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with a distribution of bond strengths
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Numerical simulations are used to examine the dependences of the percolation transport exponents on
the distribution of bond strengths g in two-dimensional models. We use the probability density function

p(g) =g, a case that arises naturally in percolation of continuum systems. Our results are consistent
with earlier predictions that for 0 & n ( 1 the exponent t differs from its counterpart t in the standard
discrete lattice percolation networks by (t —t) =a/(1 —n), while for a ( 0, the exponents t and t are
equal.

We present in this note numerical results confirming that
the transport critical exponent can be nonuniversal for per-
colating networks with a distribution of bond strengths.
These network models, with distributions of bond strengths,
arise naturally in continuum models, such as the random-
void model, where circular or spherical holes are randomly
placed in a uniform transport medium. ' Our numerical
results support the argument that the exponents governing
the behavior of elasticity, electrical conductivity, and fluid
permeability in such media can be substantially larger than
the corresponding ones in the conventional lattice percola-
tion models. ' In particular, the present calculations sup-
port previous results' for discrete systems with a distribution
of bond strengths obtained using a nodes-links-blobs
analysis, as well as the results obtained much earlier by Ko-
gut and Straley, and by Ben-Mizrahi and Bergman using
various other approximation methods. These nonuniversal
transport exponents may be contrasted with the exponents
for geometrica/ percolation properties, such as the correlation
length exponent v, which are clearly independent of bond
strengths.

In this paper we consider the conductivity of a two-
dimensional (2D) square network where the bond conduc-
tance has a value of g, which is an uncorrelated random
variable with a power-law probability density function

p(g) = (1—n)g, 0(g~1,
g)1

We remove bonds randomly, and compute the conductivity
as a function of the fraction p of bonds remaining. The
value of 0. is chosen according to considerations described in
the next few paragraphs. These considerations indicate that
n=0.6 applies to fluid permeability in the 2D continuum
with flow in between the obstacles, and that n = —1 applies
to the case of electrical conductivity in the same model.

Reference 1 discusses the mapping of the random-void
model onto a discrete random network, as described earlier
by Blam, Kerstein, and Rehr. 2 In the 2D case of random
circular holes of radius a punched in a conducting sheet, a
bond is present if the two neighboring holes do not overlap.
The "strength" of the ith bond depends crucially on the
channel width 5I. If we approximate the ith neck by a thin

C —L '1"[at+a2g;(L)] (4)

at p =p, . Here C is the conductivity of the network with
bond strengths given by Eq. (1) for the present bonds and
zero conductance for the missing ones; al, a2 are constants.
The function g, (L) goes to zero for large L.

rectangle of width 51 and length lt = (5;a)' 2, the 2D electri-
cal conductance is given by g, = 5,'12/a'12, while the permea-
bility of a viscous fluid flowing through the neck varies as
5 5/2/a 1/2

In the 3D random-void model, the smallest cross section
of a bond has roughly the shape of a triangle, and we find
that the bond has an electrical conductance g, =5132/a'2,
and the flow of a viscous fluid through a narrow channel is
proportional to 5~t/l 1= 5t72/a' t2. The force constant yt for
bond bending or for torsion is proportional to 5&~ in 3D,
and is proportional to y, h&~ in 2D.

Thus, in all these cases, the bond strength varies as a
power law,

g ~ Qm

In all these cases we also find that the probability distribu-
tion P(5) goes to a finite constant for 5 0. Since the pro-
bability distribution of 8 is related to that of g by
P(5) d5 = p(g)dg, it follows that p(g) has the form of Eq.
(1), for 5 0, with

ct = 1 —1/m

In order to establish the connection between the transport
exponent and u, the simplest and most direct route is to
consider a 2D electrical network with a distribution given by
Eq. (1). That is what we proceed to do in the next section.

As the fraction of present bonds p approaches p„ the
coherence length g —(p —p, ) " diverges, so there will be
finite sample size errors, regardless of how large a value we
choose for the sample size L We employ the finite-size
scaling calculational scheme" 7 to overcome this problem.
In this approach, we fix p at the exact value of p„and vary
I.. Because of the self-duality of the square lattice, p, is ~
exactly. The dependence of the properly averaged transport
coefficients on the sample size gives the percolation critical
exponent(s). This dependence can be expressed as
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Now we will proceed to describe the methods and details
of our numerical calculation.

First we generate a square lattice of size L&L with
nearest-neighbor bonds which are randomly occupied with
probabitity p = p, = 2. Then a search routine is used to test
whether the two opposite ends of the network are connected
or not. If they are, we give each occupied bond a strength
according to Eq. (1). The nodes of the top row are tied to a
bus bar of voltage 1, and the nodes of the bottom row are
tied to a bus bar of voltage 0. Then a sparse matrix inver-
sion solving routine (kindly provided to us by Lasseter9) is
used to solve for all the node voltages. The conductance C;
is calculated for each of n = 100 different realizations. Four
different statistics of the data are then calculated: the arith-
metic mean Mq = (I/n) gP C„ the geometric mean MG
= (+PC&)t ", the harmonic mean M~= [(I/n) /PC& ]
and standard deviation o. = [(I/n) g,"(CI—Mg)21' '. The
entire procedure is repeated for ten different values of L.
Equation (4) (with a2 set equal to zero) is then used to ex-
tract the exponents. The results are shown in Fig. 1 for
m =0, 1, and 2.5, respectively. The results are summarized
in Table I.

We used ten values of L starting with L = 4 and going up
to L =49. We employ the least-square-fitting technique to
obtain the slope, and estimate the errors in slope by divid-
ing the sum of error squared, X, by the standard deviation
to get the R factor. ' The closer the coefficient R of linear
regression is to unity, the-better is the least-squares fit. The
final error for t/v is estimated by taking the largest among
the errors of the individual slopes and the differences in
slopes between the different types of average. Note that
our estimate completely ignores systematic errors and

presumes that the error is purely statistical.
We will now look at the results for specific exponent

values. First consider the case of m =0, i.e. , the standard
percolation problem. We note that Mq (square), MG (cir-
cle), and a (triangle) all converge to narrowly separated
parallel lines. For this case of ordinary conductivity, our es-
timate of t/v=0. 987+0.03 agrees well with the most ac-
cepted value~ t/v=0. 973(+0.005, —0.003). In this case
the harmonic mean (not shown) also follows a line close to
the other three statistics.

Next consider the cases of m=1 and 2.5. Although M~
(square), MG (circles), o. (triangle), give parallel lines, the
MH (not shown in Fig. 1), i.e. , the average of the macro-
scopic resistances, gives a different slope (see Table I). It
may be seen from Eqs. (1) and (3) that for m & 1, in our
finite-size sample, the harmonic-mean conductance will ac-
tually be infinite, if one averages over an infinite number of
realizations. In the present case, we discard the MH. The
differences between the various statistics are much larger in
the case of m =2.5, where there is wide distribution of bond
resistances than in the case m =0, where all the bonds are
the same, or m =1, where there is less likelihood of a large
resistance. Fortunately, all the quantities (except MH) show
the same scaling dependence, within the error bars,
on L.

As was discussed in Ref. 1, the nodes-links-blobs analysis
gives an estimate r= m, for m = 1/(1 —n) & 1, which we
believe to be a lower bound to the true value of t. On the
other hand, the variational analysis of Kogut and Straley5
obtained an estimate t = t+ m —1, for m & 1, which is a
rigorous upper bound to t. Since t =1.29, the difference
between the (nonrigorous) lower bound and the rigorous
bound is not very large. The numerical results of Table I
are certainly consistent with the nonrigorous lower bound.
In fact, the observed values of the exponent t/v are slightly
larger than the rigorous upper bound for the case m = 1.
we used the value v = T, which is believed to be exact, the

10
TABLE I. Least squares fit of logtoC vs (r jv) logta(L)

+ log~0(a~) for Mq, MG, MH, and cr (see text for definitions).

10 m=1
logio(Q i )

~~
Cl

'a
C0 10'

1.934
2.044
1.929
3.813

0.458
0.840
0.378
0.967

m =2.5
0.059
0.102
0.049
0,649

0.996
0.990
0.997
0.901

10 4=-

10 '
2 10

Lattice Size
100

Mg
MG

MHa

1.171
1.161
1.232
1.234

0.281
0.375
0.459
0.444

m =1.0

m =0.0

0.023
0.026
0.030
0.055

0.998
0.998
0.998
0.992

FIG. 1. The conductivity of a sample as a function of size for the
standard case of constant bond strength, m.=0, as well as the non-
standard cases of m=1 and 2.5 in Eq. (2). The arithmetic mean
Mq (square), the geometric mean M~ (circle), and the standard de-
viation cr (triangle) are shown.

Mg
Mg

MH'

' Not used.

0.987
0.987
0.990
0.988

0.078
0.047
0.316
0.017

0.016
0.013
0.044
0.011

0.999
0.999
0.992
1.000
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upper bound requires that t/v should not exceed 0.97 for
m =1 and 2.09 for m =2.5, 'respectively. %e have studied
several other cases of m and found the results to be con-
sistent with the bounds. For example, the arithmetic mean
gives t=1.37+0.02 for m=0. 5, t=1.84+0.05 for m=1.5,
and t=2.20+0.06 for m=2. 0.

The discrepancy in the case of m = 1, is presumably due
to a slow transient in the approach to the asymptotic critical
exponent for infinite L, or possibly due to logarithmic
correction (g-, —logtoL) to 'the critical behavior. This correc-
tion leads to larger effective exponents in the observed
range of lattice sizes. Evaluation of a very precise value of
the exponent t in the transition region of m = 1 would re-
quire a great deal of computation and is beyond t'he scope of
this paper. Nevertheless, the discrepancy in the case of

m =1 is fairly small, and the cases of m =1.5, 2.0, and 2.5
provide strong numerical evidence in support of previous
theoretical findings that there should be new transport ex-
ponents in cases ~here the bond strengths have a distribu-
tion of values. Our results show that the value of the trans-
port exponent depends very strongly on the details of the
bond-strength-distribution density function.
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