wire at absolute zero of temperature. For
this we consider the quantum diffusion of an electron in the
one-dimensional wire of length / whose resistance is given
by Eq. (1). We assume R,|» R„so that R ( I )= R, exp(R, |/R, ). This defines a length-scale-dependent
diffusion constant D (I) via the Einsetin relation for a de-
generate electron system equating conductivity to
Te2D(l) np Thus, we. get

D(i) = (u~I)e (2)

where P = I/2r, v, and nF =2//cbrit. vF is the density of states at
the Fermi level per unit 1ength, and vF the Fermi velocity.

The nonadditive and non-self-averaging nature of the
residual resistance of a strictly one-dimensional conductor
with static potential disorder is now well understood in
terms of quantum diffusion in one space dimension, i.e.,
the one-dimensional (1D) and one-channel (1C) prob-
lem. ' 4 The realistic case of a thin disordered wire corre-
sponds to the 1D and nC problem with n large. 5 In this
large-n limit, the statistical fluctuation of resistance is ex-
pected to be relatively negligible. The nonadditivity, howev-
er, persists and the resistance scales exponentially with
length as5

R (I ) = R, (expR, i /R, —1), . . .

Now, following Thouless, 7 we can identify the mean-
squared displacement with /2 and the diffusion time with the
time r(I) to traverse the sample length I, and write for the
length-scale-dependent diffusion constant

2D(I) =
r I

From Eqs. (2) and (3) we get for large r

I ——lnr+ O(lnlnr)/e

(3)

(4)

with

lnx cosx dx = O(i) for t0 0 (Sb)

where

o)/ 8/0= exp'=—
2vF /

The upper limit II in Eq. (Sb) reflects the fact that X(t) is
bounded I. Equation (Sa) is essentially the 1/f noise with a
slow logarithmic correction factor. It is purely of quantum
origin inasmuch as it results from the nonadditive resistance
R (I) growing exponentially with the sample length I—a cu-
mulative effect of quantum interference. The latter makes
dissusion slower with time. The closest classical analog of
this is the I/f noise discussed by Marinari, Parisi, Ruelle,
and Windey, where the particle moves classically in a spa-
tially white-noise random static potential and is acted upon
by a stochastic force. Again the classical motion gets slowed
down with time as it is limited by progressively higher po-
tential barriers to escape over. We should note that the
present mechanism, depending on the nonaddivity of resis-
tance in Eq. (1), is dominant only for the condition
R,l(i) » R, . Now at nonzero temperatures the sample
length I in Eq. (1) must be replaced by Ii„ for I;„(I because
of loss of coherence, and the condition then reads
R„(i;„)» R, . This may get violated at higher tempera-
tures leading to suppression of the I/f' noise originating

indicating slow diffusion.
We can now view the scaling eqation (4) as the long-time

relation between the root-mean-square displacement
(X2(r))' ' and the diffusion time t for an electron within
the sample of length /. The associated low-frequency
noise-power spectrum S (cu) is given bys

a+T 2

S„(c0)= lim X(t)e'"'dt = —2r)
' ",(Sa)2T & —T
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from the present mechanism. This provides an experimen-
tal test for this mechanism.

We now turn to the question of dispersive transport in
such a disordered system. In particular, we shall derive an
expression for the ac impedance Zl(cu) of such a disordered
wire of length i, with Z&(0) =R(i). Let the origin x=0
coincide with the midpoint of the wire such that the wire is
bounded by x = + i/2. Let V(x) be the electrochemical
potential at the point x when a dc current Ip is established
as a causative source such that V(+ i/2) = + Vp/2. The
electrochemical-potential drop across the wire is related to
the current Ip by Vp= IpR (i). Now the crucial point is that
the electrochemical-potential difference V(x) as defined
operationally by an ideal potentiometer in a four-probe con-
figuration is not given by V(x ] = Vp /2 —IpR [ (i/2) +x ) be-
cause of interference from the segment of the wire to the
right of the point x. The correct expression for V(x) is
given by'

Bi (x, t ) C ( ) it V (x, t )
Qx Bt

a v(x, t) = —i (x, t)r(x)
QX

(1 la)

(i ib)

Substituting for i (x, t) from Eq. (11b) into Eq. (lla) we get

D, (j2V QV
QX Bt

~here

2l,3

P3A epR (i)
and

(12)

We can now write down at once the time-dependent equa-
tions for the propagation of current i(x, t), etc. on the
above distributed resistance-capacitance line as

V(x) =—
1

~P X
2 f,

tanh P— (6)

f

x, = —tanh Px
p I,

We should remark here that Eq. (6) is an approximation of
the exact expression given in Eq. (17) of Ref. 9 in that the
reflection coefficients have been reexpressed in terms of the
resistance R (i) via the simple Landauer expression5 ~ and
tanh(Pl/1, ) = 1. We verify that V(x) =0 at the midpoint
x=0, indeed as in the exact expression (17) of Ref. 9.
Also, V(x) + Vp/2 as x + —,', recalling that

tanh(Pl/(2l, ) = 1. For the current carrying resistor the
change in the electrochemical potential is predominently
Coulombic in nature. Thus, V(x) in Eq. (6) can be taken
as electrostatic potential leading to accumulation of charge
given by the approximately 1D Poisson equation.

0'V —p(x)
()X2 epA

gP2 x' ' 'xI
p(x) =

2
Vpsech2 P — tanh P (8)

Equations (7) and (8) together, define an effective capaci-
tance per unit length

C(x) = P = ', sech' P—(x) AP' x (9)
V(x)

This leads to an equivalent circuit in which the resistor is
shunted by distributed capacitance per unit length C(x)
connecting the point x to the point x=0 (midpoint). The
distributed resistance r(x) per unit length at point x is by
definition

where 3 is the effective cross-sectional area of the 1D wire.
We should note that for the usual case of the classical addi-
tive resistor V(x) is linear in x and p(x) is identically zero
as is well known. Thus, again it is the nonadditivity of the
quantum Ohmic resistance that leads to nonzero p(x).
Indeed, such a charging effect is to be expected from the
"residual resistance dipole" concept of Landauer. ' The
present case is a continuum limit of the same. Thus, the
charge per unit length is given by

Equation (12) clearly displays a dispersive transport with
non-Gaussian spread in the real x space. We will, however,
be interested in the ac impedence Zt(co) for the above
dispersive line. Straightforward network analysis gives

Z ( ) tanh(4i 0) R (i)
Vi 0 (i3)

2l 1 —R [/R
Ctlg 2lrfg = e

&pAp R,)

For R,)
—50 kO, l=0.01 m, Ap-10 m corresponding

to a radius of 10 p, m, and knowing R, —10 k0, and
op= 1/36m &&10 9 Fm ' we get f, —107 Hz. This would
correspond to a material with extremely high residual resis-
tivity. But, if we recall that the effective area Ap can be
much larger than the physical cross section of the wire be-
cause of fringe fields [i.e. , strictly the 1D Poisson equation
(7) is not valid], the estimates move within the range of
realizability.

Finally, we turn to point out and interpret in physical
terms a rather subtle connection between the quantu~ dif-
fusion in a statically disordered conductor as discussed
above and the diffusion in a dynamically disordered medi-
um. Dynamical disorder has been treated by several work-
ers as a parametric stochastic modulation of the potential,
which is now known to be inconsistent with the physics of
diffusion. " The microscopically consistent way to treat
dynamical disorder is via a frictional coupling to a dynamical
bath which can be taken, without loss of generality, as a set
of harmonic oscillators coupled linearly to the electron. For
this model one has for the mean-squared displacement

X (t) = y ln(~co, yt) (15)

where 0 = (cu/D')(l2/P), the dimensionless circular fre-
quency. The frequency scale is set by cu, =D'P /l22which is
experimentally the most important single quantity in that
Z~(co) shows structure around co —pp, . Expressing eo, in
terms of physically transparent quantities, we have

r

Ip= —'
2

sech2 P—1 pR(l) 2 x (10) in the quantum regime, y ' « t «t/k&T, where y is the
"Langevin"' frictional coefficient and co, is the oscillator
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bath cutoff frequency. Thus, for T=O K, we have a slow
logarithmic diffusion as t ~, which is qualitatively similar
to the quantum diffusion in our Eq. (4). This can be un-
derstood in the following physical terms. Static disorder
scatters elastically and coherently in time while dynamic dis-
order scatters inelastically and incoherently. However, at
T = 0 K the oscillators are in the ground state and any ine-
lastic real scattering involving energy transfer from the os-
cillators to the electron is energetically forbidden. Inelastic
scattering involving excitation of oscillators, and concomi-
tant slowing down of the electron, is still allowed, but such
a process has eventually a high probability of being followed
by a deexcitation of the same oscillator by the slow electron,
as in the case of "phonon drag. " This virtual excitation-
deexcitation process is equivalent to an elastic scattering in

which only the momentum is transferred to the bath (which
is a dense set of spatially phase-uncorrelated local oscilla-
tors). In essence, as T 0 K, the elastic scattering dom-
inates over the inelastic processes and eventually at T = G K
the ground-static oscillators simply act as static scatterers.
This raises the interesting possibility of solving the original
problem of quantum diffusion for d ) 1 in terms of the
dynamical problem which appears tractable in all dimensions
for the oscillator-bath model with linear frictional coupling.
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