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%'e have carefully investigated the orientational dynamics of a single substitutional diatomic
molecular impurity in alkali halide crystals. The orientational relaxation functions of Eg and T2g

symmetries are calculated by using Mori s projection-operator technique with truncation first ap-
plied to the rigid-lattice case by de Raedt and Michel [Phys. Rev. B 19, 767 (1979)]. For the CN
impurity in a rigid Kar lattice we find that the librational and central-peak behaviors of the spectral
weight function for the two symmetries are strongly influenced by the hexadecapole moment of the
molecular ion. We find that the rotation-translation coupling modifies the single-site cubic potential

by self-energy corrections, suppresses librational motion, enhances diffusive motion, and narrows
the width of the central peak.

I. INTRODUCTION

Orientational structure and dynamics of simple diatom-
ic molecular impurities in cubic host lattices have been a
problem of considerable interest over the past several
years. ' Typical systems are (CN) and 02 ions in al-
kali halide crystals. Recently these systems, in particular
(CN) in KCl and NaC1, have been explored in great de-
tail to understand how the structure and dynamics evolve
from the single-impurity limit to the molecular-crystal
limit with special focus on the orientational glass phase
observed in the intermediate-concentration range.

A necessary starting point for understanding the
dynamic properties of the glass phase in these systems is a
proper study of the single-impurity limit. This latter
problem is interesting in its own right as it forms a proto-
type of a problem of a single molecular impurity
described by its orientational degrees of freedom coupled
strongly to a polarizable medium, a problem similar to the
polaron problem. Therefore, as in the polaron case, one
expects to find here effects similar to effective-mass
enhancement and self-trapping.

In this paper we discuss in detail the effect of rotation-
translation coupling on the orientational dynamics of a
single impurity in a cubic host. A brief report of this
work has been already published. ' The dynamics in a
rigid host was studied in great detail by de Raedt and
Michel using the Mori projection-operator technique.
We have examined the physical origin of one of their in-
teresting observations regarding the relationship between.
the symmetry of the dynamic variable and central-peak
and librational structure of the spectral function. In addi-
tion, we have analyzed the contributions of the electric
quadrupole and hexadecapole moments to the single-site
potential and find them to be of great importance in the
quantitative understanding of the rotational dynamics.

The organization of the paper is as follows;. In Sec. II,
we describe the Hamiltonian for the coupled rotation-

translation system. Section III briefly reviews the de
Raedt and Michel approach to obtain Kubo's orientation-
al relaxation function using Mori s projection-operator
technique. The relationship between the symmetry of the
dynamic variables and the low-temperature behavior of
spectral weight functions for the rigid-lattice case is dis-
cussed in Sec. IV. In Sec. V, we present the results of in-
cluding rotation-translation coupling on the orientational
dynamics. Finally, in Sec. VI, we present our numerical
results and compare theory with experiment.

II. THE HAMILTONIAN

We study the orientational relaxation of a single di-
atomic molecular impurity in alkali halide hosts. The
Hamiltonian H for such a system is a sum of the rotation-
al Hamiltonian Hit for the molecule of moment of inertia
I in a rigid lattice, the translational Hamiltonian of the
pure lattice, HT, and the translation-rotation coupling
HRT, i.e.,

where

HR +HT+HRT ~ (2.1)

and

2 2

HR —— + + Vo(A),Pe Py
2I 2I sin 0

HT g ficoj i,(bji,bji,+———,),
j,k

HtcT QVaj(k)Ya(A—)—(bj k+b~ i ) .
a,j,k

(2.2)

(2.3)

(2.4)

In the above equations Q=(8,$) is the spherical angle of
the molecular axis, j and k are the polarization and wave
vector of phonons and Y 's are the five symmetry-
adapted normalized spherical harmonics of order 2. The
rigid-ion orientational potential Vo consists of nearest-

32 3263 1985 The American Physical Society



3264 S. D. MAHANTI, P. MUQ. RAY, AND G. KEMENY 32

~O = ~~ + ~ZL (2.5)

where

and

s=+1 j
(2.6)

VgL, =Qq[A4pP4 (cos8)+A44P4 (cos8) cos(4$)] .

(2.7)

In Eq. (2.6) C) and C2 are the Born-Mayer repulsion con-
stants, and XJ (RJ,GJ, (I)~) is the equilibrium position of
ion j in the undistorted lattice with the molecule at the
origin of the coordinate system. The vector d (d, 8,$) de-
scribes the positions of the two atoms of the molecule, 2d
being the internuclear separation. Pt (cos8) are associat-
ed Legendre polynomials; A4o, 2&4 are lattice sums, such
that

A4p ——g 5 P4 (coseJ ) = 168A4g,o

J JRJ
(2.8)

neighbor repulsion terms V~ and the hexadecapole-
moment —hexadecapole-field interaction terms VEt, i.e.,

variable U(8, (t). Equation (3.2) is approximate in the
sense that effects of higher moments (n & 2) on the
memory function have been ignored. However, as pointed
out by de Raedt and de Raedt, ' approximation (3.2) for
X+(z) satisfies important spectral sum rules.

In the calculation that follows, we will express both the
time Fourier transform of P+(z), to be denoted as P+(t),
and the spectral function

S(cu) = —m
' Img+(co+('e) ~,

in units of ((3(U;U). In order to distinguish between
central-peak and librational characteristics of both S((u)
and P+(t), we isolate the three poles of (t)+(z) in the com-
plex z plane. In their work, de Raedt and Michel looked
at S(co) directly as a function of p2 instead of looking at
the individual compon'ents. However, we believe that in-
teresting physical insights can be obtained by studying the
amplitudes and widths of the three different peaks of the
spectral function separately. Furthermore, P+(t) can be
compared directly with the results of molecular-dynamics
simulations. Taking the Fourier transform of P+(z=(u)
after expressing it as the sum of three poles, we find that

P+( t ) =Ae +e ' [Xcos(5(up t )

qj being the charge at the jth lattice site.
The translation-rotation coupling V J(k) can be written

in the form"'

+ Ysin(5copt)) .

Similarly for the spectral function we obtain

(3.4)

V J(k) = g, /2 e„(l(,kj )u~„()(:,k),1

2~011, „„(m„)'/2 " (2.9)

where cojk is the frequency of the phonon of mode (j,k)
calculated from Hz, and e„(I(-,kj) is the (Mth component
of the polarization vector for ion of type )( for the mode
(j,k). The coefficients u~„()(,k) have contributions both
from the short-range repulsion and quadrupole-
moment —electric-field-gradient interactions and are dis-
cussed in detail in Refs. 13—15.

I cup 1 Xycop —Y'(co+5cop)
S((u) =—A +-

cu +(I (up) 2 ((u+5(up) +y ci)p

1 Xy~p'+ Y(~ 5~p)—+-
((u —5cop) +y P2p

2 2 2 (3.5)

In Eqs. (3.4) and (3.5) the spectral weights A and X are

A =(1+a+a —1/R )/[a(1+2a) —1/R a] (3.6)

and

III. KUBO'S RELAXATION FUNCTION X=1—3 . (3.7)

The dynamics of a physical quantity described by the
variable U(8, (t) is given by Kubo's relaxation function
@+(z) where z is the response frequency. This has beeri
calculated by de Raedt and Michel using Mori theory
and we simply give the result

The parameter Y is given by the equation

Y'= [3(S1+S2)A—a —1]/v'3(S) —S2) . (3.8)

The parameter a appearing in the above equations is given
by

e (z)=13(U, U)
1

z —((u') /[z+X+(z)]
(3.1) a=(S1+S2——,

' ),
where

(3.9)

where p= 1/k2) T, p( U, U) is the isothermal susceptibility
associated with the variable U, and ( ) is the thermal
average taken over the total Hamiltonian H. The memory
function X+(z) is related to the. moments ((o ") by the re-
lation

~( 3+ 2)1/2]1/3

r=( —„—1/2R )

(3.10)

(3.11)

(3.2) q= —,'. (3.12)

where

( 2n) ( U(n) U(N) ) /( U U. ) (3.3)

In Eq. (3.3) U'"' is the n th time derivative of the dynamic

Equation (3.5) clearly brings out the three-peak nature of
the spectral function and Eq. (3.4) describes the time
dependence of the corresponding correlation function.
The frequency scale of the dynamics is set by
cop ——(cu )'/ and once we scale all the frequencies by (up,
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the structure of the spectrum is completely determined by
the dimensionless quantity R, where

(( 4) /( 2)2)1/2 (3.13)

and

5=(Si —S2)R v 3/2,
I"=(—, —St —Sp)R,

(3.14)

(3.15)

y = (1+ST +S2 )R /2 . (3.16)

Again the three quantities 5, I, and y depend only on R.
Of course, the nature of the Hamiltonian JI and the pa-
rameters of the Hamiltonian Uis-a-Uis temperature T, will
determine coo and R and hence the nature of the spectral
response. Furthermore, coo and R will also depend sensi-
tively on the type and symmetry of the dynamic variable
U that one is concerned with. It is easy to show that the
spectral function S(co) satisfies the sum rule

f S(co)dco=A+X= 1 . (3.17)

Before discussing the details of the Hamiltonian ap-
propriate for molecular impurities in alkali halides and
dynamical variables of different symmetries, we would
like to discuss some general features of the reduced spec-
tral response function cooS(co/coo) =S(co) given by

1 I 1 Xy —Y(co+ 5)
co +I 2 (co+5) +y

Xy+ Y'(co —5)+
(co —5) +y2 2

(3.18)

S(co) and various parameters that determine it are only
functions of R. First we note that R ) 1. In Fig. 1 of
Ref. 10, we have plotted X, I, y, 5, and tan '(Y/X) as
functions of R. In the limit R ~1, which we will refer to
as the oscillator or pure librational limit, X—+1, Y~O,
and A —+0. Thus, the entire weight is transferred to
co= + 1 and

S(co)= —,
'

[5(co—1)+5(co+1)] . (3.19)

Thus, R is a quantity of central importance in the study
of the rotational dynamics of molecular impurities. The
frequency of the librational peak 5 and the widths of the
central and librational peaks I and y (as measured in
units of coo) are given by

It should be noted that the width of the central peak I
does not vanish as R —+1, but the weight in the central
peak vanishes. In the other extreme limit, i.e., R —+co,
which we shall refer to as the central-peak limit, X~O,
2~1, and I —+0. The spectral function S(co) is a simple
5 function at the origin, i.e.,

S(co)=5(co) . (3.20)

The values of 2, X, Y, I, y, and 5 for R =1 and R ~00
are given in Table I. The spectrum for values of
x )R ) 1 can have either a one-peak, two-peak, or a
three-peak structure. The evolution of the reduced spec-
trum with increasing T will be determined primarily by
the T dependence of R and the actual spectral function
$(co) by the T dependence of both the scaling frequency
coo and R. This we discuss in the next section.

IV. SYMMETRY OF DYNAMIC VARIABLES
AND LOW- TEMPERATURE BEHAVIOR

OF SPECTRAL FUNCTIONS IN A RIGID CAGE

For diatomic impurities in cubic crystals the most in-
teresting dynamic variables are properly symmetrized
spherical harmonics of order 2, i.e., U(8, $)=I'o(8,$),
where a = 1,2 refer to Eg symmetry and n =3,4, 5 refer to
T2g symmetry. ' ' We first assume that the molecules
are moving in a static cage, i.e., we assume that HTz of
Eq. (2.4) is equal to zero. The equations determining
(co ) and (co ) for a potential of cubic symmetry Vo(8,$)
are given in the Appendix. The equations for the fourth
moments are in a slightly different form from those given
by de II'aedt and Michel. An extremely interesting result
that was given in Refs. 1 and 5 is the following: If the pa-
rameters of Vo(8, $) [see Eq. (2.5)] are such that they have
minima along the [100] and its crystallographically
equivalent directions, then for T~O, the spectral function
of T2s symmetry is dominated by oscillatory behavior,
i.e., X= 1 and A =0 and the spectral function of Es sym-
metry is dominated by central-peak behavior, i.e., 3 =1
and X=O. If the potential minima are along [ill] and
equivalent directions, then the two spectral functions in-
terchange their characteristics.

The above-mentioned behaviors of the spectral function
are shown in Figs. 1 and 2. In the numerical calculations
of spectral functions we have used the parameter values
appropriate for a (CN) impurity in KBr crystal and
these are given in Table II. To obtain the curves for Fig.

TABLE I. The R dependence of various spectral parameters appearing for the, reduced spectral
response function S(co) of Eq. (3.18), where R2 is the ratio of fourth moment (co4) to the square of the
second moment (co ). Only R = 1 and R ~ co limits are given.

X
tan '{F/X)

(deg)

1

R R
—60 1

R 2
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[100] minimum
A =645K

TABLE II. Parameters for CN in KBr: the lattice constant
2a, molecular size 2d, short-range repulsive force parameters C&

and C2 [see Eq. (2.6)], and the electric quadrapole ( Q2 }and hex-
adecapole ( Q4) moments of the CN molecular ion.

a (A) d (A) C~ (10 K) Cz (A ) Q2 (a.u. ) Q4 (a.u. )

7.0-
3.25 0.60 2.347 3.3382 —3.9642' —11.91'

'Free-(CN) -ion value taken from LeSar and Gordon (Ref. 16).

T29 (100 K)

2.0—

1.0-

0.0 1.0 2.0
co{10 sec }

3.0

~ 6.0-
r. E (100 K)+ 5.0—

~ 4.0 ~
La
CO

1, we have included both short-range repulsion and
hexadecapole-moment contributions to Vo(8, $). The
latter dominates the former and the minima of Vo(8, $)
are along [100] and crystallographically equivalent direc-
tions. The results of Fig. 2 have been obtained by consid-
ering only the short-range repulsion contribution to
Vo(8, $). We should point out that such effects of the
change in the direction of the minima of Vo(8, $) can be
directly observed in the Raman scattering experiments. '

The numerical calculations presented above suggest that
the differences between Es and Tzs are due to their
r'espective behaviors at and near the potential minima. In
order to examine this point we consider a harmonic oscil-
lator with the Hamiltonian

FIG. 1. Frequency and temperature dependence of spectral
functions for [100] minimum.

H= p' X
2PPl 2

and three dynamical variables

n 2y2 2y2
A„=nP, 8„=1—,C„=—

(4.1)

(4.2)

T2 {100K)
8.0—

7.0—

th 6.0—
C

[111] minimum
L =330K

E {100K)

The spectral moments are

( co& ) =Ec/rn,

(roy) =T',
(co& ) =(K/m)

(co' ) =T'
(rue ) =4K/3m,

and

(4.3a)

(4.3b)

(4.3c)

(4.3d)

co 5.0

~+ 4.0

3
gg 3.0

2.0

1.0

1.0 2.0
to{10 sec )

3.0

FIG. 2. Frequency and temperature dependence of spectral
functions for [111]minimum.

(roc ) = —, (X/m )2 . (4.4b)

Consequently, as T~O, R~~1, Rs~ &x&, and Ac~v 3.
We therefore find that in low-temperature limit (T~O),
the variables 8„, which are finite at the potential
minimum, give R ~ ao, while those that go to zero lead to
a finite value for R. In addition, if the secular variables
are like the A„'s i.e., they are simple numerical multiples
of a coordinate that in the Hamiltonian plays the role of a
harmonic-oscillator coordinate, then the corresponding
R ~1. As summarized at the end of the previous section,
for R =1, the entire amplitude of the spectral function be-
longs to the oscillator (i.e., X= 1). Since 5=1 the reso-
nance is at co=+(cg )'~, which is given by E/m. The
oscillator width y=O. At the other extreme, for R~co
the entire amplitude is in the central peak (i.e., A = 1) and
it has vanishing width. Thus, it is the unity in the vari-
able B„,which expresses no dynamics, that gives rise to
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the zero-frequency, zero-width peak. Since this result is
obtained in a harmonic potential, it is not related to inter-
valley dynamics. Associating such central peaks ex-
clusively with intervalley transitions is therefore in-
correct.

V. EFFECT OF ROTATION-TRANSLATION
COUPLING ON THE ORIENTATIONAL DYNAMICS

In the numerical calculations presented in Sec. IV, we
assumed that the rotational dynamics took place in the
potential Vo(8, $) produced by the rigid-ion cage. One of
the important characteristics of molecular impurities in
ionic crystals is the coupling between orientational and
translational degrees of freedom given by HTz [see Eq.
(2.4)]. The effect of HT+ on rotational dynamics can ap-
pear through three quantities, the isothermal susceptibility
XT, the frequency scale coo, and R. The effect of HTIc on
XT can be easily studied by removing HT~ by a canonical
transformation which leads to a modification of the rigid
ion-cage potential Vo by a self-energy contribution V„

12, 13
~ ~ f

U=IUHI=[UHg j (5.6)

and only Hic contributes to U. Both ( U, U ) and ( U, U )
can be calculated after removing HTz by a canonical
transformation, and we find that

( U, U) = Tr(e UU)/Tre (5.7)

We find that HTR has two effects on the calculation of
moments. First, as in the case of XT, the rigid-lattice po-
tential Vo(0, $) is replaced by Vo(8,$)+ V, (8,$) and this
indirectly alters the values of (co ), (co") at a given T by
modifying the cubic potential in which the molecule ro-
tates through the Boltzmann factor (see Appendix). Also,
there is a new contribution to (co ), but not to (co ), that
comes from an additional torque that acts on the molecule
resulting from nonzero values of D, and D, . Thus,

2g

HTz can potentially alter the nature of the orientational
dynamics beyond a simple change in the single-site poten-
tial from Vo(0, $) to V(0,$). Because of this we briefly
summarize the details of our calculation. In the presence
of HTg,

Vo(0,$)~ V(0,$)= Vo(8, $)+ V, (8,$),
where

(5.1) and

( U, U) = Tr(e "UU)/Tre

and

5

V, (g, y)=-,' g D.
~
Y.(g, y) ~'

a=1

f

V J(k)
iD~= —2

Rco~ k
(5.3)

where

HR Hg+ V, (0——,$) .

In the calculation of U= I U,H I, we find that

U=U)+U2 =—I UHRI+[U, HEI .

(5.9)

(5.10)
The rotation-phonon coupling constants V~J(k) between
the orientational variable Y (k) and phonons of mode j
and wave vector k are given in Eq. (2.9). For cubic sym-
rnetry, D1 ——D2 ——D, and D3 —D4 —D5 —Dt . For this

g
case the self-energy contribution to the potential is given
by

V, (0,$)=(15/16m)(D, D,, )Q(8,$),—

where Q(8, $) is the Devonshire potential,

Q(0, $)= sin 8 (sin"P+ cos4$)+ cos~g . (5.5)

The effect of HTz on (co ) and R has to be calculated
explicitly. In the calculation that follows we ignore the
explicit dynamics of the phonon variables. The additional
torque produced by HTz on the rotor dynamics is aver-
aged over phonon coordinates using a canonical transfor-
mation to eliminate HT~ while taking the trace over pho-
non coordinates.

For U= Y~(8,$), the second contribution U2 in Eq. (5.10)
is found to be

BY BYp 1 BY BYp
I Bg p Bg sin2g BP p BP

(5.11)

where b p is an operator in the phonon space:

bp= g Vp/(k)(bj k+bj k) .
j,k

Since (co ) can be written in the form

1 ( [U, UI )
P (UU)

it is apparent that this also splits into two contributions,
(co, ) and (co„,), where (co, ) is calculated using the for-
mulas in the Appendix with V= Vo+ V, and

2 2
]. ] ~Y~ ~Yp 2 Y~ ~Y~ ~Yp BYp

( Y ) PI Bg BP sin20 Bg BP Bg BP sin40

'2 2
8Yp

BP
(5.12)

with Dp defined in Eq. (5.3). The thermal averages in the
calculation of . (co, ) and (co"„,)~ have to be taken with
respect to H+given in Eq. (5.9) and w'ere identified as
the cubic and noncubic components of the local distortion

I

in Ref. 10.
There is a similarity between the effect of Hz-z on (co )

and (co") and that of exchange interaction H,„between
spins that interact via dipole-dipole interaction. As is well
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known" in magnetic resonance theories, H„modifies the
fourth moment, keeping the second moment unchanged,
the net result being an exchange narrowing of the spectral
line shape. In our problem, however, there is an addition-
al effect associated with the renormalization of the cubic
potential in which the orientational dynamics takes place.
The detailed study of the effect of HT~ on the spectral
functions of Tzs and Es symmetries will be presented in
the next section.

VI. RESULTS AND DISCUSSION

A. Effective cubic potential

The rigid-cage potential was calculated by using the pa-
rameter values given in Table II. The values of hexade-
capole moment (Q4, ) and quadrupole moment (Qz) of the
(CN) molecular ion were taken from the Table I of Le-
Sar and Gordon. ' To facilitate the calculation of the po-
tential V(8,$) and its derivatives which appear in the ex-
pressions for (co ) (see Appendix), we expand V(8, $) in
terms of the first six cubic harmonics following Fehlner
and Vosko' and write it as

V(8,y) = g A, ,Q'-'S&-', (6.1)

where Q has been defined in Eq. (5.5) and

S(8,$)= sin 8cos 8(1—sin P —cos P)/2 .

It should be noted that repulsion contributes to all A;&'s,

whereas the hexadecapole moment contributes only to
Az~. The dominant coefficients are Az~ and A~z and the
rest make small contributions to the total potential. The
values of A2~'s and 3 ~2 are given in Table III, where we
also give the self-energy contribution to Az& (see below).

The self-energy contribution to Azt, to be denoted as

Az&, was obtained by using the parameters Az and 8~ of
Sahu and Mahanti, ' but a different set of values for A&
and B~, the quadrupole —electric-field-gradient coupling
contribution to the rotational-translational coupling.
These are calculated by using a value of Qz given in Table
II instead of —4.64&&10 ' esuA used in Ref. 14. The
values of coupling constants used in the present paper are
Ag ——4379, Bg ———988, Ag ———3954, and Bg ——3225, aH

in units of K/A. In the calculation of rotational-
translation coupling' coefficients U~&(k) of Eq. (2;9), we
have included contributions up to third-nearest neighbor.
The phonon frequencies co&k and corresponding polariza-
tion vectors were calculated within a rigid-ion model, and
the Brillouin-zone sums were carried out by using the
special-point method. The self-energy parameters D,

and D, are found to be —985 and —3743 K, respective-
2g

ly. Using the following definition for A z&, the self-energy
contribution to A2&,

Az) ———„(D, D,—),
2g

(6.2)

we find Az~ equal to 823 K (see Table III). The effect of
D, and D, on (tu ) will be discussed later in this sec-

g 2g

tion. Before that we would like to discuss the importance
of the self-energy contribution to the single-site potential.

If we consider A z&, i.e., only the repulsion contribution
to V(8,$), then the minima are along [111] and
equivalent directions, and the barrier height 6 is about
340 K. Inclusion of the hexadecapole contribution A z~ to
Az& shifts the minima to the [100] and equivalent direc-
tions and gives 6=-650 K. The self-energy contribution
A z~ is not large enough to shift the minima back to [111],
but does reduce the barrier height to 250 K. Experimen-
tally, the barrier heights have been found to be much
smaller tha'n these numbers, i.e., they are of the order of
50—100K. Also for (CN) in KC1 and KBr, the minima
are along the [111]directions. Because of the cancellation
between two large numbers Az] and Az~, a small change
in one will alter the nature of the single-site potential
drastically. In the present study, we change V(8, $) by
changing A z&, which is equivalent to modifying the
(CN) hexadecapole moment. We define a parameter r,
such that Az& ~rAq&, and vary r. The values of V(8,$)
with the self-energy contribution for the [100], [110],and
[111] directions for 0.6&r &1 are given in Table IV,
where minima are denoted by footnote a and b is the
height of the lowest energy barrier.

TABLE IV. Single-site potential for three different symme-
try directions for different values of hexadecapole-moment ( Q4)
reduction factor r Q4~rQ4, w. here Q4 is the free-ion value.
All entries are in units of K.

B. Central peak weight and spectral function

We will discuss the effect of translation-rotation cou-
pling (TRC) on the orientational dynamics in several
steps. First, we choose a particular temperature and study
how the central-peak weight (A ) changes when TRC is in-
cluded. Next, we discuss the temperature dependence of
A for two suitably chosen values of r, which determines
the strength of the molecular hexadecapole moment.

In Figs. 3(a), 3(b), and 3(c), we show the effect of TRC
on 3 for Eg and T2g symmetries in three stages. The
temperature was chosen to be 50 K, which is an inter-
mediate temperature, i.e., k&T-A, 6 being the height of
the potential barrier. In Fig. 3(a), the effect of TRC is in-

.A]p
R

A2]
R

A2]
S R R

TABLE III. Various contributions to the expansion coeffi-
cients A;~ of the single-site potential V(8, $) [see Eq. (6.1)] ex-
pressed in units of K. The magnitudes of the rest of the coeffi-
cients are less than 10 K.

0.6
0.7
0.8
0.9
1.0

V[ 100]

985
608
232

—145'
—521'

V[110]

475
287
98'

—90
—278

V[111)

378'
252'
127

1

—124

97
35
29
55

243
1731 2351 —3765 823 56 68

'The minimum of the potential.
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T= 5OK
1.0)~

/
/

FO ~ XT 0
9 %2g(r-0.2—

0.6—

(a)

1.0

0.6—
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FIG. 3. Strength of central peak A as a function of r, defined
in Table IV at T=50 K. (a) Dashed lines —without TRC; solid
lines —TRC incorporated only by the self-energy ( V= Vo+ V, ).
(b) Dashed lines —TRC incorporated only by the self-energy;
solid lines —TRC incorporated by both the self-energy and the
fourth moment. (c) Dashed lines —without TRC; solid lines—
TRC incorporated by both the self-energy and the fourth mo-
ment.

corporated through a modification of the single-site po-
tential V, as given in Eq. (5.1). V, not only changes vari-
ous thermal averages through the Boltzmann factor, but
also the fourth moment {co ) [see Eq. (5.1)].

A rather drastic change in the values of Az and A2T

occurs upon inclusion of the self-energy in the potential
energy. This arises from the tendency of the potential
minimum to shift from the [100] direction to the [111]
direction. The point where Az ——AzT shifts from

g
r=0.65 to r=0.85. At r=0.75 in the absence of the
self-energy AE —1 and AT —0.06. In the presence of the

g 2g

self-energy, 3& ——0.24 and AT ——0.94.
g 2g

In Fig. 3(b), we show how A changes when the new
contribution to {co ) coming from TRC [see Eq. (5.12)],
denoted by {co«), is included in the calculation of spec-
tral weight. The single-site potential V= Vo+ V, is the
same for both the dashed and the solid curves of this fig-
ure. The major effect of (co«) is an overall enhancement
of A for all values of r. The effect is dramatic for the
values of r at which the potential barrier height 6 is
small, i.e., near the Eg-T2g crossover region. The cross-
over point shifts by a very small amount to a higher value
of r, which is perhaps due to the detailed nature of the po-
tential.

In Fig. 3(c), we show the entire effect of TRC on A.
The dashed curves are those of Fig. 3(a) and the solid
curves are those of Fig. 3(b). TRC changes A dramatical-
ly and should be incorporated in a proper theoretical
understanding of the orientational dynamics of molecular
ions. The nonrigid nature of the ion cage surrounding a
molecular impurity in alkali halides strongly alters the
latter's dynamics due to a strong couphng between the ro-
tational and translational dynamics. We believe, however,
that the present calculation overestimates the effect of the
nonrigid cage. If co,«, the characteristic rotational fre-
quency, is much larger than cu„b, the characteristic fre-
quency of the cage dynamics, then the cage will not
respond to the rotational dynamics. Consequently, the

T2, r=0.9, [100] min, A = 55K
't .0— E, r = 0.7, [111]min, L = 35K
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FIG. 4. Temperature dependence of the strength of the central peak without TRC ( Ao) and with the full effect of TRC ( g).
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orientational motion will primarily take place in a rigid,
although possibly noncubic, cage. Thus, a proper theory
should include the cage dynamics explicitly. Within the
Mori approach, we have to go beyond (ca ) in the calcula-
tion of orientational relaxation function.

In Figs. 4(a) and 4(b), we present our results for the
central-peak enhancement for different temperatures. At
very low temperatures T( 10 K, the numerical results are
not reliable and one needs to study the low-T (T~O K)
behavior of (to ) and (co«) analytically. For physical
systems, however, one expects the quantum behavior to be
important and the T~O K limit of a classical theory to
be only of academic importance. We have not, therefore,
pursued the analytical studies in great detail.

C. Comparison with experiment and discussion

For the KBr-CN system, Callender and Pershan'
found that at low temperatures (T & 100 K) the Es spec-
trum showed a librational peak, whereas the T2g spectrum
showed a central peak (referred to as relaxational peak by
de Raedt and Michel ). From Table IV of the present pa-
per, we see that for the KBr-CN system, the single-site
potential has a [111]minimum when the self-energy con-
tribution V, to the single-site potential is included and the
free-ion hexadecapole moment is reduced to about
60—70 jo of its free-ion value. The barrier height 5 is be-
tween 97 and 35 K, which is a reasonable value for this
system. It should be emphasized that the shallow barrier
height is a result of strong rotation-translation coupling,
i.e., large V, .

If we treat the single-site potential V= Vo+ V, as an ef-
fective rigid potential in which the CN molecules rotate,
then the Es and T2g spectral functions will be in excellent

agreement with experiment. For example, see Fig. 3(a),
where for r=0.7 the solid curve shows dominant E2g-
librational and T2g-relaxational response. However, the
strong rotation-translation coupling which modifies the
bare single-site potential Vo also alters the orientational
dynamics [see Eq. (5.12)] explicitly by changing the fourth
moment. This latter. modification is so strong that for
r=0.6,0.7, both the Eg and T2g spectral functions show
dominant central-peak or relaxational response [see Fig.
3(c)]. This is in disagreement with the experiment. We
therefore conclude that the apparent agreement between
experiment and the theory using an effective rigid poten-
tial is fortuitous. Whether an improved treatment of the
orientational dynamics by including the explicit effects of
translational dynamics will restore the agreement between
theory and experiment remains to be seen.

In summary, we believe that in these systems where
there is a strong coupling between the rotational and
translational degrees of freedom, a proper theory of orien-
tational dynamics should include the translational dynam-
ics. In the calculation of rotational relaxation functions
within Mori's continued fraction scheme, one has to go at
least up to (co ), the sixth moment. Before applying this
improved theory to real systems, one has to test it for
simple-model systems first.
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APPENDIX

The formulas needed to evaluate (co ) and (ca ) in a rigid cubic potential were given by de Raedt and Michel for
the Es and T2g symmetries for 1=2. Although our formulas for (to ) agree, they have a different form for (co ). We
have for the (co )

(~')E =

48 ii+3(cos 9))+ sin(28) sin(28)
)

9 . 0 . BV
P2I2 PI

9( cos 8) —1

48 1 —( cos 8)
PI 1 —(3cos 8)

1 —3 ( cos"8) )

8 V a'V
cos 28 + cot 0 — 1 —2cos 0 cotO + sin 0+ cos 0+',I

(A 1)
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