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For ferroelectric systems described by an n & 1 polar vector order parameter p, a new term in the
free-energy density, P[p V.p —p.V(p )], is allowed. Considering an isotropic, centrosymmetric
model and using Landau theory, we show that as a result the ferroelectric phase becomes locally un-

stable when
~
p

~

is sufficiently large. For
~
p

~

values above the critical one, the ordered phase has

a modulated antiferroelectric structure. Several alternative structures are considered, and it is ar-

gued that for n =3 the most likely phase is a cubic one (space group O~). Immediately above the
critical value of

~
P ~, the transition to the ordered phase is of second order. When ~P ~

is further

increased, a tricritical point is reached above which the transition is first order. The effect of fluc-
tuations on the above results is analyzed by using renormalization-group theory and expanding to
O(e) in 4—e dimensions. The new term is found to be relevant when n & no ——4 —11@/4+O(e ), in

which case no stable fixed points exist for 1.86 & n & no. Thus ferroelectrics and ferromagnets are
not necessarily in the same universality class. An examination of the renormalization-group flows,

together with the results of the classical Landau analysis, indicates that modulated structures are
possible immediately below the order-disorder transition regardless of the magnitude of Pi&0).
Some experimental data which appear to agree with the theoretical results are discussed.

I. INTRODUCTION

In both its classical' and modern versions, the theory
of phase transitions is based upon the choice of an ap-
propriate order parameter, which depends fundamentally
upon the particular system being modeled. Typical exam-
ples are density (a scalar) to describe the liquid-solid tran-
sition, magnetization or polarization (vectors) to charac-
terize spin ordering or ferroelectricity, and dielectric
constant or quadrupolar moment (second-rank tensors) to
study transitions in thermotropic liquid crystals. The
systems characterized by a vector order parameter. may be
further divided into two classes: those in which the order
parameter is a true or polar vector; and those in which it
is a pseudovector, or axial vector. (The former changes
sign under inversion while the latter does not. ) Axial vec-
tors are relevant to the entire spectrum of magnetic sys-
tems and have been extensively studied. ' Systems be-
longing to the former (polar vector) class had, in general,
been expected to exhibit critical properties identical to
those of their axial vector counterparts; thus no separate
analysis of their phase transitions and their critical
behavior was believed to be necessary. For example, the
simplest case of a phase transition in a fully isotropic cen-
trosymmetric system characterized by a polar vector order
parameter p(r) was modeled in Landau theory by the
average free-energy density,

E=V ' f dV[crp +y(p ) +a(Vp) + . ],

where the integration is over a representative volume V, o;

is proportional to a reduced temperature t =(T—T, )/T„
and y, a are regarded as positive and t independent in the
neighborhood of the phase transition. The terms given
explicitly in (1) are sufficient to describe the phase transi-
tion classically. Clearly, (1) is entirely equivalent to its
magnetic counterpart, which is customarily described us-
ing precisely the same free-energy expression [with p re-
placed by the axial vector m(r)]. '

However, as was first pointed out by Michelson and by
Aslanyan and Levanyuk, (1) is not a complete description
for the case of a polar vector order parameter as an addi-
tional term, of the form

V ' f dVP[p V p —p V(p )], (2)

is then allowed. ' Here p is a phenomenological,
temperature-independent coefficient. Note that symmetry
under time reversal would always result in such a term
vanishing in a magnetic system. In addition, it will van-
ish in a centrosymmetric system with an axial vector or-
der parameter since only V changes sign under inversion.
However, since both p and V change sign under inver-
sion, (2) is symmetry allowed in the case of a centrosym-
metric system and polar vector order parameter. The
consequences of including (2) in the free energy were first
analyzed within a Landau-theory framework by Alex-
ander et al." and, using a different approach, by Kor-
zhenevskii, ' who also considered fluctuation effects using
low-order perturbation theory. The results of a more gen-
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eral renormalization-group treatment were given by us in-
dependently. '

Our objective here is to present a detailed analysis of
the effect of (2) on phase transitions and critical behavior
of systems described by polar vector order parameters.
We shall restrict our treatment to the specific case of iso-
tropic systems characterized by short-range interactions
only. We thus exclude crystalline anisotropy and long-
range (e.g. , dipolar) interactions. The latter, in particular,
can be significant in practical cases and we shall return to
this point in the concluding section. We begin, in Sec. II,
with a comprehensive treatment of the Landau theory of
polar vector ordering. In particular, a rigorous linear sta-
bility analysis of the uniformly ordered (e.g., ferroelectric)
state is given. We then extend the treatments of both
Alexander et al." and Korzhenevskii' and argue that the
prediction of an ordered phase having a cubic structure"
for sufficiently large

~ P
~

is the more plausible one.
Next, in Sec. III, we consider the effect of Auctuations on
the phase transition within a renormalization-group
framework in d=4 —e dimensions. We show rigorously
that this results in a first-order phase transition for
all P&0 and argue that this could result in cubic struc-
tures occurring in certain physically realizable cases. In
the concluding section, we explore the experimental impli-
cations of our results and comment upon the limitations
of the particular model studied.

II. LANDAU THEORY OF POLAR VECTOR
ORDERING

Since the two terms in (2) differ only by a surface in-
tegral, we shall consider a total average free energy having
the form

Setting 6F/Boj ——0 gives the linear Euler-Lagrange equa-
tions

a V cr~+Pp, „(Bcr3/Bx)=0,
a V cr2+Pp, „(Bcr3/By) =0,
aV o3+2ao3 —Pp„(Bcr~/Bx+Bcr2/By) =0 .

(9)

Letting o = Aexp(iq. r), (9) has solutions other than
cr = A =0, if and only if

—q a2

0
—lPpgq )

—q a

if ptcq2

'&v qi

'~puqz
—q a+2+2

=0. (10)

Introducing the normalized wave-vector magnitude
lc=( —2a/a) '~

q and direction cosines yj =qj /q, and
noting that the q=O solutions of (10) are Goldstone
modes associated with the arbitrary breaking of the O(3)
symmetry, we obtain from (10)

8—=P'/ay=4(1+le')/(y', +y', ) .

The minimum value of 8 for which a cr =0 solution of (9)
exists is obtained by taking Ic~0 and y f+ y2 ——1 (i.e., q in
the i~ —iz plane). This gives

Substituting (7) into (3), keeping only contributions up to
second order in o, using (6), and neglecting surface terms,
we obtain

F=F„+V f dV[ —2ao3+2/3p„cr3(Bcr~/Bx+Bcr2/By)

+a(Vo) ] .

F= V ' f dV[ap'+Pp'V p+y(p)'+a(Vp)'] . (3) 8(Ic~0;y3 ——0) =8O ——4 . (12)

This functional is appropriate for fully isotropic systems
characterized by short-range interactions. We assume
that a & 0 and note that the last term in (3) is necessary in
order to obtain a finite equilibrium value for V.p.

A. Instability of the uniform phase

The uniformly (u) ordered phase is described by

P=Pu&3 ~ (4)

with p,
„

independent of r and i3 the (arbitrary) axis along
which the system orders. Substituting (4) into (3) gives

and, from BF„/Bp„=O,B F„/Bp„0&,we obtain

p„=—a/2y, F„=—a /4y, for a&0. (6)

p(r)=p„i3+cr(r), with cr «p„.

A necessary (and, when the transition is of second order,
sufficient) condition for (4) and (6) to describe the ordered
state is that the uniform state be stable with respect to
small perturbations. This local stability can be tested by
letting

Thus, for 8 &4, the uniformly ordered phase is locally
unstable with respect to a long wavelength longitudinal
mode transverse to the ordering direction. It follows that
in this region of the phase diagram there necessarily exists
an ordered phase characterized by a nonuniform order pa-
rameter. Also, while (12) was obtained by taking p to be
an n =3 (three-component) order parameter the result is
the same for the n =2 case and also for two-dimensional
systems. The nature of the instability mode is also un-
changed. Finally, note that (12) is valid in the entire re-
gion a & Q. That is, the uniform phase is not stable at any
temperature when B ~4. This is due to our not including
higher-order [e.g. , (p ) ] terms in (3).

Given that the uniform phase is not thermodynamically
stable, the question of the nature of the ordered phase or
phases in the 8 & 4 region of the phase diagram naturally
arises. We therefore now consider several alternative
structures, all having V p&0.

B. Cubic phase

The structurally simplest phases with V.p+0 are those
characterized by a set j=1, . . . , n of wave vectors kz
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satisfying kz =k. In this case the p V.p term in (3) will
contribute to E whenever the kj form equilateral trian-
gles. This is a well-known result which has been used to
study solidification ' ' and blue phases in cholesterics. '

For an n=3 order parameter in three dimensions, the
simplest structure is composed of a regular. tetrahedron of
wave vectors, which can be aligned with the (110) direc-
tions in k space. The order parameter is then"

1
p, &(r)= —p, & g I(if+if+~)exp[ik(xj+x~+~) +if~]+c.c. I2v'6 '

+ g [(i)—ij+,~)exp[ik(xj —x~+, )+iz)J]+c.c. I (13)

where p, ~ & 0, gj. and zlj are phases, c.c. denotes complex
conjugate, and all subscripts are modulo 3. The calcula-
tion of the free energy E, 1 associated with p, 1 is simpli-
fied by noting that the structure has a threefold symmetry
axis about [111];by placing the origin at a suitable point
on this axis, we can, without loss of generality, set
gJ. ———9)J———zl. Then (13) becomes

I

we believe, is due to choosing an order parameter having
nonzero Fourier components with

~

k
~

= k only. To
demonstrate this quantitatively, we add to p, ~(r) in (14)
(with ri=vr/2) the next symmetry-allowed harmonic, ob-
taining

p, z(r)=( —, )' p, ) g i~C)(S)+)+SJ+z)
j=1

p„(r)=(—, )'~ p, & g ti [(cosz))(CJCz, —SJSJ+z)
+( 3 ) pqz g ljcos(2kxJ+Q),

j=1
(19)

+(sinful)CJ(SJ+&+SJ. +z)]I,

(14)

with pc1 and pc2~0; Again invoking inversion symme-
try, we have /=+sr/2 Subst. ituting into (3) and integrat-
ing over a unit cell gives

F„=a(p, &+p, z) —( —, ) Pk(p„+2p„p„)2 2 & 1/2 3

4 2 2 7 4 2 2 2+7( 12 pc I +4pc lp 2+ 6 pez) —2ak (p. i +2p, z)

(20)

We minimize F,z by taking p = —9r/2 and setting
BF,z/8k=0. Letting p, ~

——p, cos6=p, c, p, z
——p, sin8

=p,$, we find

k = ——,( —, )' '(pp, /a)[c'(c+2s)/(1+s')], (21)
F„=ap,,', +( ,

' )'~'pkp, ', + —,", yp,', +2ak'p—,', . (15)
and

where CJ =cos(kxj ), SJ =sin(kxz ). Note that the part of
p, &(r) proportional to cosz) changes sign under spatial in-
version while that proportional to sing does not. They
thus belong to different representations of the 0(3) (disor-
dered phase) rotation group which implies that zan =0, vr,

or +sr/2. As the former cannot have a p-dependent con-
tribution to F we set 91 =+9r/2.

Substituting (14) into (3) and integrating over a unit cell
gives

Clearly, F, &
is minimum when z) = +m /2. Setting

BE,1/Bk =0 yields

k= —,( —', )'~ p, ~P/a,

with

4 2

Ec2=aPc+SPc )pC +«$ + 6$ —)pB
2 4 19 4 z z 7 4 1 c (c +2s)

+$2

(22)

F.i =aP,'i+ —,'z ) [»—(P'/al')]P'i .

Comparing (17) with (5), we see that F, &
(F„when"

It follows that the uniform phase becomes thermodynami-
cally unstable with respect to the two harmonic cubic
phase when

or

+(19—B)(1, (18a)
B)Bc2= ( 19c +48c s + 14s —12)( 1+s )

(23a)
c (c+2s)

B)Bc1——7 (18b)

Further, the transition from the disordered to the cubic
phase is necessarily first order when

where the quantity on the right-hand side of (23a) is to be
minimized with respect to 0. A simple numerical calcula-
tion yields 0;„=16.03' and

Bc1=1 (18c) B,2
——4.227, (23b)

Thus, B,1 is a tricritical point.
While (18) is in accord with the rigorous result that the

uniform phase becomes unstable when B ~ Bo——4 the
threshold obtained B,1

——7 is considerably larger. This,

much closer to the rigorous threshold of 4. As before,
further increasing B eventually results in a first-order
phase transition which now necessarily occurs when B
exceeds the tricritical value,
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(19c +48c s +14s )(1+s )

c (c+2s)

Setting our origin at the center of the triangle we have
llj=g and, from invariance under inversion, ll=+m/2.
Then:10 778

l g 17 9p (24) phl(r)= ~ Phl g ij{sin[k(xj —xj+1)]
j=l

Clearly, introducing additional harmonics into the or-
der parameter p, (r) will result in further reductions in B,
and B,. However, in view of the closeness of B,2 to
Bp ——4, these will be small, We close by noting that p, (r)
is invariant under the body-centered space group O~,
which thus characterizes the cubic phase. '

C. Hexagonal phase

The two-dimensional analog of the basic cubic phase
discussed in Sec. IIB is obtained by taking a set of three
wave vectors which form a single equilateral triangle. In
this case we have

+sin[k(xj —xj+2)]I .

Substituting into (3) gives

Fh 1 =&Ph 1+ PkPh 1+ 2 yPh 1+2ak Ph 1 .2 1 3 3 4 2 2

3

Thus, rj=+m/2. Setting dFh 1/Bk =0, we have"

1
(PPhl/~),

4 3
2 4 3 1

h 1 Ph 1+YP'h 1(I zc

(26)

(27)

(28)

(29)

1
ph 1(r)= ph 1 g {(ij —ij+1)exp[ik(xj —xj+1)

2 3 ' ]
+igj]+c.c. I .

(25)
I

Bh ]
——12,Bp ) ——36 . (30)

As in the cubic case, these results can be significantly
improved by incorporating higher harmonics in the order
parameter. When a second harmonic is included, we have

ph2( ) Phl g j{ n[k( j xj+l)l+ [k(xj xj+2)]I
3 j—1

+ —Ph2 g lj {sin[k (xj+xj+1—2xj+2)]—2sin[k (xj+, +xj+2—
2xj )]+sin[k(xj+2+xj —2xj+, )]I .

3 j
(31)

The phases in the second harmonic term have been chosen
so that ph2(r) = ph2( —r). Taking the upper sign, the free
energy (3) becomes

2 2 1 3 2 3
h2 ~(Ph 1 +Ph2) ~k Ph 1+Ph 1Ph2+Ph2v'3

4 &4 2 2 3 4 2 2 2+Y( 2Phl+ 3 PhlPh2+TPh2)+ k (Phl+ Ph2)

(32)

Setting ph ) ——pgcosO=pI, c, pg2 ——pgsinO=pcs, and
BFh2/Ok=0, we find

I

suits for Bh are still well above the rigorous stability limit
Bo——4 which, as noted in Sec. IIA, is valid for systems
with two-component as well as three-component order pa-
rameters. We shall return to this point in Sec. IV.

D. Linearly modulated phase

Independently of Alexander et al. ,
" the consequences

of a p V p invariant in the free energy were examined by
Korzhenevskii. ' Using Landau theory and Eq. (3), he
compared the free energy of the uniform phase with that
of a two-harmonic linearly modulated structure defined
by the order parameter

4( 1 + —,c s )(c + 3s )

[(1/v'3)c'+ c's +s '],ml~

=8.825
l e= 1 l. 3p ~

4(3+ —,c s )(c + 3s )

[(1/v'3)c'+c's+s']'

=23.96
l a=15 53'

(33a)

(33b)

p j(r) =P1[i 1sin(2kx)+ i2cos(kx) ] . (34)

However, in order that both terms in pj(r) transform
identically under inversion, it is preferable to replace
cos(kx) in (34) by sin(kx). Also, a slightly generalized
version, having the form

Pj(r) =v 2P j[ilsin8sin(2kx)+iqcosOsin(kx)], (35)

can be considered. Using (3) we obtain (with c=cos8,
s =sin8)

Fj aP1 v2c sI3kPj+———', (1'——,'c s )yPj—
While (33) is a significant improvement on (30), the re- +(c +4s )ak Pl, (36)
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and, after setting BFI/Ok=0,

(1—2c s )(c +4s )
BI ——

4 2
=7.480

I 8=34, 19' & (37a)

p;. The average free-energy density of the modulated
phase can then always be written in the form

F =ay +y[f(Q) Bg—(A)] ';„@4+

(3—2c s )(c +4s ) =32 3~, „..
C S min

(37b)

Korzhenevskii, " with 0=45' or c =s = I/v'2, found (in
our notation) Bi =10 and Bi =50.

=a@'+y(f—Bg)p'+. . . , (38)

after minimization with respect to k. Here p =g,.p;
and the quantity in brackets is to be minimized with
respect to orientation 0, in the parameter space generated
by the p;. Then

E. Discussion aF /aB= —yg~', (39)

In this section we have found, using Landau theory,
that a ferroelectric phase cannot be thermodynamically
stable in an isotropic system when the magnitude of the
coefficient P of the p V p term in the free-energy density
is sufficiently large. While this result is not new, "' the
value of

~
P

~

at the stability limit had not been given pre-
viously.

The Landau theory phase diagram is shown in Fig. 1.
When only the terms shown explicitly in (3) are con-
sidered, Fig. 1(a) is obtained. The uniform phase stability
limit is reached at B=13 /ay =4 for all temperatures less
than T, . The order-disorder phase boundary is second or-
der for all B&B&c, which is a tricritical point. For
B)B&c, the model is not thermodynamically stable at
any finite value of p(r) and higher-order terms must be
included in the free energy. When this is done by, e.g. ,

adding a term proportional to (p ) to the free-energy den-

sity (3), it is straightforward to show by an analysis simi-
lar to that in Sec. II A that the result is the phase diagram
shown schematically in Fig. 1(b). Note that (i) the order-
disorder phase boundary for B)Bzc is first order and the
transition occurs at T, (B &B&c)& T, (B=0), and (ii) the
boundary between the ordered phases is now T-dependent
and the ferroelectric phase becomes thermodynamically
stable at sufficiently low temperatures also for B & 4.

In both parts of Fig. 1, the boundary between the uni-
form and modulated phases is shown as first order for
0, &0. This is generally true whenever the modulated
phase is periodic, in which case the order parameter can
be formally written as a Fourier series with coefficients

which is nonzero for a (0. Since r)F„/r)B&0 always, it
follows that this free-energy derivative is discontinuous on
the uniform-modulated phase boundary for a&0 and
hence this boundary is first order in character.

III. FLUCTUATIONS: RENORMALIZATION-
GROUP ANALYSIS

In a classical Landau-theory framework (such as used
in Sec. II), the effect of thermodynamic fluctuations on
the phase diagram and on the nature of the phase transi-
tions is neglected. Our objective in this section is to treat
these effects by means of a renormalization-group
analysis of the isotropic ferroelectric model system intro-
duced earlier. While such an analysis is not directly ap-
plicable to three-dimensional systems it nevertheless pro-
vides strong indications as to the range of validity of the
classical Landau approach.

A. Stability of the P=O isotropic fixed point

To begin, we remind ourselves that when I3=0, a sys-
tem with short-range interactions is described by a free-
energy functional (or Landau-Crinzburg-Wilson Hamil-
tonian) which is conventionally written in the form

~o/ks T= f d "x
I —,

'
I rp'+(&p)']+u(p')'I, (40)

with p generalized to be an n-component vector (n & 1).
In d =4—e dimensions, the critical behavior of this sys-
tem is given by the well-known Wilson-Fisher (WF) fixed
point which, to O(e ), is characterized by

B
MO

u =u *=fe/4%4(n +8)][1+3(3n+14)e/(n +8) ],
BTC— TC

MODULATE D cI

UNIFORM
CL

BTC

UNIFORM

(a)
T

Tc(B=O) c (B=O)T =
T

FIG. 1. Possible classical phase diagram for isotropic cen-
trosymmetric ferroelectrics showing schematically the regions in
which the disordered, uniform (ferroelectric), and modulated
(antiferroelectric) phases are thermodynamically stable (a) based
on analysis of Sec. II, (b) including the effect of sixth-order
terms in the free energy. Thick (thin) lines denote first-
(second-) order phase transitions. There is a tricritical point at
TC.

with (41)

K4 ——1/Sm

As has been noted, Michelson and Aslanyan and Levan-
yuk have pointed out that (40) is not necessarily an ade-
quate description of ferroelectric systems. We may there-
fore ask whether the WF fixed point is stable or unstable
when the additional symmetry-allowed term (2) is taken to
be an infinitesimal perturbation of the initial Hamiltonian

in the neighborhood of its fixed point. In
renormalization-group terms, this is equivalent to study-
ing the relevance of the additional term

A i /k~ T=w f d "x p'V p, (42)
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for u =u * and w ~0. The coefficient w is, of course,
simply proportional to 13 in (2).

Using standard renormalization-group methods and
(41), we obtain to O(e ) the linearized recursion relation
valid in the vicinity of the WF fixed point

(4—n) 3(n+2)(7n+16) 2
1 bw'=w 1+ e- lnb

2(n +8) 4(n +8)
(43)

mensions. Therefore the WF fixed point does not describe
the critical behavior of isotvopic fevroelectric systems in
which w&0 when n &no .Extrapolating to d=3 we find
A,~(e= 1, n =3)= —0.059, and A,~(e= 1, n =2)= + 0.01,
indicating that, particularly for n =2, the stability of the
WF fixed point in three dimensions is doubtful. However,
as is well-known from, e.g., the case of cubic anisotropy,
results obtained by extrapolating eigenvalue expansions to
e= 1 must be regarded cautiously.

—[3(n +2)(7n + 16)/4(n +8) ]e (44)

For n =d =4—e, A.„=—( —„)eand therefore A
&

is

(weakly) irrelevant. However, for n & no ———1 le/4
+ O(e ), A.~ is positive and A i is relevant in d =4—e di-

where b is the usual momentum rescaling factor. Setting
w'=b w, the eigenvalue exponent A, is found to be

= [(4—n)/2(n +8)]e

B. General Landau-Ginzburg-Wilson Hamiltonian

Since we have found that the d=4 —e WF fixed point
is unstable for w&0, a search for other possible fixed
points is in order. We must therefore consider more gen-
erally the choice of an appropriate effective Hamiltonian
in order to model isotropic ferroelectric systems with
n &d. The appropriate choice is not simply A 0+% 1 but
rather

~/kBT= f d"x( —,Irp'+&i[(V„xp)'+(V p)']+62[(V„xp)'—(V p)']

+&3[(Vxp)' —(V„xp)][+wp V p+u(p')'), (45)

where the gradient operators V and V„have d and n components, respectively. The new quadratic terms in (45) arise
since in isotropic systems, characterized by ( n & d) component order parameters, one can construct three invariant opera-
tors which are quadratic in the spatial derivatives. These are (V p), (V„xp),or their symmetrized versions
e+=(V„Xp)+(V p) (note that V p=V„p),and [(VXp) —(V„Xp)]. Note that if, initially, b, , =63——1 and 62=0,
the quadratic terms in (15) reduce to rp +(Vp), where ( Vp) =(Vxp) + (V p) . When w =0, the b,; are marginal to
O(e) (see below), and full isotropy is maintained under the renormalization-group (RG) transformation [(45) reduces to
(40)]. The situation is different when w&0 and n &no. In this case, w is relevant and generates contributions of
O(iv ), with w =O(e' ), to the 6;. Although it is possible to maintain 6& ——h3 ——1 via anisotropic rescaling of the mo-
menta (see below), a nonzero value of b2 inevitably emerges under the RG transformation. It is therefore necessary to
have b,2&0 ab initio

To carry out a RG analysis of (45), it is useful to rewrite A in terms of momentum-space coordinates. We then have

A /ktiT= —,
' f U ~(Q)p (Q)p~( —Q)+iw f f q p (Q)p~(Qi)p~( —Q —Qi)

+'& P P 1P 2P 1 2 (46a)

with

(Q)=[v+(&i+&2)q'+~3k']~ tt 2~2q q—(46b)

x &p+ (47)

In addition to u &0, we must have 41+62&0 and 43) 0
in order for A to be thermodynamically stable.

f —= (2n. ) "fd"Q, 1&a, P&n, and the usual summa-
tion convention (over repeated indices) applies. In (46b),
q is an n-component vector in the same space as p, and k
is a (d —n)-component vector in the remaining subspace.
In general, Q =q+ k. Upon defining the propagator
[G]=[U] ', we obtain

G t'(Q)= 1

r+ (b, , +b,,)q'+ A,k'

C. Renormalization-group recursion relations

We now carry out a renormalization-group calculation
in order to obtain O(e) recursion relations for the parame-
ters ~5 i, b,2, A3, w, and u appearing in A (it is necessary
to consider the parameter r only at stable fixed points of
the other Hamiltonian parameters). The following pro-
cedure is used: (i) We assume that the parameters b, ;
(i =1,2, 3), w, and u are O(1), O(e'~ ), and O(e), respec-
tively. (ii) We use an anisotropic rescah ng ' of t'he

momentum Q, i.e., we rescale q by a factor b and k by a
factor a with a/b =1+0(e) This permits .us to impose
constraints independently on 51 and h3, i.e., we can re-
quire that A1 ——A3 ——1 under renormalization. As usual,
we take the Q integrals in (46a) to be over the region

~ Q ~

& 1. (iii) The order parameter is rescaled by a factor
y, i.e., p(q, k) =quip(bq, ak)

Starting from the expression (46a) for A, we obtain a
sequence of renormalized Hamiltonians A ' having the
same form, but with new parameters r', 6'1, Az, A3, w',
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and u' replacing the originals at each step. The terms
with coefficients m and u can be considered as small per-
turbations in d =4—e dimensions, and their contributions
are evaluated by means of a diagrammatic expansion us-
ing the propagator (47). The third- and fourth-order ver-
tices (ito and u, respectively) used in the evaluation of the
various graphs are shown in Fig. 2. Note that the wavy a
leg of the third-order vertex has a factor q associated
with it.

We first investigate the O(e) renormalized pair interac-
tion [U ~(Q)]'. From the diagrams in Fig. 3, we obtain

(iw)

FIG. 2. Third- (im) and fourth- (u) order vertices. The wavy
o. leg of the third-order vertex has a factor q associated with it.

[U ~(Q)]'=y b "a "+" [r+(6~+62)b q +b3a k ]6 p
—2b2b q q~+4u f Grr(Q~)+2 f G ~(Q&)

1 1

—2w b q q~ f G'r (Q~)Gr (Qt+b 'q+a 'k)
9)

+4b —
q f Gr (Q, )GrP(Q, +b 'q+a 'k)q

~

1

6']/5 GcxP +Q
—q+a —

Q q q
1

—2 f Gr~(Qt)G (Q)+b 'q+a 'k)q )(rq)+b 'qs) +O(u ), (48)
1

where denotes the integration (2~) f ddg in the range between the sphere q +k =1 and the ellipsoid
b q +a 4 =1, and the usual summation convention applies. Since all the integrals in (48) are multiplied by either u or
to, both of which are taken to be O(e), it is sufficient in an O(e) calculation to set r =0 and a =b (this implies an in-
tegration over 1 &

~ Q ~
& b ) in the various integrals and evaluate them at d =4. Clearly, the terms proportional to u

coming from Figs. 3(a) and 3(b) do not affect the Q-dependent part of [ U ~(Q)]' and can therefore be ignored (they con-
tribute to r'). The four terms proportional to w [Figs. 3(c)—3(f)] do, however, contribute to the Q-dependent part of
[U~~(Q)]'. Since we are interested only in those terms containing q, k, and q q~, it is sufficient to study the integrals
in (48) for very small values of

~ Qt ~

. In the range of integration 0 & b '
&

~ Q&
~

& 1 the various propagators in (48) are
analytic in Q~ for small

~ Q, ~, and we can therefore expand them about Q~
——0 to obtain contributions proportional to

q~q~, q, and k . The first O(w ) term in (48) [Fig. 3(c)] contains a factor q q~, hence one can set q=k=0 in the prop-
agator Gr and calculate the integral f [Gr (Q~)] . As an example, we evaluate this integral explicitly. Using the ex-

pression (47) for the propagator with r =0 and summing over y and 5 gives

[Gr (Q&)]'=(n —I)/[(6&+&2)q &+43k (]'+ I/[(&) —Az)q )+43k)]'.
The integration of (49) over Q& is given in the Appendix. Using (A10) and (Al 1) we obtain

G~ )
——n —l Ip+I3, (50)

1

where I2 and I3 are given in (Al 1) and (A10), respectively. The second O(to ) term in (48) [Fig. 3(d)] is proportional to

(b) (c)

(e)

FICx. 3. Diagrams contributing to the O(e) renormalization of the two-particle interaction U S(Q). The indices on the various legs
are labeled in. order to clarify the various contractions which appear in Eq. (48).
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q~, hence, we can set k=0 in Grp (note that terms odd in k do not contribute, see the Appendix), and expand the propa-
gator to first order in q. Several contributions proportional to qp are generated (giving a contribution to q q p). A typi-
cal contribution is

[(~1+~2)qt +~3k'][(~1 ~2)q1+~3kt ]
n —1k 3 —n

ki &O, qi &0

where the angular integration ((q i q pt/q i ) ) =5~p/n and I& are given in (A3) and (A12), respectively. In the third O(w )

term in (48) [Fig. 3(e)], it is necessary to expand the propagator 6 p to second order in q and k. This generates contri-
butions proportional to q, k, and q q~. A typical contribution to q2 and q q~ is

6

2 1 2 qiqiqiqi qt Q [(g +g ) 2+g kp]3[(g g ) p+g k2]pq q

(5 p5rsqrq +5 r5psqrqs+5 s5prqrq )
=86,2(b, i+6,2)

n (n +2)

4b,q(hi+ b2)
(q 5 p+2q qP) .

n (n +2) t)'(b, , +b,,)i)(5$ —b2)
(52)

The angular integral ( (q rtq tq t q i /q i ) ) and the integral I,
are given in (A9) and (A12), respectively. In the last
O(w ) term in (48) [Fig. 3(fl] we again expand the propa-
gator 6 p to second order in q and k (note that there is
also a contribution proportional to q for which it is suffi-
cient to set k=O in 6 and expand to first order in q),
which generates new contributions to q, k, and q q~.
A typical contribution to q q~ is

2

—2(~t —~2) &(q iq i /q t ) ) IQ' [(~i—~2)q i +~3k i l'

= —2(ht b, 2)5rpq rq—
1 2

+2b n —2a ——d +n Q ( 1 X w 21nb )

b,
' =y b "a "+" b (1 —X w lnb)

(55)

(56)

with Xo, X2, and X3 given in Table I. Substracting (55)
from (54) gives

+2b n —la ——d +ng (1 X w2lnb)

l

The angular integral ((qr~qt/q, )) and I3 are given in
(A8) and (A10), respectively.

Collecting terms proportional to q, q q~, and k, we
obtain the. following recursion relations for (bt+b, 2), A2,
and b 3, respectively,

b, ', + b, 2 =gab " a +"(b.i+ b, 2 Xow lnb )—, (54)

BI3
q q~.

B(b, i
—b,q)

(53)

with X& ——Xo —X2 given in Table I.
We next consider the recursion relation for ur. The dia-

grams in Fig. 4 give the following contributions

TABLE I. Coefficients entering into renormalization-group recursion relations. K4 ——1/8+ is the usual angular integral
in d =4 dimensions (see Ref. 2). Xi a;IC&(x;I&+y;I2 + z;——I3); 'S= —(6& + b2)/262. Ii ——[(b|—62)I3 —(hi+62}I2]/(n —2)b2,'

I2 ——(hi+62) "
A3 I3 —(6& —62) " 63 ' "' . Note that I; =I;/K41nb (see Appendix A).

Zj

2/n (n +2)
2/n (n +2)A~

2/n (n +2)hp

2( n —1)/n (4—n)52
8/n

2/n h2
4( n —1)/n (n +2)A2
( n —1)/n (n +2)52

4/n (n +2)

2(n —2)+2(n +n+2)S+8(n+1)S
n (2—3n)+2(n —n +2}S+8nS

3 n 4+4ns +8S

n +4S
—2(1+S)

1

2n

8(n —1)

—4S —8(n+ i)S'
~ n(n —1}(n+2)—2(2—n)S —8nS

—
z n(n —1)(n +2)—2nS —8S

—4S

2 (n —1)(n +2)
—n +1—2S
—(3n +4)

1

( n —1)(n 2+ 10n + 12)

4
2n

2(2 —n )

0
n +3+2S

2( n —1+S)
n+4

1

n +6n+20
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q'b '"a "" "' i~ f f~ b 'q p (Q)p (Qi)p ( —Q —Q»

—4iwu f f f [b 'q p (Q)p~(Q, )p~( —Q —Q, )G~~(Q2)G~~(Q2+b 'q+a 'k)
~z

+2b 'q p (Q)p~(Q&)p ( —Q —Q~)G~~(Q2)G" (Q2+b 'q+a 'k)

+&p (Q)p~(Q )p~( —Q —Q, )G~~(Q, )G (Q +b 'q+ 'k)q

+4p (Q)p'(Qi)p ( —Q —Qi)G "(Qz)qzG (Q2+b-'q+a-'k)]

—4im p ~ q& p 2p —
&

— 26 6 +b q&+a k&
~z Q

X G (Q b 'q2 a k2)[(q ' —b 'q2 )(b q2 q )]

+2p '(Q&)q&'p '(Q2)p '( —Q~ —Q2)G ' '(Q)G ' '(Q+b 'q~+a 'kl)

X G (Q b qp a k2)[(q —b q i )(q —b q2 )]

+p '(Q~)q~'p '(Q2)p '( —Q) —Q2)G ' '(Q)G ' '(Q+b 'qua+a

XG ' '(Q b'q—p
—a 'kp)[( —q ')(q '+b 'q~')]

XG '(Q b'q2 ——a 'k2)[(q ')(q bqz )(—b q2' —q ')]

+ —', p '(Q&)p '(Qz)p '( —Q& —Q2)G ' '(Q+b 'q~+a 'k&)[q '+b 'q&']

XG ' '(Q —b qz —a k2)G ' '(Q)[q 'lj (58)

(b)

(e)

FIG. 4. Diagrams contributing to the O(e) renormalization of w. The indices on the legs are labeled in order to clarify the various
contractions which appear in Eq. (58).
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The O(w) term [Fig. 4(a)] in (58) is trivial and results
from the rescaling of spin and momenta. There are four
O(wu) terms [Figs. 4(b)—4(e)] and five O(w ) terms
[Figs. 4(f)—4(j)] in (58). In all the diagrams, wavy legs
carry a momentum component factor; for example, in Fig.
4(h) leg a has a factor q ~

' associated with it. In principle,
the integrals should be calculated in the range be-
tween the sphere q +k = 1 and the ellipsoid
b q +a k =1. However, as all the integrals in (58) are
multiplied by either wu or w which are O(e ~ ), it is suf-
ficient in an O(e) calculation to set a=b [recall that
a =b+0(e)] and integrate as usual over 1 &

~ Q ~
& b

We also set r =0 in the propagators and calculate the
various integrals at d =4. As the first and second 0 (wu)
terms in (58) [Figs. 4(b) and 4(c)] are explicitly propor-
tional to q, we set q=k=0 in G~ when calculating the
integrals. In the last two terms of O(wu) [Figs. 4(d) and
4(e)] we expand Gr and G~ to first order in q and k (in
fact, the k contribution vanishes after the angular integra-
tion, see the Appendix). Collecting all contributions of
O(wu) we obtain X4, see Table I.

The first three O(w ) terms [Figs. 4(f)—4(h)] are ex-
I

a I.plicitly proportional to q1, we therefore set q1 ——k3 ——0
and q2 ——k2 ——0 when calculating these integrals. In the fi-
nal two O(w ) terms [Figs. 4(i) and 4(j)] we expand to
first order in (q1, k3) and (q2, k2). Note that there are some
contributions explicitly proportional to q2 or q&, in these
cases the external momenta are set to zero in the propaga-
tors. Due to the angular integration, all contributions
proportional to k1 or k2 vanish (see the Appendix). Col-
lecting the O(w ) terms, we obtain X5, see Table I. The
recursion relation for w is thus

w'=q2 b " 'a '" "'(w —X4wu lnb+X3w lnb) .

(59)

Finally, we consider the O(e) recursion relation for u.
The set of diagrams needed for the calculation is given in
Fig. 5. Since we are looking for contributions to u (which
is momentum independent) we set all external momenta
equal to zero in the various propagators and wavy legs.
As before, we set r =0 in (47), take the range of integra-
tions to be 1 &

~ Q ~
& b ' when calculating f and

evaluate at d =4. The contributions to u' are then

q'b-'"a-""-"' ~ f, f, f, p (Q1)p (Q2)p'(Q3)p'( —Q1 —Q2 —Q»

—8w u f f f f 5(Q1+Q2+Q3+Q4)

&& f [p '(Q1)p '(Q2)p'(Q3)p'(Q4)G ' '(Q)G ' (Q)G ' (Q)q '( —q ')

+2p '(Q )p '(Q )p (Q )pr(Q )G ' '(Q)G ' (Q)( —q ')G ' (Q)q '

+p '(Q1)p '(Q2)p'(Q3) '(Q4)G ' '(Q)q '( —q ')G ' (Q)G ' (Q)

+2p '(Q1)p '(Q2)p'(Q3)p'(Q4)G ' '(Q)q '( —q ')G '(Q)G ' (Q)
I

+4p '(Q1)p '(Q2)p'(Q3)p'(Q4)G ' (Q)q 'G ' '(Q)q 'G ' (Q)]

4w' f—, f, f, f, &(Qi+Q2+Q3+Q4)p '(Q1)p '(Q2)p '(Q3)p '(Q4)

f [G 1 4(Q) 1( 4)G 2 3(Q) 2( 3)G 1 2(Q)G 3 4(Q)

2G 1 4(Q) 1 4G 1 2(Q) 2G 4 3(Q)( 3)G 2 3(Q)

+4G 1 4(Q)q '( q )G 4(Q)( 3)G 2 3(Q)( 2)G 1 2(Q)

+ G 1 4(Q) 1G 2 1(Q) 2G 3 2(Q) 3G 4 3(Q)q 4]

4"f,—f, f, f, &(Qi+Q2+Q3+Q4)

X p 1p 2p5 3p5 4GPy GPy

+4p (Q1)p (Q2)p (Q3)pr(Q4)G2'~(Q)G(Q)

where the delta function 5(Q1+Q2+ Q3+Q4) ensures
momentum conservation. The O(u) term [Fig. 5(a)] in
(60) is trivial and follows from the rescaling of spin and
momenta. There are six O(w u) terms [Figs. 5(b)—5(g)],

+4p (Q )pp(Q )p (Q )pr(Q )G ~(Q)G~ (Q)], (60)

I

four O(w ) terms [Figs. 5(h) —5(k)], and three O(u )

terms [Figs. 5(e)—S(n)] in (60). The same type of analysis
carried out earlier gives the recursion relation for u as
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(a) (c)

(e)

(n)
FIG. 5. Diagrams contributing to the O(e) renormalization of u. The indices on the legs are labeled in order to clarify the various

contractions which appear in Eq. (60).
i

u'=y"b "a ' "'(u+X6uu 1nb —X7w 1nb —Xsu 1nb),

(61)

with X6, X7, and Xg given in Table I.

D. Fixed points and renormalization-group flows

scaling factor y so as to maintain both 5& and A3 equal to
unity. We are then left with just three renormalizable
coefficients 62, m, and u. Further, the quantities in Table
I become functions of b2 and n only. Dividing (57) by
(56) (with A~ ——b,3

——b, '~ ——b3 ——1) and exponentiating, we
find that to O(e)

As discussed earlier, the use of anisotropic rescaling'
enables us to fix the ratio a/b and the order-parameter re- 1+(X& X3 )w /2a=b (62)
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so that a/b =I+0(e) for w=O(e'~ ). Substituting (62)
into (56) and exponentiating gives

(0+2)+[X1+ n X1 X3)/2]m
y =b

Consider now b,2. Dividing (55) by (57) and exponentiat-
ing gives, to O(e)

(X& —X2)w 2

(64)

All w*&0 fixed points of (64) are therefore necessarily
solutions of

Xt(n +t —A3 —1 Ap )=X2(n, 6~=63——1, b2 ), (65)

and are independent of w~ and u* (see Table I). Given a
solution 52(n) of (65), it is convenient to consider the
quantity z=(w /u). Note that when b,2

——b, 2 this quanti-
ty is essentially 8 =p /ay, which was introduced in Sec.
II. To O(e), z satisfies the recursion relation

gr'X7z+(X]+2X& —X6)z+(X8—2X4)]uz' =zb

and the w*, u *&0fixed-point equation

X7 (z*) + (X) +2X5 —X6 )z*+(Xs —2X4 ) =0, (67)

with X;*:X~(n, b, t
——b—,3 ——1, b2).

By numerical analysis, we find that (65) has no

~

Az
~

&1 real solutions for 1.86&n &4. It follows that
has no w*&0 fixed points in this region of n For.

1&n &1.85, on the other hand, (65) has two real solu-
tions. From (67), we find that z (Az ) is real and positive
and, using (59), that there are two fixed points in the first
quadrant of the (u, w ) plane. Since, however, the n &2
region is not of physical interest, we did not analyze these
fixed points further.

The Hamiltonian (45) thus has only (unstable) Gaussian
(u*=w*=0) and WF (u*&0, w*=0) fixed points to
O(e) in d=4 —e dimensions when n &1.86. We there-
fore examined the flows of the coefficients b, 2, w, and u
for various values of e and n & 2 [chosen such that A, ~ in
(44) is positive] under repeated renormalization-group
operations. This was dane by using a small value of b and
integrating the recursion relations numerically. Clearly,
the region of parameter space of physical interest is
w &0 and

~

b,2j &1 (recall that for stability b, ~+A, 2&0
and we have set b,

~

——1). In addition, from the classical
analysis carried out in Sec. II, we know that if after the
Hamiltonian coefficients are renormalized to include fluc-
tuation effects the quantity B =p /ay-w /(1 —hz)u is
greater than some numerical value, the transition will be
of first order. Thus the relevant parameter space is
bounded by three surfaces: S~(b,z ———1), S2(w =0), and
$3[w /u(1 —62)=const]. These are shown in Fig. 6.
Note that the usual WF fixed point at m=62 ——0 be-
comes, at O(e), a line of fixed points and that uwz is b, 2

dependent. For all initial points in the physical region, we
find that the renormalization-group flows terminate on
the surface S3.

E. Discussion

In this section we have shown by a renormalization-
group analysis that isotropic systems characterized by

FIG. 6. Parameter subspace in which the renormalization-
group flows occur for n )2. The physical region is bounded by
S&{b2———1), S2{w =0}, and S3[w /u(1 —bq}=const]. To
O(e) the Wilson-Fisher (WF) fixed point is 62 dependent while
the gaussian is not. These points appear as line segments in the
figure.

short-range forces and polar vector order parameters can
behave quite differently from otherwise identical systems
with axial vector order parameters (e.g., magnets). While
the critical behavior of the latter, in d =4—e dimensions,
is described by the %'F fixed point, that of polar vector
systems is not. In fact, we have shown that the n )2 fer-
roelectric model has no stable fixed points for d=4 —e.
This implies that the transition to an ordered state will al-
ways be of first order. ' By examining the Aow, we found
that all renormalization-group trajectories within the
physically relevant region reached the bounding surface
[w /u (1—b,2)]=const. This, together with the classical
analysis of Sec. II, implies that the ordered state of the
model system will not be ferroelectric, but rather antifer-
roelectric, most probably with a cubic unit cell.

IV. SUMMARY AND CONCLUSIONS

In this paper, we have considered the implications of
the additional symmetry-allowed term (2) in the free-
energy density of systems described by polar vector order
parameters. The most simple case, that of an. isotropie
centrosymmetric system with short-range interactions,
was treated in detail using both classical Landau-theory
and renormalization-group approaches. The Landau-
theory analysis showed that a ferroelectric phase is ther-
modynamically stable only when the magnitude of the
coefficient p multiplying the p V p term in the free-
energy density is sufficiently small. Above the threshold
(12), the ferroelectric phase is unstable and a modulated
(antiferroelectric) phase appears as the temperature is
lowered. The transition between the disordered and
modulated phases may be either first or second order, de-
pending upon the magnitude of P (see Fig. 1).

The nature of the modulated phase was investigated by
calculating and comparing the free energies of alternative
configurations. For d =n =3, i.e., a three-dimensional
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system with a vector order parameter, the analysis in Sec.
II clearly favors a cubic phase with space-group symmetry
O~. Other cases, however, are less clear. In particular,
for d =2, n =2 or 3, it is difficult to choose between the
hexagonal and linearly modulated structures analyzed in
Secs. II C and II D. Here a further extension of the calcu-
lation appears to be necessary. Also, d =3, n =2, which
may be of physical interest, was not considered explicitly.
However, the configurations treated in Secs. II C and II D
are possible candidates.

Turning to the renormalization-group analysis, we
found that to 0 (e) in d =4—E dimensions, the model sys-
tem has only Gaussian (u* =w* =0) and WF
(u*+0, w*=O) fixed points when n ) 1.86. For d &4
the former is, as usual, unstable while the latter is unsta-
ble for n & n0 ——4 —1 ie/4+0(e ) or, more generally,
when the eigenvalue exponent A.

„

in (44) is positive. In
this case, all the renormalization-group flows leave the
physical region (in which a classical analysis results in the
model system undergoing a second-order phase transition)
by reaching the surface

S3 =w /u (1—b,2) =const . (68)

Integrating the free energy over the renormalization-group
trajectory eventually brings us to a regime in which
mean-field theory will be applicable. Here we can use
classical methods to analyze the free-energy expression
and, from Sec. II, we expect that the system will undergo
a first-order transition to a modulated ordered state.
Thus, in so far as the renormalization-group analysis is
applicable in three-dimensional systems (see below), we
would expect the triple point in Fig. 1 to occur at P=O
and a modulated phase to appear immediately below the
disordered phase for all P. Note, as indicated in Fig. 1(b),
that the modulated structure may be stable only over 8
narrow temperature range. This result is in agreement
with that obtained by Korzhenevskii, " who analyzed the
case n =d =3 using low-order perturbation theory and
concluded that a first-order transition to a modulated
phase will occur.

We stress, however, that our analysis does not preclude
the existence of a direct disordered-ferroelectric phase
transition. For example, if we modify our Hamiltonian
by taking u & 0 and adding a U(p ) term (U & 0) to (45), a
first order transition t-o a ferroelectric state becomes possi-
ble. What we have rigorously shown is that a second-
order transition to such a state cannot occur for systems
modeled by (45) in d =4—e dimensions when
1.86 & n & n0, even though this is allowed by mean-field
(Landau) theory. The situation for d =3 is clearly more
delicate, but it is likely that here also there exists a critical
value n, of n below which the WF fixed point is unstable.
The discussion following (44) indicates that n, (d =3)& 2,
thus our analysis could be relevant to XI'(n =2) and pos-
sibly also to Heisenberg (n =3) ferroelectric systems in
three dimensions. Note that n, (d =3)~ 3 is supported by
the results of Korzhenevskii. " We therefore conclude
that simple ferroelectric and ferromagnetic systems do not
necessarily belong to the same universality class in d =3.

Experimentally, a search for noncommensurate phases
in ferroelectrics should, as we have indicated, concentrate

on systems with n =2 or 3 order parameters. The tern-
perature, region of interest is near the order-disorder phase
boundary and the modulated phase is expected to exhibit a
long-wavelength superstructure. This should be reflected
in anomalies in the dielectric constant.

Such an anomaly has been reported by Smolenskii
et ah. ,

' who conducted a careful study of the multiple
phase transitions which occur 1n cadmium pyroniobate
Cd2N1207. At room temperature this compound has a
cubic crystallographic structure (space group Ok) and un-
dergoes a transition to a ferroelectric phase at 201 K.
However, between 201 and 205 K there apparently exists a
different ordered phase. As noted by the authors, their
observations are consistent with this phase having a super-
structure with a large period. This, of course, agrees with
the theoretical results obtained by us. Further studies of
this and similar compounds will be necessary in order to
make a more detailed comparison with theoretical predic-
tions. A useful experimental technique for such studies
could be measurements of the velocity and absorption of
longitudinal ultrasonic waves as a function of tempera-
ture, since the modulated structures are characterized by
V.p&0 polarization waves. This technique has been
shown to be an effective way of resolving multiple phase
transitions occurring in ferroelectrics within narrow tem-
perature intervals. ' Measuring the electric f'ield depen-
dence of these transitions should help in determining
whether they are first or second order. Such studies
would clarify the nature of phase transitions in ferroelec-
tric systems.
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I

APPENDIX A

The d-dimensional integrations over Q space in Sec.
III C involve expressions of the form

I= I f(q, k)= J d f(q, k)

dq d "k
q, k

with Q =q+ k. Here q and k have n and (d —n) com-
ponents, respectively. It is useful (see below) to use spher-
ical coordinates in the q and k subspaces separately, so
that

f(q k)=f(Q ~q q q 0q ik ~k %k Pk

and I becomes
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I= E«Kd « f q" dq f k " dk f sin" 8& d8& f '

sin" q)qdq)q X

X f sin" " 9kd8k f sin" " q)kdq)kX ' Xf(q, k)

f sin" ~8qd8~ f sin" q)~ dyq X . X f sin" " 8k d9k f sin "
q)kdqrk X

where

77"/ 1 (d/2) .

We are specifically interested in functions which involve products of Cartesian components of q and k, such as

f(q, k)=F(q, k)(q /q) (q~/q)". (krlk) '(k /k) '

(A3)

(A4)

(A5)

From symmetry arguments, it is clear that the integral I will vanish unless all the exponents in (A5) are euen. In all such
cases, the angular integrations can be carried out separately in the q and k subspaces with the aid of the identity,

f sin 8cos"8d8=8((m +1)/2, (n +1)/2)=1 ((m +1)/2)I ((n +1)/2)/I ((m +n +2)/2) . (A6)

Denoting the angular part of the integral I by

((q /q) (q~/q)" . (k Ik) '(k Ik) ' . ) =((q /q) (q~/q)" . ) X((k Ik) '(k Ik) ' . ),
with

&(q /q) (q&/q)

f sin" 8&d8& ' ' ' f sin" pqdq)z . (q /q) (q~/q)" f sin 8qd8q f sin q)zdq)z

(A7a)

and

((kr/k) '(k'/k)" ) = sin" " '8„d8„sin cp dip ' (krlk) (k /k)"'. ~ .
0 0

—1

X f sin" " 9kd8k f sin" "
ykdyk . (A7b)

we find

((q qP/q ))=6 p(cos 8~) = f sin" 9q cos 8~d9~ 6 p f sin" 8~d8~
1=—6 p,
n

(Ag)

((q q~qrq /q )) = (6 p6rs+6 r6ps+6 s6rp) .
n(n+2)

(A9)

Similar results are obtained for ((k kplk )) and ((k kirk /k")) with d nrepl—acing n everywhere. After carrying
out the angular integrals, there remain integrations which involve only the magnitudes of q and k. In our calculations
there are three basic integrals of this type, from which all other integrals can be obtained. Setting d =4, these are

1
I3 ——E„E4„q"'k "dq dk

b ' &&~+k~ & 1 [(Q) Q&)q ~++3k ~]~
k&O, q&0

IC~lnb(b) b )
—«nb (A10)

I2 ——&„&4„.. . q"-'k'-"dq dk
1

b '&q+k &]. Q+Q qk&o, q&0

=Kglnb(b, )+b, )
"/ b, (A 1 1)

I
&

——E„K4„.. . q" 'k "dq dk'&e'+k'&) [(b)+hz)q +53k ][(b)—bz)q +63k ]k&O, q&0

b g —(,4—n)/2
)(2—«)/2 (g +g )(2—«)/2

hz(n —2)
(A12)
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where we have used the identity

Kg = , K—„Kg„B(n/2, (4—n)/2) = I/Srr~ .

To evaluate (A10)—. (A12), we transformed to spherical
coordinates, i.e., q =Q sin8 and k =Q cos8, with Q and 8
in the range (1/b to 1) and (0 to m/2), respectively, and
then used '

(sin8) " '(cos8) ' ' B(p, v)

(ct sin 8+P cos 8)"+' 2a "P

Re(p) & 0, Re(v) & 0, (A13)

with B(p,v) = I (p) I (v)/I (p, +v).
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