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Breakdown of replica analyticity in the one-dimensional axis model

P. D. Gujrati
Department of Physics and Institute of Polymer Science,

University of Akron, Akron, Ohio 44325
(Received 31 May 1985)

We consider a random-bond one-dimensional m-component axis model, which has a transition for m & 1.
We solve the model exactly with and without using the replica trick. Below the transition, the exact zeros
of the partition function (Z&) move towards the positive real n axis in the thermodynamic limit indicating

the breakdown of analytic continuation: We cannot approach the n =0 point once the thermodynamic limit
is taken. We also show that we cannot interchange the thermodynamic and the replica limits below the
transition,

In recent years, we have seen important progress in our
theoretical understanding of the properties of random sys-
tems, notably spin-glass systems. ' ' A great deal of this
progress is due to Parisi, who provided a stable scheme for
replica symmetry breaking (RSB).s 9 Sompo}insky'o provid-
ed a time-dependent RSB. In order to break RS, one must
take the thermodynamic limit (N ~) before the replica
limit (n 0), even though the correct "replica trick"' '3

demands taking n 0 before % ~. There are no
rigorous results available that show the validity of this inter-
change of limits in the general case, even though it is either
implicitly or explicitly assumed to hold in all schemes of
RSB. Moreover, taking the n 0 limit implies invoking
analytic continuation in the replica variable n. It has been
shown rigorously by van Hemmen and Palmer' that for the
Sherrington-Kirkpatrick model, ' the interchange of the lim-
it is valid for the analytic continuation of the (wrong) solu-
tion adopted by Sherrington and Kirkpatrick. (This con-
tinuation leads to a negative entropy at low temperatures. )
However, nothing is known about the correct (but yet un-
known) analytic continuation in the replica variable, even
though similar attempts have been made in other cases, '

where similar formal limits are taken. The major impedi-
ment to progress in the present case has been the absence
of any results regarding the distribution of zeros of (Zg) as
the thermodynamic limit N ~ is taken.

In our current pursuit to understand the physical signifi-
cance of RSB and its implications for the physical sys-
tem '

. we have elevated this assumption of the validity of
the interchange of limits to the level of an identity. Howev-
er, in the absence of any knowledge about the analyticity of
the continuation and, in particular, about the distribution of
zeros of (Zg), it is imperative that we have some exact
results about the validity of the interchange of limits. It is
this question that we address here. Our exact calculation
shows that the interchange is not allowed. One must take
the n 0 limit before N ~. This means that there
should be no RSB, since this requires reversing the order of
limits. This is quite disturbing, in view of the apparent suc-
cess of the RSB scheme of Parisi in explaining some of the
observed effects. Thus, our work, which is the first of its
kind in providing exact results regarding the distribution of
zeros and the interchange of limits, is important in that it
suggests that we ask why RSB is so successful in our under- .

standing of spin-glass systems, even though the main as-
sumption behind it cannot be justified.

In order to obtain e~act results, we consider a random-
bond one-dimensional axis model with spins with m com-
ponents. This model gives rise to a phase transition at finite
nonzero temperature for m & 1. It should be emphasized
that the extension of the axis model to unphysical values of
m should not worry us, as we are interested only in compar-
ing the results obtained with and without the replica trick
(using both orders of limits). Throughout our analysis, we
consider m «0. Thus, negative m's are not allowed. It is
known that the m = 0 pure system corresponds to a polymer
problem. ' We evaluate the partition function exactly both
with and without the replica trick. This enables us to look
at the distribution of zeros of (Z~) explicitly. The interest-
ing situation occurs below the transition temperature for
m & 1. We find here that as N ~ the zeros begin to
move towards the positive real n axis at rational values of n,
given by the ratios of two odd integers, indicating phase
transitions at these points. This means that the "whole" n

axis is singular. Thus, there is no way to continue the
model to n =0. We also show explicitly that the limits can-
not be interchanged. Thus, our results go beyond those of
van Hemmen and Palmer' by providing all the missing
links in their work. There is no problem with the analytic
continuation and the interchange of the limits above the
transition temperature.

Let S; denote an m-component axis spin located at the
site i, i =1,2, . . . , N in one dimension. For the sake
of clarity, we take periodic boundary condition (S~+t = St).
The spin is allowed to take the following 2m
orientations with equal probability: ( 10, 0, . . . , 0),
(0, +1, 0, 0, . . . , 0), (0, 0, +1,0, . . . , 0), . . . , (0, 0, 0,
. . . , 0, +1). The effective Hamiltonian" of the system is
given by

H=XKS; S;+t,

where the variable E; is a random variable taking the values
+ K with equal probability. It is easily seen that the

transfer matrices T(K) = exp(KS S') and T( —K)
=exp( —KS S') commute. Therefore, they can be diago-
nalized simultaneously. The eigenvalues of T(K) and their
degeneracies are given by

n= x+1 /x+2m; 1-fold,

p =x —1/x; m -fold,

ad=x+1/x —2; m-fold,
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where x = exp(E) and m = m —1. In the following, we will
consider only m «0. For m & 0, o. & y.' The two levels
never cross, except when m = 0. However, when
0 & m & 1, a and P cross at a critical point

—K
1/x, =e '=1 —m, (3)

where C is a constant, independent of N, that depends on
the choice of the Riemann sheet. For example, if Z~ is real
and positive (or negative), C is given by 2k vari [or
(2k + 1)m.i ], where k = 0, 1, 2, 3, etc. However, this ambi-
guity in fg disappears as N ~; the choice of the particu-
lar Riemann sheet is immaterial in the thermodynamic limit.
(In the following, we will always take N ~.) Thus, our
definition of f~ gives a real free energy in the thermo-
dynamic limit for integer values of m and agrees with its
customary definition there. Let us now evaluate the aver-.
age (fn) given by

(f~) = (1/2 N) x (L)fn(I L)
L=0

= (1/2N) [In(n++ mP++ my )+in(un —mPn+ my~) ].

The free energy per site in the thermodynamic limit is given
by

Equation (5) is valid only for 0 & m & 1. For m ~ I,
x, (T~=O) and the phase above T=0 is described by
the eigenvalue a. For m = 0, T, ~ (x, = 1).

The only nonanalyticity in (f') appears at x, . Therefore,
our direct evaluation of (f ) gives a perfectly sensible result
which exhibits a critical point at x =x„even though we
have an unphysical choice of m'. m & 1.

Let us now use the replica trick and replicate the system n

times, where n =1, 2, 3, . . . . This will enable us to evalu-
ate (Zg) . It is easy to see that

(Zg) = —,
' [(a~+mP~+my~)" + (u~ —mph+my")" ]

( n) an —kbk & (1
k even

indicating a phase transition at, x, . For x & x„n & P, and
for x & x„p & n L.et us now evaluate the free energy per
particle. In a given configuration I L with L antiferromag-
netic bonds and the rest ferromagnetic bonds, the free ener-
gy is given by

fn (I'L, ) = (1/N) lnZ (I'L, )

= (I/N)in[a +m( —)LP +my ] .

At this point, we wish to make a simple but very impor-
tant point regarding the evaluation of fn. Since 1nZ~ is a
multivalued function whose value depends on the choice of
the Riemann sheet, it is customary to choose the sheet that
gives a real value for f&. For physical systems, we certainly
want a real free energy. However, when analytic continua-
tion to noninteger or complex m is desired, there is no
reason to expect a real f~. Thus, we may choose any partic-
ular Riemann sheet that we wish in order to evaluate fn, it
is given by

fjy ——(1/N) (in (Z~ ~
+ C ),

where a =n~+my~& 0, and b =mP & 0. Following
van Hemmen and Palmer, " we introduce @Jv(n) = (1/N)
x in(zg, ),

(n) = (1/N)ln[ —'[(a +b)"+ (a —b)"]) . (6)

This function can be immediately continued to any value n

by treating n as a real or complex variable in (6). To distin-
guish this analytic continuation from @n(n) derived only for
integer n, we will denote it by @n(n): $~(n) =Pn(n) for
all n, as long as N & ~.

Let us now calculate its derivative with respect to n at
n =0:

1 (a +b)"ln(a +b)+ (a —b)" ln(a —b)n(0) =-
N ( + b)n+ (a b)

Therefore,

in(a' —b')
2N

lim yn(0) =
N~oo

t

nu, x &xc
InP, x &x„

and we find that (f) =limn @w(0) as expected. "
Let us now evaluate

P(n) = lim yn(n)
Pf ~ oo

(8)

n inn, x &xc.
n Inp, x & x, with n even,

Inn+ n lnP, x & x, with n odd,

so that P(0) = 0. However,

@ (0) = inP —
2 i n (Ina —

1np ) & (f ) . (10)

Thus, the interchange of the two limits, n 0 and N
does not give identical results, contrary to the assumption
made in a1I RSB schemes.

Let us try to obtain @(n), not from @(n), given in (8),
but from @~(n). Let us first consider n &0. It is easily
seen that for x & x„P(n) = P(n) = n inn for all n. Howev-
er, for x & x„@(n)= @(n) = n lnP for all n, except when n
is odd. For n odd, P(n) =@(n)=1 a+nn lnP. This means
that our new P(n) is identical to P(n) given in (8) except
that @(n)= n lnP not only for even n, but all n, except
when it is odd. This continuation is different from the one
in (9). However, our most important observation is that
@(n) has singularities at odd n's for all x & x, . In the fol-
lowing we will see that the singularities are at all n's given
by the ratio of two odd integers. This is evident from (6),
and is shown in Fig. 1.

Let us look at this point more carefully. Let us locate the
zeros of (Zg), when x & x, . A simple algebra gives the

where n = n —l. Equation (8) is valid for all integers
n = 1, 2, 3, . . . . For x & x„ it is evident that the analytic
continuation $(n) of @(n) for all n is @(n) = n lna, so that
P(0) =0 as expected. However, for x & x„ there are many
different continuations @(n) The follo. wing is one such
possibility:

@(n)= (n/2) [1+( —)"]Inp+ 2 [1+( —)"] (inn+ n lnp),
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FIG. 1. Location of the zeros of (Zg) as iV ~. The zeros are
on the positive real n axis at (2k+1)/(2i+1), where k and i are
positive integers. There are no zeros when n is even. The above
picture is true only below the transition temperature.

zeros at n = n, +in;, where

2(k + I)~'
~'+(Ing)' '

n;= n, In/

n, In/
(2/+I)~ '

(12)

where k, l = 0, 1, 2, . . . . Therefore, as N ~, i.e., as

where k =0, 1, 2, 3, . . . and g= (1—a/fi)/(I+a/p). It is
now clear that as N ~ (x & x, ), a/b 0 and the zeros
of the partition function begin to move to the real axis at
odd n's. As a matter of fact, it can readily be seen that the
situation is even worse. By writing ( —) as
exp [(2l + I ) in m J, we find that

(2k + 1) (2I + 1)rr

[(2i+1)~]'+(Ing)' '

1, we find that n; 0, and n, = (2k + 1)/(2i + 1). By a
proper choice of k and I, we can get any rational point given
by the ratio of two odd integers on the positive real axis.
The function di(n) is singular over the whole real n axis.
Therefore, there is no hope for analytic continuation in our
model once N ~ has been taken. '9

This means that the main assumption behind RSB cannot
be substantiated. The hope for analytic continuation to
n =0 cannot materialize. This does not mean that RSB has
nothing to do with the physics of the system. All we have
shown is that the assumption of the interchange of limits
cannot be justified in general.

One can also compute $(n) for n & 0. Again, we obtain
P(n) from $~(n). It is evident that because n & 0,

$(n) =n In@ for all x and n & 0.
This means that rti'(n) is not continuous at n =0. More-
over, there are no singularities when n & 0.

Let us briefly summarize our exact results. By solving a
one-dimensional axis model for m & 1, we have been able
to obtain a few exact resuIts. We have shown that the zeros
of (Z~) begin to pinch on the whole positive real n axis at
rational points given by the ratios of two odd integers, as
the thermodynamic limit N ~ is taken. Thus, there is no
hope for an analytic continuation of @(n) to n =0. We
have also shown that one cannot interchange N ~ and
n 0. Thus, the main assumption behind the physical
relevance of RSB for spin glasses is not valid in our case. It
should be emphasized that RSB may indeed be important
for the physics of real spin-glass systems. All we have
shown here is that for the model we have considered, the
basic assumption behind it cannot be justified. Therefore,
we must ask why RSB is so successful in light of this result.
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' It may be thought that our pathology has something to do with
the informal m & 1 feature of the theory. However, this is not
the case. It is clear from (6) that the zeros of (Ziv) are due to
the interplay between two terms (a + b)" and (a —b)", and are
determined by the relative magnitudes of u and P. The con-
straint m & 1 merely allows us to look at the region "below" the
transition point, which could not have been possible if m was re-
stricted to be a positive integer. Moreover, as shown above, our
direct evaluation of (f) does not suffer from any problem. The
same result is also obtained if one takes n 0 before N
Therefore, the pathology is certainly due to N ~ limit before
n 0 limit.


