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The pair-distribution function g2(r1, r2) in drops of liquid He is studied with the variational Monte Carlo

method. It is shown that in drops having 70 or more atoms it can be approximated as a functional of the
local one-particle density and the separation r~2. Energy-density functionals based on this approximation of

g2 give a fairly accurate description of the ground-state properties of the drops.
I

The density-density correlation function, or the pair-
distribution function, g2(r1, r2), of a many-body system con-
taining A particles relates the joint probability p2(r1, r2) of
finding two particles at rq and r2 to the one-particle density
p1(r) at r1 and r2.

P2(rl r2) Pl(rl)P1(r2)g2(rl ~ r2) (I)
In homogeneous liquids (A ~) g2(pt, r12) is a function
of the liquid density pq and the interparticle spacing
r12= ~r1 —r2I. In a spherically symmetric drop p1 is a func-
tion of r and A, and the g2 can depend upon A, rb r2, and
f12

We have studied g2(r1, r2, r12) in drops of liquid He con-
taining 8-240 atoms using the previously determined' varia-
tional Monte Carlo (VMC) wave function 4'„ for the
ground state. Comparisons' with exact Green's-function
Monte Carlo (GFMC) calculations show that these and the
related infinite-liquid variational wave functions give

ground-state energies, single-particle densities, and a g2 in
liquid that are accurate within a few percent. Configurations
of particle coordinates x;, 1~I ~A, were generated for
each drop by sampling the [W„(r;)]2 with the Metropolis
Monte Carlo method. All pairs (if) in these configurations
were binned according to the values of rI, rj, and r». g2 is
obtained from the number of pairs in the bins; in the fig-
ures we give curves that result from smoothing the binned
values.

There are two principal results of this study. First, the
g2(r1, r2, r12) for each drop considered has no detectable
dependence on r~ —r2, and thus is a function of 8
= (r1+ r2)/2 and r12 only. This feature is illustrated in Fig.
1 for the 112-atom drop. Second, for A ~ 70 g2 for drops
of different A depends mostly on p(R ) and r12, whereas
for A ~40 and small density there is an explicit A depen-
dence. This result is shown in Fig. 2.

I
'

t
'

I
'

I
'

I

~4

CEl

l.2—

l.o—

0.8—

0.6—

0.4—

0.2,—

0—
P

0;r

l.0—

0.8—

0.6—

0.4—E

0,

0—
r

4 5
r, (A)

FIG. 1. g2(r1, r2, r12) for A 112 drop. The R =6, 8, and 10
sets have three curves each with rl, —r2 0, 2, and 4 A, while the
R~ 12 set has only two curves with r~ —r2=0 and 2. The statisti-
cal errors for the f~rst three sets are —+0.02; for the R~ 12 set
they are 20.05. The dots give g2 „(pt(R~),r12}.
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FIG. 2. g2(p~(R ),rl2) for various drops. The Pl =0.02-A
set has three curves for A = 240, 112, and 70, the 0.015-A 3 set has
these and A =40, while the 0.01- and 0.005-A sets have six
curves for drops of A =240, 112, 70, 40, 20, and 8. The statistical
errors for the first three sets are —+0.01; for the 0.005-A set
they are —%0.03. The dots give g2 „(p1(R~),r12).
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The variational wave function of drops having A ~ 20 has
the form

'Ir„= exp —g ul(rl) + g u, (r„")+ g u3(rj, rjk, rkl)
1'

1 i& j i& j&k

The single-atom correlation ul(r) depends upon A; u2(rl, )
has a weak (probably negligible) dependence upon A, while
u3 ( r/J fjk fk/) has no significant dependence on
Manousakis and Usmani' have calculated g2„(pl, r12) in
uniform liquid of density pl, by setting u1=0 in Eq. (2) and
using the uq and u3 found for the 3 =112 drop. They used
the hypernetted chain method with the scaling approxima-
tion. In principle these g2„(pl, r) are different from the
g2 L(pl, r) of the liquid. The latter exist only for those den-
sities at which the liquid is stable, while gq „are defined at0 3
all densities. At equilibrium density, po=0.0219 A, the
gq „and the GFMC gq L, are very close. The equilibrium en-
ergy and density of the uniform liquid obtained with this uq

and u3 are —6.74 K/A and 0.94po, compared with —7.12
K/A and 0.99po obtained with the GFMC method.

Figures 1 and 2 show that g2(pl(R ),r12) in the drops is
very close to g2„(pl(R ), r12) except at small pl and small
A. The density distributions of the drops are very smooth;
their surface thicknesses range from 5 to 7 A. Consequent-
ly when r~~ & 5 A we have

Pl(Rtn Pl R m 2 Pl("1)+Pl "2

= [Pl(rl) Pl(r2) 1"',
where R, is the center of mass (rl+r2)/2. On the other
hand, gq does not have much density dependence for r~q

& 5 A. We have verified that for A ~ 70, within the errors

indicated in Figs. 1 and 2,

g2(rl r2 r12) g2, (Pl 12) (4)

where pl is any of the average densities given in Eq. (3).
Krotscheck, Qian, and Kohn3 have recently developed a

theory of the inhomogeneous Bose system based on varia-
tional wave functions in which uq is a function of r~ and rq

and u3=0. They use the theory to study the surface of
liquid He, but due to various approximations their calculat-
ed surface tension is too small by a factor of 2. They criti-
cize the present work in a note added in proof in Ref. 5,
claiming 'that the near isotropy of our gq is a consequence of
our assumption that uq is a function of r~q only. However,
they find "anisotropy" in gq only at a very low density,
pl=0. 001 A [see Figs. 5(a)—5(c) of Ref. 5] with their
more general uq. It is unclear whether this "anisotropy" is
due to anything more than simple density variation in the
presence of a surface, since they compare a g2(r12), where
r12 is parallel to the surface and pl(R ) is constant, to a
g2(r12), where r12 is normal to the surface, rl is fixed, and
pl(R ) continuously changes as r12 varies. If we plot our
gq in an analogous manner, we also observe "anisotropic"
behavior. The success of the VMC calculations based on
u2(r12) in reproducing the GFMC binding energies, density
profiles, and extrapolated surface tension' suggests that an
isotropic uq is a good starting point for a variational wave
function. The fact that approximation (4) is empirically sa-
tisfied is gratifying, but we do not believe it is a trivial
consequence of the choice for uq.

Chang and Cohen6 have used approximation (4) to study
the liquid surface. Following them we can express the ener-
gy of the 3-body drop in terms of the n-particle densities
p„(rl. . .r„). In particular, the energy given by the wave
function (2) is obtained as

E=E)+EP+ E3 (5)

Ei = Ei, ]+Ei, ~+ Ei, 3 ~

El I= „Vlpl (r) Vl lnpl(r) dr(W —1) t2
8m~

(W —1) ~2
El 2= — J p2(rl, r2) Vlu2(r12) V'1 lnpl(rl) drldr2

A 8m

(W —1) a2
El 3= —

16 p3(fl r2 f3) I7 3(IuI12 /23 l31) O'I lnpl(rl)drldr2dr3
16m &

(8)

1 h~
E2 J p2(rl r2) U (r12) 71 u2( rl2) drl«2

2
'

4m
(10)

A~
p3(rl, r2, 'r3) 7/u3( r12, r23, r31) dI'1dl'2dI'3

16m ~

These equations are obtained by using the Jackson-Feenberg kinetic energy and eliminating the '71ul(r) term with the
Born-Green- Yvon identity:

pl(rl)V'Iul(rl) =17IPI(rl) —Jfdr2p2(rl, r2)V'lu2(r12) —Jt dr2dr3p3(I1 f2 f3)V 3Iu(f 1I223 f31)

The (2 —I)/A factors in El are obtained by subtracting the
center-of-mass kinetic energy.

Hohenberg and Kohn have shown that the ground-state
energy of a many-body system is a universal functional of
its pl(r). An approximate representation of this energy-

I

density functional (EDF) for studies of drops and surfaces
is obtained by using a local-density approximation (LDA)
for p2 and p3 in Eqs. (8)—(11). g2 is approximated with Eq.
(4) (we use pl= ~[pl(rl)+ pl(r2)]) and a plausible LDA
for p3 suggested by the hypernetted chain theory~ is
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TABLE I. Energies of liquid 4He droplets in K/A. ,

VMC EDF3 EDF3V GFMC EDF4 EDF4V

20
40
70

112
240
728

—1.57
—2.39
—3.03
—3.50
—4.19
—4.95

—1.52
—2.31
—2.98
—3.46
—4.17
—4.94

—1.53
—2.35
—2.99
—3.49
—4.19
—4.98

—1.63
—2.49
—3.12
—3.60

—1.58
—2.45
—3.13
—3.65

—1.60
—2.46
—3.14
—3.67
—4.41
—5.25

p3(rt, r2, r3) = pt(r~) p~(r2) pt(r3)gq(rt, r2)g2(r2, r3)g2(r3, rt)exp[u3(rt2, r23, r3&) + A3 „(p~,r]2, I23, f3]) ] (13)

where A3 „ is the sum of Abe diagrams in uniform liquid at
a mean density p~, which may be taken as the average of
the pt(r, ). Unfortunately, the integrals E3 and E~ 3 are still
difficult to evaluate numerically.

The VMC calculations for the 112-atom drop give
Et =0.50 K/A, E2= —4.07 K/A, and E3=0.09 K/A, while
uniform-liquid calculations using the same u2 and u3 give
Et =0 K/A, E2= —6.75 K/A, and E3=0.07 K/A at p= po.
Because E3 is so small, it is reasonable to approximate it
further as follows:

E3 ~ dfE3 g(p (rt) )pt(r) (14)

where E3 „(pt) is E3/A in uniform liquid of density p~. We
define EDF3 to include E~ ~, E~ 2, and E2 with the LDA Eq.
(4), and E3 with the LDA Eq. (14). It gives, when used
with the VMC pt(r) for the 112-atom drop, Et t=0.23,
E~ 2 =0.24, E2 = —4.04, and E3 = 0.11 K/A. The sum
E] ~+E~ 2 is very close to the exact E~, so the neglect of
the small Ej 3 is justified. The E2 and E3 from EDF3 are
also quite close to the VMC values. The total energies ob-
tained with EDF3 and VMC p~(r) for drops containing
20-728 atoms are given in Table I. EDF3 seems to be quite
accurate in reproducing the VMC energies.

The E(pt) obtained for the uniform liquid with the
present u2 and u3 differs from the GFMC E(pt) in the re-
gion p~ =0.9po-l. 2po by ——0.42(p&/po) K/A. We can
take this difference into account by adding an E4 term

E4 = —(0.42 K)„dr[pt (r)/po]3p&(r) (15)

to EDF3. The resulting functional is denoted by EDF4;
when used with the GFMC pt(r), it gives energies, listed in
Table I, that are very close to the GFMC energies. '

Both EDF3 and EDF4 can be used to calculate the ener-
gies and pt(r) in droplets by minimizing the energy with
respect to variations in pt(r). To study the feasibility of
such calculations, we parametrized the pt(r) as

I

There are no direct measurements of the surface thickness.
Earlier calculations of the surface properties with the EDF
formalism have been reviewed by Edwards and Saam. '

Local-density approximations and EDF's are commonly
used in nuclear physics to calculate properties of nuclei. "
The phenomenological Skyrme' EDF is very popular, but
has little direct connection with the bare interactions among
the particles. The main advantage of the present EDF ap-
pears to be its inclusion of correlation effects and its direct
connection with the microscopic Hamiltonian. Starting from
the Brueckner-Bethe-Goldstone theory, Bethe, Negele, Sie-
mens, and others have developed the LDA for effective in-
teractions to be used in Hartree-Fock calculations. ' That
formalism has similarities with the present work. The E] ~

term becomes the Hartree-Pock kinetic energy, and E2 be-
comes the interaction energy. However, it appears that the
analogue of E] 2 has not been considered in that approach.
Terms like E~ 2 are generally neglected in the EDF used to
study many-electron systems. ' We find that E~ 2 almost
doubles the total E~ and increases the surface thickness by
10-15%. It is amusing to note that we may absorb most of
the effect of E] 2 by calculating the E~ ~ with an effective
mass of —0.5m.

0.024
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O.Ol 6

I

0.0 I 2

0.008

pt(r) = c/[I+exp((r —R)/a)]~, (16) 0.004

and determined A, a, and p by minimizing the energy. The
energies from this calculation are given in Table I, columns
labeled EDF3V and EDF4V, and the densities are shown in
Fig. 3. The calculated energies are very accurate, however,
the surface thickness of the large drops is underestimated by—20%. We have also calculated the surface tension and
thickness of a plane infinite surface. The calculated values
with EDF4 (EDF3) are 0.269 (0.253) KA and 5.7 (5.8)
A. The experimental value for the tension is 0.274 KA

'0 IO 20 50

FIG. 3. The p~(r) in drops and the plane surface. The full lines
show GFMC results for A = 20, 40, 70, and 112 particles, and VMC
results for A =240 and 728. The dashed lines give the EDF4V
results. The dotted curve is the EDF4V surface plotted with its
half-density point set arbitrarily at r = 24 A.



3344 PIEPER, WIRINGA, AND PANDHARIPANDE

The authors thank Q. N. Usmani and E. Manousakis for calculating gq„(pt, r). This work was supported by the U.S.
Department of Energy under Contracts No. W-31-109-ENG-38 and No. DE-AC02-76ER01198 and by the National Science
Foundation under Grant No. PHY81-21399.

V. R. Pandharipande, J. G. Zabolitzky, S. C. Pieper, R. B. Wiringa,
and U. Helmbrecht, Phys. Rev. Lett. 50, 1676 (1983).

~Q. N. Usmani, S. Fantoni, and V. R. Pandharipande, Phys. Rev. B
26, 6123 (1983).

E. Manousakis and Q. N. Usmani (private communication).
4M. H. Kalos, M. A. Lee, P. A. Whitlock, and G. V. Chester, Phys.

Rev. B 24, 115 (1981).
5E. Krotscheck, G.-X. Qian, and W. Kohn, Phys. Rev. B 31, 4245

(1985).
6C. C. Chang and M. Cohen, Phys. Rev. A 8, 1930 (1973); 8, 3131

(1973).

7H. W. Jackson and E. Feenberg, Ann. Phys. (N.Y.) 15, 266 (1961).
sP. Hohenberg and W. ,Kohri, Phys. Rev. 136, B864 (1964).
sQ. N. Usrnani, B. Friedman, and V. R. Pandharipande, Phys. Rev.

B 25, 4502 (1982).
' D. O. Edwards and W. F. Saam, Prog. Low Temp. Phys. VA, 283

(1978).
J. W. Negele, Rev. Mod. Phys. 54, 913 (1982).

'~D. Vautherin and D. M. Brink, Phys. Lett. 32B, 149 (1970); Phys.
Rev. C 5, 626 (1972).
H. A. Bethe, Annu. Rev. Nucl. Part. Sci. 21, 93 (1971).

i4R. O. Jones, Phys. Rev. Lett. 52, 2002 (1984).


