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Critical behavior of the quantum double-sine-Gordon model
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We investigate the critical behavior of systems modeled by the quantum double-sine-Gordon theory. We
find the existence of a Kosterilitz-Thouless transition in a region of the phase space. For different ranges
of the physical parameters, the model is shown to be equivalent to a free massive Dirac field.

Two-dimensional models have played a crucial role in sta-
tistical mechanics. Much of our understanding of phase
transitions in our three-dimensional world has come from
insights drawn from models such as the Ising model, the X-
Y model, and other two-dimensional models. Recently, two
dimensions became an experimental world in its own right
and revealed a world of rich and intriguing phenomena.
With these discoveries has come a resurgence in the theory
of two-dimensional systems. This has been stimulated also
from high-energy physics, since the study of phase transi-
tions in two dimensions could shed some light on the prob-
lem of quark confinement.

Our aim is to report on the study of the phase transition
occurring in the double-sine-Gordon (DSG) model. This
model is a widely studied' nonintegrable theory of a single
scalar field in two dimensions, whose dynamics is described
by the classical Lagrangian density:2
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theory can be mapped in the quantum-sine-Gordon model.
As a consequence we have the following: (i) the existence
of a critical line of Kosterlitz-Thouless type' separating two
physically different zones in the parameter space 8 —P; (ii)
the existence in the plane 8 —P of a line on which the DSG
equation describes the charge zero sector of a free massive
Dirac field theory.

As a by-product, we provide, in the context of quantum
field theory, a version of the conjecture' about the ir-
relevance of higher than unit charges in the phase transition
of the X- Y model. In fact, one can show' that those
charges correspond to adding higher harmonics [i.e. , terms
such as cos(qP@)] to the sine-Gordon Lagrangian.

Our analysis starts from the consideration that, for any
theory of a single scalar field in two dimensions with non-
derivative interactions, all divergences that occur in any or-
der of the perturbation theory can be removed by normal
ordering of the Hamiltonian. ' ' For the DSG model nor-
mal ordering is easily performed if one recalls' that, for
p =4m,

:cosPP: = lim lim:cos[p@(x) ]::cos[p@(y)]:

In Eq. (1) the sum over repeated indices is implied and ao,
P, yo, and ri are real parameters. Without loss of generali-
ty, we can take P to be positive and fix yo by adjusting our
zero of energy density so that the minimum energy is zero.
As q is varied over the range —~ & g & +~, the model
describes a variety of physical systems such as magnetic
chains, 3' He3 (Ref. 5), or polymers. Of particular interest
to us is the range g~1, where Eq. (1) has been used to
model antiferromagnetic Heisenberg chains and —in high-
energy physics —the bosonic sector of a confining model.
In the following we will restrict ourselves to this range of

where for computational convenience9' we take
=~sinh R.

Most of the studies on the DSG model have focused on
the properties and dynamics of the solitary wave solutions
of Eq. (1). However, for many applications to realistic sys-
tems, the classical thermodynamics has also been investigat-
ed. '6' " In this Brief Report we make a step forward in
the analysis of the statistical mechanics of this model by re-
porting the result of an attempt to analyze its critical
behavior. For this purpose we investigate the quantum'
DSG model showing that, in a suitable approximation, this
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Upon rescaling the field @ according to

16gnp
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one gets the well-known quantum-sine-Gordon theory

(4a)

(4b)

~= 2 (8„&) + 2:cos(Pg):,

Here A is a suitable cutoff and enclosure by a pair of colons(::)denotes normal ordering in respect to an arbitrary
mass m, which is set equal to one in the following.

Use of Eq. (2) leads to the normal ordered version of the
Lagrangian density [Eq. (1)]:
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with

0!p
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an infinite wave-function renormalization.
We stress that the correspondence of the quantum DSG

model with the quantum-sine-Gordon theory relies upon
Eq. (2), which is only an approximation to the full quantum
theory, since in Eq. (2) we neglected contributions coming
from the contraction terms appearing in the Wick reordering
of the DSG interaction. In fact,

As shown by Coleman, ' the quantum-sine-Gordon model
is equivalent to a massive Thirring model, ' whose mass m

and coupling constant g are given by
:cos'(P@):=:cos(P@) + (10)

CXm= (7a)

P m

4m m+g

=
~ tanh2R,
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and leads to a critical line separating two different phases.
As P2 =4m the model is equivalent to a free massive Dirac
field theory. The line corresponding in the R-P plane is ob-
tained as

~ (~ -' ' =-'tanh2~
4 ~
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Equations (8) and (9) explain (i) and (ii) in the neighbor--2
hood of P =4m. We ex~ect that our results are qualitative-
ly true for all values of P; however, for P & 4m, it requires

As P2=8m the system undergoes'" '5 a transition of the
Kosterlitz-Thouless type. In terms of the DSG parameters
g and P (ao is fixed and negative) this condition reads as

p (p —8~) (8)
2 7TAp

where the ellipsis represents unspecified contraction terms.
To find a compact form for the contributions of the contrac-
tion terms in Eq. (10) is a major computational task. Con-
ventional wisdom, ' ' ' however, indicates that those terms
are irrelevant for the phase transition of this model.

Equation (10) shows that the introduction of higher har-
monics in the classical-sine-Gordon Lagrangian —apart from
a renormalization of the kinetic term —produces quantum
effects through the contraction terms. This observation
may bring to light novel quantal phenomena in the kink sec-
tor of the DSG model. A s'emiclassical analysis, in fact,
showed9' that the introduction of. higher harmonics in the
classical-sine-Gordon Lagrangian leads to the existence of a
meson-kink bound state whose frequency is parametrized by
R. Our study here indicates- that such a state contributes to
the quantum theory only through the field renormalization
and the contraction terms. This peculiar aspect of the
model needs further investigation.
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