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The long-wavelength excitations of a diluted antiferromagnet near the percolation threshold p,
are studied. Within the hydrodynamic theory, the excitation frequency depends on two parameters,
A and g, . A is the stiffness associated with the spatial variation in the staggered magnetization and
P, is the perpendicular susceptibility in the ordered state of the antiferromagnet. The critical
behavior of A near p, is known. We develop a field-theoretic formalism to calculate g, . W'e ex-
plicitly calculate P, in the mean-field approximation and find that it diverges as

i
1n(p —p, ) i, as the

concentration p approaches p, . Some further scaling arguments yield a scaling relation relating the
divergence exponent of g, with other known exponents at the percolation critical point.

I. INTRODUCTION

P =i Pp =&p~ ~— (1.2)

where 8 is the index associated with the diffusion on per-
colation clusters (infinite cluster) in the following way:

( r2) T2/(2+8) (1.3)

The study of linear dynamical processes on percolation
clusters near the percolation threshold is of great current
interest. ' This is a challenging problem, because the in-
finite cluster over which these processes occur is extreme-
ly disordered and ramified. In fact, such clusters are good
physical examples of random fractals with nonintegral di-
mension (within certain length scales). Recently, signifi-
cant progress has been achieved in the study of a class of
processes whose dynamic equations are described by the
Laplacian operator or its finite-difference analog. The
physical examples of such processes include ferromagnetic
spin waves, phonons, diffusion of a classical particle or
exciton, resistor networks, and disordered superconduc-
tors. Due to the similarity of the dynamical equations,
simple correspondences exist between various physical
processes and they are governed by essentially the same
exponents and scaling laws.

To give an example, the dispersion relation for the fer-
romagnetic spin waves at small wave vectors q (q ((gp ',
where gp is the percolation correlation length) is given by

co(q) =D (p)q (1.1)

with D(p) vanishing at the percolation threshold p, like
(p —p, )". It has been shown that the spin-wave problem
is related to the dilute —resistor-network problem, and
that the index p is related to the index t, with which the
conductivity of the resistor network vanishes at p, . The
resistor-network problem, in turn, is related to the dif-
fusion problem, or the random-walk problem, which rela-
tionship gives rise to the equation

where ( r 2 ) is the mean-square average of the distance a
particle diffuses in time T. The relationship between
these three different physical processes can also be
described by saying that all these exponents are governed

by the spectral dimension d ' of the infinite percolation
cluster (IPC), the spectral dimension being defined in
terms of density of states as

( ) ~2/2 —1 (1.4)

The relationship between d, 0, and the fractal dimension

d of IPC is d=2d/(2+8) and d=d —P~/vz. Through
the use of the principle of dynamic scaling, one can fur-
ther relate the dynamic exponents z of various magnetic

models with spectral dimension d or 0.
The purpose of the present paper is to study the linear-

ized excitations of a diluted isotropic antiferromagnet in
the long-wavelength limit. The antiferromagnetic excita-
tions do not belong to the class mentioned in the above
paragraph. The reason for this, as first pointed out by
Harris and Kirkpatrick, ' can be best understood in terms
of the hydrodynamic theory. The energy functional for
the long-wavelength antiferromagnetic excitations can be
written in terms of the transverse components of sublat-
tice magnetizations m, (r) and mb(r) as follows

a=x,y
2 i

V(m, —mb )
i

+ (m, +mb )
S

[(m, ) +(mb) ]
2M,

where M, is the sublattice magnetization which is parallel
(or antiparallel) to the z axis. A, HE, and I are
phenomenological constants which depend upon the con-
centration of magnetic moments and can also be easily ex-
pressed in terms of a microscopic Heisenberg model. The
constant /I is a measure of the energy needed to create a
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spatial variation in the staggered magnetization, which is
the order parameter and is related, like the corresponding
quantity in the ferromagnetic case, to the conductance of
a related resistor network. Therefore, near p„
A ~ (p —p, )'. The quantity HF, called the exchange stiff-
ness, measures the resistance to the creation of a uniform
magnetization in the perpendicular direction to the sublat-
tice magnetization by an applied field. This quantity has
no analog in the problems discussed in the first para. -

graph. Hz is related to the perpendicular susceptibility 7,
by the relation X, =M, /HF. As the percolation concen-
tration is approached, HE and X, show a critical behavior
and this affects the excitation frequency, as for the isotro-
pic antiferromagnet (i.e., I"=0); the excitation frequency
is given by

where y is the gyromagnetic ratio. It is the critical
behavior of X„which gives this problem a new character.
The true nature of the divergence of X, was first elucidat-
ed by Harris and Kirkpartrick (HK), ' who found numeri-
cally that X, &x (p —p, ) with r=O. S in three dimensions.
The increase in susceptibility for isotropic antiferromag-
nets has also been observed experimentally. "' Breed
et al. " extrapolated their results to zero temperature and
found that perpendicular susceptibility diverges as p —+p, .

The reason for the divergence of the perpendicular
response of the infinite cluster (IC) near p, can be under-
stood in the following physical terms. ' We divide the in-
finite cluster into cells of linear size L which are of order

Considering one such cell, we note that due to fluc-
tuations in site occupation, it is unlikely that the number
of occupied 2 sites equals the number of occupied B sites
within the cell. As a result, this cell has a net moment
which would turn along the direction of the applied field
without any resistance, if the connections of this cell with
the rest of the IC were severed. The sublattice magnetiza-
tions in the IC are balanced on the whole, so the uncom-
pensated moments of the various cells of the IC are con-
strained by their neighboring cells and show only a finite
response. But as the percolation threshold is approached,
the net moment of the typical cell is proportional to gz~
and the connectivity between the neighboring cells weak-
ens, making it conceivable that 7, diverges as p —+p, .
Denoting the divergence index of 7, by ~ and using the
above considerations, HK (Ref. 10) derived the following
heuristic relation for ~:

~ & t —/3~ —(d —2)v~, (1.7)

which gives ~&0 in the mean-field limit. Our mean-field
calculations, described in this paper, confirm the equality
sign.

In this paper, we shall be interested only in the excita-
tions of very long wavelength, for which the hydrodynam-
ic theory is valid. For such calculations the main relevant
quantity to be calculated, as far as critical behavior at the
percolation threshold is concerned, is the perpendicular
susceptibility. Thus, the main body of this paper de-
scribes a calculation of the zero-temperature perpendicu-
lar susceptibility 7, of a uniaxially anisotropic antifer-

romagnet. Even though we are interested in the excita-
tions of an isotropic antiferromagnet, introduction of the
uniaxial anisotropy serves an important purpose. It en-
ables us to subtract off the paramagnetic response due to
finite clusters which have a net moment because of un-
equal occupation of the two sublattices of the antifer-
romagnet. If the anisotropy is taken to be zero, this
response becomes infinite at zero temperature and hides
the relevant quantity of interest. We also show that the
same purpose can also be achieved by working at finite
but small temperatures.

The perpendicular susceptibility 7, can be determined
by inverting a system of linear equations, which after a
simple transformation are analogous to the voltage equa-
tions for the corresponding diluted resistor network. In
fact, we show that this problem is analogous to determin-
ing the resistive response to an applied staggered field.
Our treatment is based on a method, developed by
Stephen, ' to tackle the resistor-network problem. We
make explicit calculations of the susceptibility in the
mean-field limit and then present some tentative generali-
zations based on scaling theory.

The formulation made by Stephen converts the problem
into a statistical field theory involving an infinite number
of order parameters. Hence, the mean-field approxima-
tion to the problem is also nontrivial and remains intract-
able unless some further perturbative expansion is
developed. A natural expansion parameter turns out to be
J ', where J is the strength of the exchange interaction.
This is due to the circumstance (that we can establish on
general ground) that the perpendicular susceptibility of
the diluted antiferromagnet is proportional to J ', after
the paramagnetic contributions due to uncompensated fin-
ite clusters have been subtracted off. Thus, we need just
the first two terms of the expansion in J ' to obtain an
exact result.

The zero-order term corresponding to the limit J= oo

is already very interesting. In this limit, our mean-field
equations reduce to the mean-field theory of the pure per-
colation problem' in the presence of a staggered field. In
the case of percolation, the staggered field couples to fluc-
tuations corresponding to the difference in occupation of
the two sublattices. These are just the fluctuations that
were identified physically as being the cause for the diver-
gence of perpendicular susceptibility by Harris and Kirk-
patrick. 'o This is a particularly appealing feature of the
present formalism.

This paper is organized as follows. In Sec. II, we
present the basic equations needed to determine 7, . Using
these equations, we establish the general form of g, in two
cases: namely, (a) at zero temperature and finite anisotro-
py, and (b) at finite, but small temperature, and zero an-
isotropy. We also exhibit how P, is related to the stag-
gered resistance. In Sec. III, we set up the replica formal-
ism for X„ in close analogy to the work of Stephen. In
Sec. IV, we derive the mean-field equations and show
how, in the J= op limit, they describe the percolation
problem in the staggered field. Two appendixes, A and B,
supplement this section by establishing the equivalence of
this formalism to the mean-field theory of the Potts
model in a staggered field. Appendix A describes how the
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staggered field couples to the fluctuations in ( nz n—~ ),
where n„' (n~) denote the number of A (B) sites in a clus-
ter c. Appendix 8 describes the relevant mean-field
theory for the Potts model. In Sec. V, we develop a J
expansion and calculate the susceptibility to order J
Some details of this calculation are relegated to Appendix
C. Section V concludes with some tentative scaling argu-
ments which go beyond the mean-field results.

II. PERPENDICULAR SUSCEPTIBILITY:
GENERAL FORMULATION

For the diluted system, the sum would break up into sums
over distinct physical clusters in the system, and we may
write

X, =X,/(gpss)'=g g (B ');;,
c ijEc

(2.7)

where the second sum runs over sites within the cluster e.
At this point it proves useful to make a change in vari-

ables, so that the analogy of the problem to the diluted
resistor network becomes evident. For this purpose, we
define

We consider a two-sublattice bond-diluted antifer-
romagnet described by .the Hamiltonian

g; =e;8; (2.8)

~=+ J, s, s, —rg(s, ')' —(gp, )QH,"s,",
(ij ) i'

(2.1)
B;J=e;eJB;I= g J;k+ I 6~) JJ—

k
(2.9)

where the sum (ij) indicates that i and j are to be
summed over nearest-neighbor pairs of sites on a lattice
whose coordination number is z. The lattice is divisible
into two sublattices denoted by 3 and B, and the nearest
neighbor of sites on the A sublattice lie on the B sublat-
tice, and vice versa. JiJ's are independent random vari-
ables, each of which takes values J with the probability p
and the value 0 with the probability 1 —p. The second
term in the Hamiltonian corresponds to uniaxial anisotro-
py and is kept here for a calculational purpose. In a ran-
domly diluted system there are clusters in which the num-
ber of 3 sites does not equal the number of B sites. Such
clusters, due to their net moment, contribute an infinite
response at zero temperature in the absence of the aniso-
tropy term. .Furthermore, the anisotropy term stabilizes
the Neel ground state in the z direction for all clusters.
The last term in (2.1) corresponds to a site-dependent
external transverse field.

For small external fields, we can expand about the Neel
state by writing

=JG,J '+I 6;J- . (2.10)

X, =g e;~J(B ');,. (2.11)

(2.12)

where
~
e) is a column matrix whose elements are e;. As

the matrix G ' has zero as its lowest eigenvalue, we may
write

&~
I
do&'

I J
A,&0

(2.13)

The matrix G, defined in Eq. (2.10), is related to the dilut-
ed resistor network defined by treating the occupied bonds
of the above system as a unit conductance. If

~ P~) and A,

denote, respectively, the eigenvectors and the correspond-
ing eigenvalues of the matrix G ', then we may write

S;=S[e;(1—8; /2)z+8;xj, (2.2) where we have taken J&&I and hence neglected I in the
second term. If we set

where e; = 1 when i is on the A sublattice, e; = —1 when i
is on the B sublattice, and 0 s are small deviations caused
by the field. The energy in terms of 8 s can be written as

ISE= —g J;JS + —,'S g J,J(8;+8~) + +8;
we may rewrite Eq. (2.13) as

X,= +—(e~G ~E) .
&~

I
ko&'

I J (2.14)

—gpss gH;"8; . (2.3)

The equilibrium deviations obtained by minimizing E are
given by

Note that G is defined only in the subspace which is
orthogonal to

~
$0), corresponding to zero eigenvalue. To

appreciate the significance of this result let us apply it to
a single cluster. Noting that

~ Pp) =(1,1, . . . , 1)/~n',
we find

g B;J81=(gp~/S)H;", .

J

where

B,,= gJ,„+r'5,, +J,,
k

(2.4)

(2.5)

(ng n~ )—
X ',=, +—g ( E; e)G;J ( ej F),— —

n'r (2.15)

where n~ (n~) are the number of A (B) sites in the clus-
ter, n'=n„'+n~, and

X, =(gpss) +8;/H"=(gp~) g (B ')i . (2.6)

The perpendicular susceptibility X, is now given (setting
H,"=H") by

E=(nz nz)/n'. —
Equation (2.15) shows that a cluster with net moment will
have two types of contributions to susceptibility, one of
them dependent on its net moment and inversely propor-
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(nq ne—) S
3k' T (2.17)

If the moment of the cluster is balanced, one can calculate
the response by making an expansion about the Neel state
as follows. We write for each spin,

S;=e;[xix+y;y+(I —x; —y; )'i z], (2.18)

and express energy to quadratic order in x s and y s.
This yields

tional to I, and the second one the usual antiferromagnet-
ic response proportional to J ' (for J» I ).

Rather similar considerations can also be made at
nonzero temperatures, which are such that k&T ~(J. At
such temperatures, each cluster will be in the Neel state.
If the cluster has a net moment, its paramagnetic response
dominates and

g (e; —e)(ei —e)G;1= —g (e; e)R—,&(ej —e)/2 .

(2.24)

Note, further, that finite temperature at zero anisotropy
or finite anisotropy at zero temperature serve the same
purpose of isolating the paramagnetic response from the
uncompensated clusters.

III. REPLICA FORMALISM FOR PERPENDICULAR
SUSCEPTIBILITY

In this section we set up a replica formalism along the
lines of Stephen's treatment' of random resistor net-
works. For this purpose, we consider the partition func-
tion

E = Eo+S' g J;,1 (xi x, )'+—(y; y, ) ]—
ij Ec

—gp, gS g H; Eixi
inc

(2.19)

ZIh;I = f gd8;exp ——,
' gB;,8;8i+gh;8;

(3.1)
From this expression, it follows in a straightforward
manner that Since

~ t g eteiGlj
ij Hc

(2.20) Z=
(detB) ii2 exp ~ gh;B,~ hj (3.2)

(n,"—n, ) S
c 8 c i jHc

(2.21)

where the second sum is restricted to balanced clusters
only.

It may be of interest to point out that the second term
in Eqs. (2.15) and (2.21) may also be regarded as the stag-
gered resistance of the corresponding diluted resistance
network. If an external current I is introduced at site n

and taken out at site m, then a resistance Rnm may be de-
fined from the following equation:

R„=(V„—Vtt )/I, (2.22)

where VI denotes voltage at lattice site l. It then follows
from Kirchoff's laws that

Thus, the susceptibility of the total system may be written
as

it follows that

= a'
X = ((lnZIho=h I))

~ t =o (3.3)

(i~),= (z"),
i „, (3.4)

Z"=f +d8; exp ——,
' g g B;~8;8g+gh; 8;

i, a i j a=1

(3.5)

where ( ), denotes configuration averaging. Thus, to
calculate the configuration-averaged susceptibility, we
need to calculate (lnZ)„ for which purpose the well-
known replica trick can be employed. We write

nm +mm + Gnn mn Gnm (2.23)
On performing the configuration averaging at this stage,
one obtains

T

(Z"),=f +d8; exp gh; 8; ——+8; g 1 —p+p exp ——(8;+8 )
i a i i (ij)

where 8; stands for replica variables 8;, a= l, n We now i.ntroduce the variables P; from Eq. (2.8) to write

(3.6)

(Z") = (1—p) ' J IIdg; exp ge;h;. hatt;
——gg;+ g ln(1+ue ' "'

)
i i &ij &

(3.7)

where u =(p/(1 —p). The replicated partition function in Eq. (3.7) is analogous to a similar quantity for the diluted
resistor network. ' Following Stephen, we write

ln(1+ue ' ' )=— B e
—(Jf2)(f;—@.)~ 1 i p (,g —p. )

Z
p

(3.8)
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where g denotes f dp/(2n. )"/ and

oo
U

I
a =z g( —1)'+'—

(U)n/2
exp

Substituting Eq. (3.9) into (3.8), we get

&Z"&,=f dP;exp ge;h; ((A ——gf,'+ ,' g—&pg&~/Qp(f;)Q p(f, )

P V

where Qz(tA)=exp(ip. f;) and

1/z if i and j are nearest neighbors

0 otherwise .

(3.9)

(3.10)

(3.11)

Performing a Gaussian transformation on Eq. (3.10) enables us to write
r

&Z"&=f ~d;(p) f Qd4 — Q& g~" ( ) ( — )+g&, ;( )Q ,(4 -)+g
P, l P &&l /, p l l

(3.12)

P, E

ds;pexp 2 Bp Aj s;ps —p+ u s;p
p &j 2

(3.13a)

=f ff ds;(p)expIA, rr[s;(p)j),
S, p

(3.13b)

where

expI u fs;(p)]I =f dP exp e;h; g +Q—8&s;(p)e
P

(3.14)

& s;(p) & =g &;, &e (3.15)

Equation (3.13) is a very convenient form to apply the
machinery of field-theoretic and usual statistical methods
to this problem. ' The field-theoretic variables s;(p) are
closely related to our original g; variables through the re-
lations

for h ~0.
Equation (3.18) may now be written as

d"8'
fg (2))

——
2

W &S2) (w)(w)& .
(2m )"/

The perpendicular susceptibility is then given by

(3.20)

(3.21)

y &;J &y, & =(i) &s;(p) & ~,=o . (3.16)
X, /(gP2) )'= g e; & g; &

~ „ (3.22)

These two relations prove to be very convenient in calcu-
lating susceptibility and other physical quantities in this
formalism. It turns out that in the mean-field approxima-
tion, the more convenient variables to deal with are the
Fourier-transformed variables S;(W), defined by

S;(W)=pe'~' s;(p) .
p

Then Eq. (3.16) takes the form

(3.17)

&q/ & =yg (g)y i ed (i EB) (3.19)

g&;, &y,'&= f „„w'&s;(w)& .
J

Let us now consider the situation in a uniform field. A
uniform h;=h acts like a staggered field for the f; or
s;(p) variables, and we expect the averages of these vari-
ables to assume uniform values on each sublattice, i.e.,

X 8
(4~ —()/2) )

2 Bh

X I. d8
)n/2

x e" &s, (w) —s„(w) & i „,.a

(3.23)
We shall employ Eq. (3.23) to calculate X, in Sec. V.

IV. MEAN-FIELD THEORY AND THE J= 00 LIMIT

In this section we calculate &Z" &, in a mean-field ap-
proximation' (MFA) and derive self-consistent equations
for the order parameters in this approximation, Then we
solve these equations in the J= ao limit and relate the
solutions to the percolation problem. The MFA consists
of calculating the functional integral in &Z" & by the
steepest-descent method, i.e.,
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(Z"),=expI —~,rr[s;(p)]] f +ds;(p)exp ——, g Q;~ J~ [s;(p) —s;(p)][s~(p') —si(p')] (4.1a)
1&P iP JP

=exp[ —A eff[s;(p)]I(detQ) (4.1b)

ff

Bs;(p)Bs,(p')
'

The quantities s;(p) obtained by maximizing the functional in the exponent are given by

(4.2)

QAJ 'sJ( —p)= f i@exp ip lt&—+e;h; lt&
——Qz+QB s;(p)e

J li p

where

(4.3)

Z~; ——f d@exp e;h; P——
@ +QB~s;(p)el (4.4)

The best way to solve the mean-field equation (4.3) is to take a Fourier transform with respect to the variable p. This
yields

S;(W)=+A;J exp e~h~ W — +gB~ s;(p)e
~ Zl ' 2

(4.5)

Z ~; is a normalizing factor in the sense that

f gA;J sj(W)d"8'=1 .

0 forx&1 orp&p, ,
I'

2
l
"o

I
«r x &I or p&p (4.10)

Equation (4.5) is a key equation which we employ repeat-
edly in the rest of the work. We first look for a limit in
which the percolation problem is recovered. ' Note that
when J= oo, B~=z ln(1+V) =x for all p and Eq. (4.5)
becomes

1 IWS;(W)=g A;~ exp ejhj W — +xSJ(W)
ZlJ 2

(4.6)

to

1 IW
Sq(W) = exp —h W — +xSs(W)

Zlb 2
(4.11)

= 1 IW
S~(W) = exp h W — +xS& (W) (4.12)

where ro ——1 —x and x = 1 corresponds
p =p, =1—exp( —1/z).

Now let us consider case (b). Equation (4.6) for A sites
and 8 sites is different now and may be written as

r

Now we solve Eq. (4.6) in two simple field configurations,
(a) h;=e;h and (b) h;=h . For case (a), Eq. (4.6) be-
comes site independent and Z ~~

——exp(x), so that

IWS(W) =exp h W — +x(S(W) —1) . (4.7)
2

Stephen has solved this equation, ' the solution being

S(W)= g p (s w —rw'n)
m=1

with

(4.g)

(mx)
P~ = exp( —mx) .

m! (4.9)

Here P can be interpreted as the probability that a given
site belongs to an m-site cluster. Clearly S (0) is the prob-
ability that a given site belongs to finite clusters and
P = 1 —S (0) is the usual percolation order parameter,
which is such that

We again assert that z&, z, b
——exp(x). ——This can be seen

by establishing the correspondence of these equations with
the percolation proMem in a staggered field. In Appendix
8, we describe the mean-field theory of an s-state Potts
model in a staggered field. This calculation clearly shows
that the percolation order parameters lt&„and &t&s obey the
same equations as the quantities P„=l—S~(W) and
P~ ——1 —S~(W), with our choice of Z&, and Z&s and tak-
ing I =0. To develop further physical significance of the
order parameters gz and gz (or Pz and P~ ), we consider
the diagrammatic expansion for the free energy of a Potts
model in a staggered field. The Potts Hamiltonian is'

PA =+K(s5 —1)—Hge;(s5 &

—1), (4.13)

x + (1+U)& . , ),
1&J

(4.14)

where the variables o.; at each site assume s-distinct
values. The partition function can be written as

Z=s e '~ Tr exp sHpe;(5 . ~
—1)
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where U& ——(e' —1) and is identified to p/(1 —p) in the
correspondence to the percolation problem in the s~l
limit. ' Developing a straightforward cluster expansion
and taking the s~1 limit, one finds that the free energy
per site can be written as (see Appendix A for details)

f, = —1+ g W(nq, ns)e
n&, n&

(4.15)

where W(nz, nz) denotes the average number of clusters
per site containing nz A-lattice sites and nz B-lattice
sites. Thus, f~ behaves like a generator for calculating
cluster averages ( n z ns )—. Clearly,

V. CALCULATION OF PERPENDICULAR
SUSCEPTIBILITY

In this section, we return to the mean-field equation
(4.5) and use it to calculate X, . We first consider the
J= ao limit. The consideration of this limit is important
for the following reason. For a system with zero moment,
like a pure antiferromagnet, X, =O in the J=ac limit.
But in a diluted system, due to clusters with net moments,
there is a response proportional to I" '. We would like to
isolate this part of the response. The mean-field equations
in the presence of a uniform field in the J= oo limit are
given by Eqs. (4.11) and (4.12). We recast these in terms
of new variables defined as

&ng ns &—= y (ng ns—)rv(ng, nj3)=—
ng, ng

So(W}= —,[S~(W)+Ss(W)] (5.1)

(4.16)

a'y,
&(ng ng—) &= g (n~ ns) W(n„,—ns)= aa'

8 H=0

(4.17)

S (W)= —,'[Sg(W) —S„(W)] .

Then Eqs. (4.10) and (4.11) can be written as

S (W)=So(W)tanh[h .W —xS (W)],
So(W) —S (W) =expI —I W +2x [So(W)—1]I,

(5.2)

(5.3)

(5.4)

We can now define

2$„=1—g n„W(nz, ns)e (4.18)

when h =0, S (W)~0 and Eq. (5.4) is similar to Eq.
(4.7) with the solution

n& „n&

2gs ——1 —g n~ W(n„, nz )e (4.19)

—mrw /2 (5.5)

so that

ng, ng We can use Eq. (5.3) to calculate the field derivative of
S~(W) in the limit h~~O,

~~ =(W~ —4a)/2 . (4.20)
Bs.(w) w s,(w)

=X (W)=
Bh (W) h o 1+xso(W)

(5.6)

[zZ y~+H~ —[zZ q~ —Ii)+ —,(e ' +e (4.21)

This then identifies P~ and g~ with the mean-field order
parameters introduced in Appendix B.

Due to symmetry between the 3 and B sublattices,
&n~ n~ &

=—0 when H =0. But &(nz ns) &, which de-—
scribes the fluctuations that are essentially responsible for
the divergence of the real susceptibility, should show some
critical behavior. We calculate this quantity in the mean-
field approximation, using the free-energy expression de-
rived in Appendix 8:

(f~+4a 4~fa)—zK
2

Using Eq. (3.23), we find

W So(W)
X, /X =

(2~)"~ 1+xso(W)
(5.7)

&so( W}d8'
1+xso( 8") (5.8)

The n~0 limit can be taken by noting that So(W) is a
function of the magnitude of %'. In spherical coordi-
nates,

W" + 'So( rV)
g, /X= I d8' ' jdQ„cos 0

l „1+xSo(m )

~fi 1 —P
(jH2 ~ o 1+zK (1—g)

= &(n~ —ns) &, (4.22)

where dQ„denotes the angular integration, which yields
unity in the n~0 limit. Changing the integration vari-
able to u =I 8 /2 finally gives

where g= gz fs as II~0. This gives——

1 1

2 + 4~o~ P &Pc
&(ng —&a)'&= '

i
—,——. Iro I p&p,

S,(u)
X, /N (gp )s= —f du

I o 1+xs~ u

where

S,(u)= g P,e
s= 1

(5.9)

(5.10)

where ~o ——zE —1=x —1

Noting the fact that S&(0)'-0(1) and S&(u) tends to zero
monotonically as u ~ ao, we can argue that the denomina-
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X,/X(gag)') — g P, f du e

1 1 " 1)— —P,—r1+x, , s ' (5.11)

tor in the integral is a slowly varying function lying be-
tween 1+x and 1 and hence can be replaced by a con-
stant. Thus,

one finds naturally enough that So"(W) and X"'(W) are
given by Eqs. (5.5) and (5.6), respectively, and

s"' w
(5.19)

1 —xS("(W)

1+xsI) (W) [S(')"(W)]~

1 2 —cx
&

2&
(~o+&

l o l
+ . ), (5 12)

where az ———1 in the mean-field approximation. Equa-
tion (5.12) follows by noting that (1/s)P, is the average
number of s-site clusters. ' Equation (5.9) shows that in
the J—+~ limit, we get a contribution proportional to
I ', which must come from uncompensated clusters.

Next we consider an expansion of the mean-field equa-
tions in powers of J ' and calculate the first-order contri-
bution. To the first order in J ', 8~=x p /b, w—here

g ( —1)'+' —, . (5.13)
b 2J t=i 12

Substituting (5.12) into Eq. (4.5) and considering the
uniform-field case, the mean-field equations for the two
sublattices assume the form

Furthermore,

—V~X"'(W)

1+~~& ' ~ 1+xS,"' W

f 1+xSI)"(W)] [1—xsI)"(W)]

X(/N= f d "W W X (W)

1X(o)+ (X(1)+X(2))t

where X,' ' is given in Eq. (5.11), and

(5.20)

(5.21)

(5.22)

(5.23)

I W
S~(W) =exp h W — +x [S~(W)—1]

2

+—Vg Sg(W)
1

(5.14a)

To evaluate these integrals, we proceed as before, by first
going into spherical coordinates and then taking the n ~0
limit. Changing the integration variable to u =I W /2
and replacing 1+xs) (W) by a constant C), we find

XI"=C) gP, +2 f du S') (u)[s') (u) —S((u)]
IW

Sg(W) =exp —h W — +x [Sg(W) —1]
2

+
b

Visa(W)1 2 (5.14b)

S

z
~ us) (u)S)'(u)

1 —xs) (u)

(5.24)

(5.25)

1 2—VgX (W)+ x+ X (W)=W
b SpW

(5.15)

I W 1 2Sp(W) =exp — +x [So(W)—1]+ V)) So(W)
2 b

Repeating steps between Eqs. (5.2) and (5.6), we find that
X (W) defined in Eq. (5.6) and Sp(W) in the h ~0 limit
now obey the equations

The first term of 7't" is clearly finite. The integrals yield
divergent contributions as

~
rp

~

~0, due to the fact that
S')(0)(r.

~
r()

~

', SI'(0) ~
~
r(), and 1 —xs)(0) ~

~
r() ~.

The singular behavior of the integrals can be elicited if we
note that S)(u) and its derivatives fall off exponentially as
u ~~.So the significant contribution to the integrals
come from small u values. Near the percolation thresh-
old, for small u values, we can employ the scaling form of
S)(u), given by'

(5.16) S)(u)=1+rp+(r()+2u)'~, rp &0 . (5.26)
Both 7 and Sp can be.expanded in powers of b ', i.e.,

X.(W) =X."'+b -'X."'+
Sp(W) =S() +b 'S() + (5.18)

Substituting these expansions into Eqs. (5.15) and (5.16)
I

Since the scaling form is not valid at large u, the integral
should be cutoff at a value of 0 (1), which we choose to
be —,+rp, a value at which S,(u) becomes zero. With the
use of Eq. (5.26), the integrations in Eqs. (5.24) and (5.25)
can be done analytically to yield

T

XI"+X', '=C) . yP, +[—ln
~
r()

~
+1 (1+ro)—( —', +2r())]+ —ln

~
r()

~
+

S rp

(1—r() )
ln( 1+r() )

rp

2 —ro +2rp2

+ 2(1 —r() )

2ro

(1—rp)(1+2rp)
(5.27)
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Thus, for small
~

ro ~, the leading singularity of X, is
ln(1/

~
ro

~

). We can now write down the dominant con-
tributions,

X, /N = —(&o+&0
~
ro

~
+ )I

The first term in the above sum is

2
1 ns 1 n—g W(n, n„p) =—g W(n, p)—

n

+—[~i+&i »(1/
I
ro

I
)+ .1

J (5.28)
=—(Hi+Bi ip —p, i ) . (5.33)

For the calculation of spin-wave dispersion, we need the
response of the infinite cluster only. One expects the
singular part of the response, which dominates near per-
colation threshold, to come from the infinite cluster.
Since it is independent of I, it is clearly relevant for the
excitations of the isotropic antiferromagnet. The logarith-
mic divergence that we obtain corresponds to ~=0, which
is in accord with the value obtained from the relation (1.7)
when d is set to 6; the upper critical dimensionality and
the other exponents are given their mean-field values.

To conclude this paper, we present some tentative scal-
ing arguments which enable us to go beyond the mean-
field calculations. Our results are based on the exact
equations (2.15) and (2.21). To develop our arguments,
one of us has obtained' a scaling form for the average
cluster numbers W(nz, n~,p) defined in Eq. (4.15). This
is a generalization of the scaling formula
W(n =n„'+n~, p) 'R.ecall

W(n, p)=n "f,[n(p —p, )
+ ]

=(p p. )'+'~ f—2[n (p p—.)~"]—
(5.29a)

(5.29b)

with r
&
——( 3P+ 2y ) /(P+ y ). From Eqs. (5.29), it is

straightforward to derive the leading singularities for clus-
ter numbers, percolation order parameters, susceptibility,
etc. Noting that in a cluster of size n, the fluctuation of
the quantity n, =n~ n~ sh—ould be of order n'~ (n &&1),
Harris proposed'

W( 'nn p~) = W(n, n„p)

n,g W(n, n„p)ge;EzR;~=+ W(n, n„p) gR;.
n, n l,j n, n l,J

=Q W(n, p) —gR;J .1

n l,J

If we allow for further decoupling, n = (p —p, )
and"

gR,z cc(p —p, )

which yields for the second sum a singularity of the form
(p —p, )~ ~. Putting together the leading singular terms,
we find for T =0 susceptibility the following expression:

1
X, ~ —(p —p, )' +—(p —p, )~ ~ . (5.35)

Similar analyses can also be carried out for the finite-
temperature expression of X„i.e., Eq. (2.21),

2 2

X, /N =g W(n, n„p) + —g e) eqR(g
8 ~ ~

n, n l,J

(5.36)

The second sum in Eq. (5.36) is similar to Eq. (5.34),
while the first term gives

S S2g W(n, n„p)n, = g W(n, p)n

Note that this expression is supported by our mean-field
result, i.e., Eq. (5.12). The second sum in Eq. (5.32) can
be roughly evaluated as

Furthermore,

'fi[n(p —p. ) +']
n n

(5.30)

S
( —,)

With this result, the finite-temperature susceptibility can
be written as

g W(n, n„p)8(n, )= W(n, p)8(n'~ ) .
n

(5.31)
X(T)~ +—(p —p, )~ ~ .(p —p. )'

T J (5.38)

Using Eqs. (5.30) and (5.31), we may roughly evaluate Eq.
(2.15) for X, at T =0 in the following way:

X, /N =g W(n, n„p)
n, n,

ns 1
X + g e;—

l)J

These relations suggest a new scaling relation for ~, name-

ly,

(5.39)

At the upper critical dimension d„v =0 as P=P='1, in
agreement with our mean-field calculation. Since @-

expansion results for P and P are available, ' ' we can
quote the e-expansion prediction according to Eq. (5.39)
to be

(5.32) 2
E' .

21
(5.40)
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(p —p, )'~+r

r
k& T/J

(p p )0 (p p )P+'V+0

(5.41b)

Our finite-temperature result at zero anisotropy is. covered
by assuming

Fi(x,O)=A)+8)x, x «1 (5.42)

whereas the zero-temperature result at finite anisotropy
follows on taking

F2(O,y)=A2+82y, y «1 . (5.43)

The validity of these arguments and Eq. (5.40) can be es-
tablished, however, only by a direct calculation of ~. In
d =3, the numerical calculations' give ~=0.5, whereas
according to Eq. (5.40), r=0 3.

The results contained in Eqs. (5.35) and (5.38) can be
combined in elegant single scaling forms of the type

k, Ty~ ryk, T
Xs= ' Fi 8+ (541a)

kaT (p —p, )~ (p —p, )~+r

The scaling functions Fl and F2 are simply related by the
equation

F2(x,xy)=yF, (x,y) . (5.44)

To summarize, we have presented a calculation of the
zero-temperature perpendicular susceptibility of a diluted
antiferromagnet. We have obtained analytically the criti-
cal behavior of this quantity in the mean-field approxima-
tion. We believe this to be a new result, which supports
some earlier heuristic considerations. %'e also suggest a
new scaling form for the perpendicular susceptibility and
obtain a new scaling relation for the critical index ~.
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APPENDIX A

Expanding the product in Eq. (4.14), one finds that

Z'=s+e '~ Z=Trexp sH pe;(5 i
—1)

'

1+V g5 . +U g & . , & „,+ ' '

i j (sj& (kl)

One can associate each term of the expansion with an X-point graph in which a bond on neighboring sites (ij ) de-
notes v5 and its absence denotes 1. Then the contribution to the graph can be written as a product over connectedJ
clusters, ' and

product
over clusters

of G

(contribution of a cluster),

where i'(G) denotes the number of bonds in the graph G. Let A„„„(H)denote the contribution of a cluster containing
nz A sites and nz 8 sites; then,

z'=g U
' + [A„„(H)]

G n&, n&

where W(G, nz, n~) is the number of n„—n~ clusters in graph G per site:

A„„„(H)=+exp sH ge;(5 i
—1) Q5

Thus,
=1+(s —1)e

We now consider the free energy per site and take thes~1 limit in the following way:

1f, = lim lim lnZ
N~ao s~i X(s —1) where

zK —H(, n& —n&)—1+ g W(n~, ni) )e
11A, Ply

+gp(G) g W(G, n„,ne)e
6 n&, n&

)v, ( G) )vz/z —xi( G)
p(G)=p ' (1—p
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is obviously the probability for the occurrence of a graph
6, and 8'is the cluster number averaged over all graphs.

APPENDIX 8

To do the mean-field theory, the following representa-
tion of the Potts Hamiltonian by Zia and Wallace proves
very convenient:

I3A = —(s —1W'gv; vi —(s —1) gv; e'H;, (Bl)

where v s are (s —1)-dimensional vectors assuming s-

discrete values given by e, where
I

e.e =1, e e = —(s —1)

We take the field 0; to be such, that

iEA
iEB .

The ordering occurs along e', so that

( v; ) =1)'jz (s)e', i HA (i HB)

1i)q (s) ——e'. (v; ), i EA (i GB) .

(83)

The mean-field Hamiltonian can be written by the usual decoupling:

((3' M„= —(s —1) g (zKQ&+Hz )v; e + g (zKQ~+H~)v; e—1 XZE
iEA i&B 2

(86)

The partition function can now be easily calculated to be
—PMMF —(s —1)(NzK/2)g& 'ttj& (s —1)(H& +zKQ& ) —(zKQ&+H& )

zMF =Tre = e [e l+(s

—1)e
(s —1)(zing& +H& ) (zICQ& +H—& ) iIV~2&& [e +s —le (87)

If, = lnZ
X(s —1) N —moo, s~l

(89)Pg ——1 —e

The equation for the order parameters p„and 1i)s, by
minimizing f) with respect to 1i)z and ((i)s, yields

—(zKq~+H~ )

l

Hg = —H1) =hsz'W~ and gg (s) = 1 —Sg (s)(W).

APPENDIX C

We have

—(zKQ~ +Hs )

1) = 1 —e (810)
W S,'"(W)XI"=+f d"W V)4 '(,

)1+xSp (W)

2

(C 1)

The correspondence of these equations with Eqs. (4.11)
and (4.12) is easily established if we set I =0,

As before, we take the factor [1+xSp"(W)] in the
denominator to be a constant, and write

7, &
2 f d"W S()"(W) + W~VSI) '(W) VSI)"(W)+2W~(1+x) 6m.

2 gP, P, f d"We '+"" ~ (1+stI W W —2sI W )(1+x)

r(s+t)

n/2
st(n +2)I+ (s+t)'

1 2st 2s& 4 QPsP( 1+
( )q (C2)

Noting that near p„ for large s, ' '
1

P,=,f (s
~

rp
~

)+nonsingular terms .
S

We can approximately determine these sums in mean-
field theory, w1

———,
' and a=2. In evaluating the double

sums, nonsingular contributions should also be kept, e.g.,

(1—P„)'=1—4
i rp

~

+O(r(')), r() &0
1 r )0

s, t

whereas the use of a scaling form will only give a contri-
bution like

j
r p ~

=
~

rp
~

. Keeping this in mind one
can easily estimate that all the sums in (C2) are nondiver-
gent and simple functions of

~
rp

~

.
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