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We describe a real-space renormalization-group procedure to calculate geometrical equations of state for
the entire range of values of the external parameters. Its use is as simple as a mean-field approximation;
however, it yields nontrivial results and can be systematically improved. We illustrate it by calculating, for
all bond concentrations, the site mass density for the complete and the backbone percolating infinite clus-
ters in square lattice: the results are quite satisfactory.

Renormalization-group (RG) techniques have been em-
ployed mainly to evaluate critical points and exponents.
However, a RG theory has been developed' to evaluate the
free energy for the ~hole range of the thermodynamic
parameters. From the free energy all other quantities of in-
terest (such as magnetization, specific heat, susceptibility,
and so on) can be evaluated.

'

This theory and similar ones2

apply to systems which can be described by a Hamiltonian
formalism.

In this paper we want to develop a simple real-space RG
formalism which may be useful for calculating, for the ~hole
range of variation of external parameters such as concentra-
tion, geometrica/ quantities which cannot be described by a
Hamiltonian formalism. These include, for example, the
density of sites in a full percolating cluster and in its back-
bone for different types of percolation problems (random,
correlated, bootstrap, valence, chromatic), and the conduc-
tivity for random resistor and random superconducting net-
works, etc. Great success has been achieved in the use of
large cell RG techniques3 for calculating critical points and
exponents. The present method illustrates how this method
can be easily adapted (and systematically improved) to ex-
tract, with precision, the interesting quantities for the whole
range of variation of the external parameters. Last, but not
least, let us compare the present procedure with the stand-
ard mean-field approximation: (i) they share the fact that
the entire equation of states is obtained; (ii) for small cells
it is, operationally speaking, even simpler; (iii) it yields non-
trivial results which, as said before, can be systematically
improved.

To illustrate this method we consider first the particular
case of random-bond percolation. In this problem one sup-
poses that each bond of a d-dimensional hypercubic lattice
of linear size L has a probability p of being active. In the
L ~ limit, the order parameter P can be defined as
P =NL (p)/L, where ¹(p)is the average number of sites
in the infinite cluster. Furthermore, we associate with each
site of the lattice an adimensional "mass" mp, we could in
principle choose mp= 1, but we will instead leave it here as
a variable since it will change under renormalization. Fol-
lowing the original idea of scaling as introduced by Kadan-
off, we divide the system of L sites into a system of L'd

cells of linear size b =L/L' & 1. Then we associate with
each cell new renormalized variables p' =f ) (p, m o) and
mo =f2(p, mo). The renormalized variables depend on the
particular RG, but they all satisfy the condition that'the to-

m '"'
P (p) = lim P (p'"')

n b "dm
p

(4)

For p less than the percolation threshold p„ lim„p " = 0.
Since P (0) =0 and lim„m "0()b/" d(~ (this is related
to the fact that whatever the cluster we choose to renormal-
ize is, it will have at least one possible percolating path
between terminals), we have the expected result P (p) = 0,
for aii p ( p, . For p & p„ lim„p(") =1, and since
P (1)= 1, we find

m '"' (p)P„(p)= lim '„, (p &p, )
p &ad~

This gives the desired expression for P for aii values ofp.
Let us illustrate the procedure on the square lattice by

constructing a RG (denoted as RG)2) which maps the cell
of Fig. 1(b) into that of Fig. 1(a) (hence, b =2). The re-

FIG. 1. RG cells used for the calculation of P (p) and P~ (p)
(see Fig. 2) for square lattice. RG~2. cell (b) is renormalized into
cell (a); hence, b =2. RGl3. cell (c) is renormalized into cell (a);
hence, b =3. RG23.' cell (c) is renormalized into cell (b); hence,
b=—3

2

tal mass of the infinite cluster in the system of cells be
identical to the mass of the infinite cluster in the original
system, namely,

N (p')mo =Nt. (p)mo

Dividing both terms by L~ we obtain

P (p') m 0
——bdP (p) m o,

where P (p') =N (p')/L'~.
After n iterations from (2) we have

P (p (n) )m (n) b ndP (p)
hence,
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FIG. 2. (a) RG percolation probability P and (b) RG backbone mass (reduced) density P as functions of the bond concentration p for

the square lattice. b is the RG linear expansion (see Fig. 1); p, - 2 for all values of b; the dots represent Monte Carlo data (Ref. 5).

p'mo = [p'+ 4p'(I —p) +pI(l —p) + '2' p4(1 —p )'
+ -Pp'(I —p) '+p'(1 —p )']4m 0

Q2(p)mo, (7)
I

normalized bond probability p' is given by the probability of
connecting the bottom to the top of the cells, namely, 4

p'= p'+ Sp'(1 —p)+ Sp'(1 —p)'+ 2p'(I —p)'=&2(p) . (6)

To find the equation for mo we consider all possible cell
configurations and the corresponding total mass of the span-
ning cluster. Then we impose that the average mass is
preserved, and obtain

which, together with Eqs. (S) and (6), provides P (p) for
all values of p [see Fig. 2(a)]. Note that Eq. (7) is invariant
through change of "mass" unit (i.e., m o km 0 and
mo A.mo): This property is a general one, and enables us
to choose mo= 1 in Eq. (5), which makes the calculation of
P (p) even simpler. The resulting critical exponents I [for
the connectedness length g(p) ] and P [for P (p) ] are
given in Table I.

%e also performed the calculation renormalizing the cell
of Fig. 1(c) into that of Fig. 1(a) (RGI3,b =3). The role
played by Eqs. (6) and (7) is now played, respectively, by

p' = 18p'3 —117p'2+ 298p" —352p'0+ 149ps+ 39p I —10p' —37p6+ 2p'+ SpI+ 3p3= 8 3(p) (8)

p'ms = [9p'5+ 135p' (1 —p) + 941p "(1—p ) + 3996p'2(1 —p)'+ l l 336p"(1—p)"+ 22 031p'0(1 —p) '+ 28 964p9(1 —p) 6

+24865p (1 —p) +13970p (1 —p) +5075p (1—p) +1158p (1—p) +152p (1—p) +9p (I —p) ]mo

=QI(p)mo .

82(P') =BI(P) (10)

%'e finally performed the calculation renormalizing the
cell of Fig. 1(c) into that of Fig. 1(b) (RG2q, b =~). The

corresponding recursive relations are given by
Q2(p')mo = Q3(p)mo .

The results obtained within RG13 and RG23 improve those
obtained within RGq2 as shown in Fig. 2(a) and Table I.

TABLE I. RG critical exponents v{g~ [p —p, ) ") and PIP ~ lp —p, )~] for several values of b {see
Fig. 1).

b 3 b=—3
2 Exact

ln2 1.428
1n—13

8

ln—16
13
13

= 0.428
ln—

8

1 380
4541
2048

49 152
37547 -0338
4541

~n 2048

1n2
3

= 1.30S
1

39936
37547 =0198
4541
3328

4 =1.3333

—= 0.13936
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Backbone percolation. We have also calculated the per-
colating probability P (p) in the backbone of the spanning
cluster. The calculation is analogous to the percolation pro-
bability P (p). The RG)2 equation for p' still is Eq. (6),
and Eq. (7) is replaced by

p mos= ip'+4p'(1 —p)+p (1 —p)+ '2 p (1 —p)'

+6p'(1 —p)'+p'(1 —p) ]4mps (12)

The full curve for Ps (p) (never obtained before, as far as
we know) is given in Fig. 2(b); the corresponding critical
exponent Ps equals ln 4p lln —, = 0.550, to be compared with64 13

the Monte Carlo result' Ps ——0.53.
Random resistor network. Although for the random resis-

tor problem treatments related to the present one are avail-
able in the literature, ' we shall discuss here this case for
completeness. In this problem one supposes that each bond
of a d-dimensional hypercubic lattice of linear size L carries
a conductance go with probability p, and 0 with probability
(1 —p). Following the same procedure as before 'we find
for the average conductivity X(p) the relation

X(p(n))g (n) hn(d —2)X(p)g

where p (" and g 0", respectively, are the renormalized prob-
ability and conductance after n iterations. From (13) we
have, for p & p„X(p) =0 [see remarks below Eq. (4)],
and, since X(1)=go, we have, for p & p„

X(p) = llm (~ 2)b (d -2)

In conclusion, we have described a method based on a
real-space renormalization-group procedure which allows us
to obtain the variation of various interesting quantities for
all values of the external parameters. This method applies to
geometrical quantities for which large cell renormalization
groups have successfully been employed to get accurate crit-
ical points and exponents; it uses essentially the same infor
mation; provides the full variation of the quantities, and is
normally expected to recover the correct asymptotic behaviors
in the vicinity of the trivial fixed points, i.e., when g~ 0
(p=0, 1 for percolation problems). This method is, for
small cells, operationally even simpler than the mean-field
approximation procedures; it gives, however, nontrivial
results; it constitutes, in principle, a reliable approximation
in both critical and noncritical regions, and can be systemati-
cally improved.
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