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High-momentum neutron scattering data can be used to find the momentum distribution n(p) of atoms
in superfluid 4He. The analysis of these data is complicated because the momentum distribution of the
noncondensate atoms has an anomalous contribution which depends on the presence of the Bose conden-
sate. We discuss a new way of estimating this contribution and show that the resulting values of the con-
densate fraction no{ T) are quite different from those given in the recent literature.
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where c is the sound velocity and p is the density. Taking
these facts into account, Sears et al. introduced the useful
decomposition

n ( T) n'(p, T) = n ( T) n'(p, Ti, ) + 5 n'(p, T)

where an'(p, T) is the condensate-dependent part of
n"(p, T) and n(T) —= 1 —np(T) is the fraction of nonconden-
sate atoms at temperature T. Using this ansatz and assum-
ing that the broadened condensate peak extends to p„Sears
et al. found that
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Here it is assumed that Bn'(p, T) is proportional to the con-
densate fraction np(T) [this assumption is consistent with
(2) and will be discussed at length later in this paper].
While a and p can be obtained directly from experiment, y
requires some theoretical expression for 8 n'(p, T). All
these quantities depend on the cutoff momentum p„which0
was —1.2 A in Ref. 1.

By using high-momentum neutron scattering where the
impulse approximation is adequate, one can find the
momentum distribution n(p) of the atoms in liquid He.
Following Sears, Svensson, Martel, and Woods, ' this can be
written in the form

n (p) = no5{p) + {1—no) n'(p, T)

where n'(p) is the momentum distribution of the noncon-
densate atoms (normalized to unity). Of course, the experi-
mental values of n (p) are broadened by instrumental reso-
lution and final-state effects. Experimentally, it is found
that n'(p, T) is not very temperature dependent for T ) Ti,.
Theoretically, however, it is known that in the superfluid
phase n'(p, T) has an anomalous contribution which is con-
densate induced. In particular, one has *

Sears et al. ' first emphasized the importance of including
the effect of Bn"(p, T) [i.e., the y term in (4)] if one was to
extract a reliable estimate of the condensate fraction. They
obtained a simple expression for y based on
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where n, (T) is the superfluid fraction. The cutoff in (7)
was defined as the value pp, where the two terms in (8) are
of equal magnitude. This cutoff is found to be
2k' T/tcn, (T). It is very small ( —0.2 A ) at T= 1 K,
but increases rapidly with temperature. At T=2.1 K, one0
has pp —1 A and hence y —3. However, as discussed
elsewhere, the expression in (8) is incorrect. In particular,
the first term is only valid for cp ~ ka T/fi, while the second
term is only valid for cp ~ ka T/t.

In the present note, we attempt to put the approach used
in Ref. 1 to calculate y on a firmer footing. With our new
procedure, however, we find a value of y which is quite
substantial, even at low temperatures. This leads to revised
values of np( T) which are quite different from those of Ref.
1. The main conclusion of this paper is not in our specific
numerical results for np(T). Rather, it is that until one has
a good estimate of y, one cannot extract meaningful esti-
mates of np(T) from the momentum distribution. In future
work, it is the determination of Sn'(p, T) which should be
emphasized. In this regard, we believe the unusual ex-
ponential tail4 s which n(p, T=1 K) exhibits in the high-
momentum region p ~ 1.5 A is of special interest, since it
is probably associated with the existence of the condensate.
It would be worthwhile to study the temperature depen-
dence of the exponential tail —it may be a more direct way
of measuring np( T).

To begin, we note that a decomposition such as in (3)
seems quite reasonable in terms of our current ideas about
the nature of the elementary excitations in superfluid 4He in
conjunction with the role of the condensate broken sym-
metry. We recall that (see, for example, Ref. 2)

(1 —np) n" (p, T) = 3 (p, pi) [2X (Oi) + 1], (9)

where A(p, co) is the single-particle spectral density and
X (pi) is the Bose distribution. In a liquid such as 4He, one
expects to find a well-defined collisionless density oscillation
(essentially a zero-sound —type mode in the noncondensate
atoms). 6 Since the condensate fraction is always less than
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—10%, the frequency cop of this mode will not be much
different below the superfluid transition from what it is
above (this is consistent with experimental data). However,
a crucial difference below T& is that this zero-sound mode
has finite weight in A (p, oi) due to the effect of the broken
symmetry. 7 Thus, we expect A (p, co) to be given by

A' (p, cu) =2m z(p, no)8(cu —~~)+ Hi (p, su, n) (10)

Here z(p, no) is some weight function which vanishes with

no, while A, (p, Oi) is a broad (nonresonant) spectrum
which describes the damped single-particle excitations which
arise in any liquid. Since the condensate fraction is so
small, we do not expect A, (p, co) to be very much dif-
ferent above and below T&, although it will clearly depend
on the relative number of noncondensate atoms n.

Using (10) in (9), we have

n(T) n (p, T) = z(p, np(T)) [2X (co&) +1]

+„, A, (p, oi, n)[2%'(o))+1] . (11)

n" (p, Ti, ) = — A,„,(p, ru, n)1 do)
2m'

Sn'(p, T) = z(p, no(T)) [2% (co~)+ 1]

(i2)

At T = 0 K, Gavoret and Nozieres3 have made a direct
calculation of A(p, cu) for small p and co, obtaining the
result (10) with 0~~= cp and

z(p, no(0)) =
2 2n' p p

We shall make the key assumption that this expression is
equally valid at finite temperatures in the collisionless region
defined by cp ~ AT/ti, except that now the condensate
fraction depends on the temperature of interest. It is,
of course, not correct in the hydrodynamic region
cp ~ ktiT/ t. However, we are ultimately interested in cal-
culating y in (7), and the dominant contribution to the
momentum integral will come from the region p ~ ksT/tic

0
(we recall that at T —2 K, k~T/tc —O. l A ). Thus, it is
sufficient to limit ourselves to the zero-point contribution
and hence we use the approximation

Above T~, only the second term is present. Since experi-
mentally n'(p, T ) T&) is only weakly temperature depen-
dent' up to 4 K, we conclude that Ai„,(p, oi) is dominated
by frequencies tie && 4 K and we can limit ourselves to the
zero-point contribution in the second term. We are thus led
to the following microscopic identification of the terms in
(3):

was so small at T= 1 K was that the cutoff used in (7) was
based on the incorrect expression (8), which led to a value
pp-0. 2 A '.

A very physical way of understanding (14) is based on re-
lating phase fluctuations of the order parameter and density
fluctuations. 9 Assuming that the latter have a frequency cop,
one is led to a more general version of (14), namely,

sn'(p, T) = ', = no(T)8(p)
np( T) indi~

2 21r p p
(i7)

This gives a simple way of including the contribution to y
from the region where the excitations are no longer given
by eop=cp. Using the experimental values of the phonon-
maxon-roton dispersion relation, we have calculated

1
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Our results are shown in Fig. 1. Of course, it should be
emphasized that the dominant contribution to y is coming
from the larger values of p, where the validity of (14) and
(17) has not been proven. On the other hand, our calcula-
tion is based on a reasonable extrapolation of what we know
about Bose-condensed liquids and is probably about the best
we can do at the present time. Thus, it would seem that y
is substantial (in the general range 0.5-1.0). As shown in
Table 1, our result for no(T) is considerably smaller at low
temperatures and considerably larger at high temperatures,
relative to those obtained in Ref. 1. With regard to our
small result for np at 1 K, we recall that the best Monte
Carlo calculations 'p give np=0. 09 at T= 0 K.

Mook" has also carried out measurements of the
momentum distribution which he analyzed using (4). Due
to better resolution, Mook's values for p, were considerably
smaller than in Ref. 1. In Table I, we reanalyze his data us-
ing the appropriate y(p, ) in Fig. 1. The values of no(T) we
obtain are in good agreement with those based on the data
in Ref. 1.

We briefly mention a completely different approach to the
calculation of Bn"(p, T), which we have found gives results

~pc
nay = J dp 4n p2z(p, no( T) )

This gives

y=
z p$ =0 85[po(A )]

8m2h p

(15)

(16)

as the contribution for wave vectors up to pp. Assuming
that (14) is probably valid in the phonon region where0
cl)p cp, we estimate pp 0.7 A, which gives y =0.42.
Unfortunately, this estimate leaves out the contributions0
from higher momentum (between 0.7 and 1.2 A ), where
we have no justification in using (14). However, we em-
phasize that even at T=0 K, this estimate says that
y~ 0.4. The reason that the value of y obtained in Ref. 1

0
0.5

I I

i.O
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FIG. 1. Plot of y(p, ) in (7) as a function of the cutoff momen-
tum p, . These results are based on the generalized Gavoret-
Nozieres expression in (17).
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TABLE I. The condensate fraction no(T) as given by (4) using the results in Fig. 1 and the data in Refs.
1 and 11.

Ref.

1
1

11
11
11

1.0
2.12
0.47
1.50
2.12

p, (A ')
1.3
1.1
0.90
0.&9

0.62

0.079
0.029
0.077
0.076
0.020

0.49
0.36
0.28
0.27
0.13

1.21
0.96
0.66
0.66
0.33

no (T)

0.046
0.018
0.056
0.055
0.017

roughly similar to those based on the generalized Gavoret-
Nozieres expression (17). We assume that

8 n (p, T) = z(p, na( T) ) = na( T)8 (p) (19)

8(p) = " [n'(p, T=O K) —n'(p, Ti,)]«(0) (20)

This is a useful expression since n"(p, T=O K) is known
from computer calculations. 5'a'2'3 For n'(p, T„), we ar-
gue that this momentum distribution is expected to be a
Gaussian '"' with a width which can be related to the
average kinetic energy Eo,

1 i 3/2

n(p, Ti, ) = — e 't't't'3 1 (21)
27K p

where ICti=t2p2/2m. Taking into account that the average
kinetic energy is only slightly temperature dependent in
liquid He, ' one can use the value ED=14.5 K obtained
from computer calculations at T=O K. ' %ith this pro-
cedure, we have found that the results for 4m p28 (p)
predicted by (17) and (20) are in rough agreement up to
p -1.3 A '. This gives a separate piece of-evidence that
our estimate of 7 (p, ) in Fig. 1 is reasonable.

Other experimental methods have given much larger
values of na(T) at low temperatures, '7 but the microscopic
basis of these methods is weak. In assessing our results, we
emphasize that (14) has only been proven23 to be correct
for small p and may be absent at larger momentum. If any-

where the function 8(p) is taken to be temperature in-
dependent. This is a reasonable generalization of (14), but
at the present time must be viewed as an assumption. Mak-
ing use of (19) in (3), we have, at T = 0 K,

n (0)n (p, T= 0 K) = n (0) n (p, T„)+ no(0) 8(p)
or

thing, the generalized form (17) underestimates the falloff
of Sn'(p, T) at larger values of p. Thus, our estimate of
7 (p, ) in Fig. 1 is probably too large and the correct values
of np should be somewhat larger than those given in Table
I. Broadening of Sn'(p, T) due to resolution and final-state
effects does not alter y very much. Furthermore, neutron
scattering experiments with better resolution and at larger
momentum transfers are of high priority, since then one
could carry out the analysis based on (4) with a much small-
er value of p, . On the theoretical side, what is really needed
are direct computer calculations of n'(p, T) and na( T) as a
function of the temperature. '

Recently, neutron scattering has been used to obtain
n(p, T) in liquid 4He under a variety of pressures. ts How-
ever, it would seem difficult to incorporate the effect of
gn'(p, T) in the simple method of data analysis used by
Sokol, Simmons, Price, and Hilleke based on Gaussians.

In conclusion, we call:attention to the interesting ex-
ponential tail45 which n(p) exhibits for p~1.5 A ', at
least at low temperatures. %e suggest that the difference
between the Gaussian and exponential tail should be identi-
fied with Sn'(p, T) in the large-momentum region and
hence should be proportional to nc(T) if our ansatz (19) is
still correct in this region. In this large-p region, n(p) is
extremely small, so that this region makes a negligible con-
tribution to the momentum integrals in (5)—(7). However,
a careful study of the temperature dependence of this high-p,
exponential tail might be a separate way of confirming the
ansatz (19) as well as measuring no(T) without all the com-
plications which occur at small p. Further experimental
work on this topic seems highly desirable.
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