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Two-dimensional XYmodel with multiple symmetry-breaking fields

K. Y. Szeto
Department ofPhysics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

G. Dresselhaus
Francis Bitter Rational Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(Received 4 March 1985)

A generalization of the Jose, Kadanoff, Kirkpatrick, and Nelson (JKKN) model to multiple
symmetry-breaking fields in the classical two-dimensional (2D) XY model is achieved by applying
symmetry arguments to the renormalization-group equations. The generalized model is analyzed
with the use of a renormalized spin-wave —vortex-gas technique, with finite-size effects included.
Numerical examples of the generalized model are given for the case of a classical 2D XYmodel with
a onefold symmetry-breaking field and a sixfold symmetry-breaking field. Applications of the gen-
eralized JKKN model are discussed in connection with the susceptibility measurements on CoC1& in-

tercalated graphite.

I. INTRODUCTION

In recent years, theoretical research on the two-
dimensional XY model (2D XY) has attracted much in-
terest. The studies of vortex-unbinding transitions by
Kosterlitz and Thouless, '* Berezinskii, and Villain have
shown that the low-temperature vortex-bound phase has a
correlation function which decays algebraically with dis-
tance, yielding a phase with infinite susceptibility. On the
other hand, the effect of a symmetry-breaking field in the
2D XY model has been investigated by Pokrovskii and Ui-
min using the self-consistent harmonic approximation
and scaling theory. Their work on symmetry-breaking
fields and the vortex-unbinding transition are neatly uni-
fied in the work of Jose, Kadanoff, Kirkpatrick, and Nel-
son (JKKN) applying the Villain approximation to the
XY action. The JKKN model reveals an interesting phase
diagram for p &4 (p is the index of the symmetry-
breaking field) as well as the duality symmetry of spin-
wave excitations and vortices. Their phase diagram indi-
cates that when p &4, there is a band of temperatures
T, ] & T & T,z, where the system is governed by Gaussian
fluctuations and the susceptibility diverges. The correla-
tion function critical exponents g at T, i and T, q are
related by duality with i1(T,z) =T,z/2m J and
ri(T, i) = I/[p g(T,q)], where J is the ferromagnetic ex-
change coupling. The band of temperatures collapses into
a multicritical line when p=4; a theoretical analysis of
this line has been made by Kadanoff.

The important work on the critical properties of the 2D
XY model with or without one symmetry-breaking field is
handicapped in two important aspects with regard to ex-
perimental comparisons. The first problem with the test-
ing of these theories is the presence of finite-size effects,
and the second is the presence of more than one
symmetry-breaking field. It is the purpose of this paper'
to approximately incorporate these two effects into the
JKKN model so that the gap between theory and experi-
ment [e.g., magnetic susceptibility measurements on

CoClz graphite intercalation compounds (GIC's)] is
bridged.

The finite-size effect necessarily reveals itself in any ex-
perimental testing of the JKKN theory because the diver-
gent susceptibility must be bounded in any experimental
setup by the size of the system for T & TKz (the
Kosterhtz-Thouless transition temperature) in the absence
of symmetry-breaking fields and at temperatures in the
range T„&T & T, ~ in the presence of a p-fold
symmetry-breaking field with p & 4. The presence of
finite-size effects makes the quantitative study of critical
exponents in the critical region extremely difficult.
Therefore, it seems more sensible to study the correction
to scaling over an extended region of temperatures. Since
correction to scaling involves nonuniversal properties of
the system, a close interaction between experiment and
theory is needed. In this paper, we illustrate the method
of the renormalized spin-wave vortex gas in the study of
finite-size modifications to the JKKN description. We
leave the details of comparison with experimental systems
to a separate paper. ' The finite-size analysis follows a
paper ' on the finite-size Kosterlitz-Thouless transition,
where more details about the matching scheme can -be

found.
The second problem in comparing the JKKN analysis

with experimental data concerns the presence of an exter-
nal field. This external field (the finite probing field in
susceptibility measurements) is usually present in the ex-
perimental setup. But according to JKKN, no matter
how small this onefold symmetry-breaking field, it will re-
normalize to a large value so that phase transitions are
eliminated. Therefore, the theoretical analysis of JKKN,
if applied consistently, can never be tested in its original
form by the experimental measurement of the susceptibili-
ty. Rather, it is necessary to generalize the JKKN model
to include multiple symmetry-breaking fields. This is the
second subject discussed in this paper.

With both finite-size effects and multiple symmetry-
breaking field effects incorporated, we discover that a
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wealth of complicated phenomena are possible. First of
all, the presence of finite-size effects implies that the
symmetry-breaking field cannot be renormalized without
limit. Secondly, the presence of two symmetry-breaking
fields opens the interesting possibility of competing
symmetry-breaking fields of different indices. A low-
temperature analysis of competing symmetry-breaking
fields with an angular dependence of one of the fields,
with a planar "spin-flip" transition, has been reported by
Szeto et al. In the present paper, we focus our attention
on the temperature dependence of the susceptibility illus-
trated through the numerical computation of this quanti-
ty.

In Sec. II we construct the action of the generalized
JKKN model. In Sec. III two symmetry principles are
used to write down the renormalization-group equations
for the generalized JKKN model. A qualitative discus-
sion of the renormalization-group equations is the subject
of Sec. III. In Sec. IV we develop the renormalized spin-
wave —vortex-gas theory of the correlation function, in-
corporating the finite-size effect. In Sec. V the correlation
function is integrated to obtain the susceptibility, and
several figures illustrating the numerical solution of the
generalized JKKN model are presented. Finally, Sec. VI
is devoted to the application of this analysis to experi-
ment.

II. GENERALIZED JKKN ACTION

Z (~ h ) ~ J
d8(I ) ~»{8)

P ' P 0
r

can be approximated by that of

ZJKKN(2~+&yo&yp )

d8(r) ~JQKN{e, m, n)

2m'[m(r, r')] [n(r)] r

which satisfies the duality. relation

ZJKKN(2)r+ 3 0 3p ) ZJKKN 3p 3 0
P

2~ST' ' N

Here m(r, r') is an integer field defined on link (r, r'), and
SR(m) is the plaquette sum of m(r, r') around the dual
lattice vector'R, n(r) is a site integer field, and yp is the
symmetry-breaking field activity, given for small hp by
—,
'

h» and y0 is the vortex activity parameter introduced by
JKKN to control fluctuations of the vortex variable.

JKKN have shown that the critical properties of the
partition function

The classical 2D XY model with a p-fold symmetry-
breaking field is defined by the action

Wp(8) = —I{. g I 1 —cos[8(r) —8(r')] J

(r, r')

+hp g cos[p8(r)]

with (r, r') summed over first-nearest neighbors on a 2D
lattice, I{. is the effective ferromagnetic coupling, and hp
is the phenomenological p-fold symmetry-breaking field
strength (JKKN). This action can be rewritten into the
Coulomb-gas excitation representation via the Villain ap-
proximation,

~QfJKKN g ——[8„—8„—2)rm (r, r )]
E p

2

2y cos(pe)
e P =1+2ypcos(P8)

(1ny )n~+2nin p8

n =0, +1
p 7—

(6)

where l{i is the total number of sites in the system.
We will construct the generalization of the Wp action

in Eq. (1) for the multiple symmetry-breaking field action

p with the JKKN approximation (2). The key
observation that JKKN made in generalizing Villain's
model to include a p-fold symmetry-breaking field is that
for small hp we have hp ——2yp, and

+(lny{)) +SR(m )

+(lnyp) g n (r)+ip g n(r)8(r) . (2)

the Villain model being a special case of the JKKN model
with y0 ——1 and yp

——0.
By repetitively applying Eq. (6) we can write the action

for l symmetry-breaking fields of indices

P1~ ~ ~PI as

I I

g ——[8„—8„—2nm(r, r')] +(lny0) g SJ{(m)+ g (lnyp ) g np, (r)+i g pJ. g np(r)8(r), ,

(r, r') R j=1 r j=1 r

where np is a site integer field defined by symmetry pJ and the partition function is given by
J

Z(2m.K,y0,yp, , . . . ,yp, )= g g g Q j "
e

[m(r, r')] fn (r)] [n (r)] r
P) PI
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which is an approximation to the 2D XY model with l
symmetry-breaking fields, with the action defined by

M(8, h~, . . . , h~, )= —K g I 1 —cos[8(r) —8(r')]I
(r, r')

1

+ g h~ gcos[pl8(r)] .
j=1 r

III. RENORMALIZATION-CiROUP EQUATIONS

After the generalized JKKN action is defined, we
proceed to derive the renormalization group equations.
The two important symmetry principles used to determine
the renormalization-group equations uniquely in lowest
order of yo,y&, . . . ,y& are the duality symmetry limits,

when all but one of the symmetry-breaking fields vanish,
and the global rotational symmetry of the free energy
with respect to rotation of the coordinate axis. Duality
symmetry refers to the invariance of the partition func-
tion when 2vrK~p /2+K, y~~yo, and yo~yz, as indi-
cated by Eq. (5). Duality symmetry is broken when more
than one symmetry-breaking field are present, but it is a
required symmetry when all but one of the hp's vanish.
The rotational symmetry refers to the freedom of choos-
ing the two-dimensional coordinate system in defining the
action, with the resulting partition function unchanged;
since we integrate over all angles 0. This symmetry al-
lows us to choose a coordinate system such that certain
mixed terms of the form h~h», p&q, will not appear in
the renormalization-group equations since the renormali-
zation group must respect the symmetry of the free ener-

gy.
To make use of these symmetry restrictions, we first

write the most general form of the renormalization-group
equations for the 2D XY model with two symmetry-
breaking fields and we then eliminate those mixed terms
using symmetry arguments. The generalization to more
than two symmetry-breaking fields can be made similarly.
In differential form with the scaling parameter
l =—ln(

i
r

i
/ao), we have

dK '(l) =Br(K '(l), h~(l), h»(l ),yo(l )),
dy~ (l ) =B (K '(l), h~(l), h»(l), yo(l)),

dy»(l)
=B»(K (l) hp(l) h»(l) yo(l))

dyo(l)
=Bo(K '(l), h~(l), h»(l), yo(l)) .

We then perform a Taylor expansion up to second order
of the B's in their arguments. First, we consider the re-
striction imposed by duality. According to the analysis of
JKKN, when hq vanishes, all the linear terms in Bz- van-
ish and Bz is given to second order in its arguments by

2 2Bz =aoyo —apyp+

+p'
2m%

Bo——(2—mK)yo+ .

with

a0 ——4~'e —+~,

a =~p2X-2e —p'i4~
p

(12)

where the . . refer to high-order terms in the Taylor ex-
pansion. The exponential form of the K dependence in ap
and a0 is characteristic of 2D XY systems.

Thus, the most general form of the B's consistent with
JKKN's analysis for two symmetry-breaking fields is
given by

2 2 2BT aOy 0 pyp qyq + pqypyq +

Bq =yq 2 — +
2mK

with B~ and Bo unchanged from Eq. (11).
The second symmetry property of the 2D XY action

with hp and hq perturbations will now be used to show
that bpq ——0. First consider just one symmetry-breaking-
field hp term in the Ap action. By rotating our coordinate
axis so that 8~8'=8+m. /p, the resulting hz term in the
Az action will change from hzcos(p8) to —hzcos(p8), but
the partition function is unchanged since we integrate
over all 0 when the canonical ensemble average is per-
formed. This implies

Zq(K, hq) =Zq(K, —h~), (14)

and the renormalization-group equation must have this
reflection symmetry. Consequently, Br(K ',y~,yo) can-
not contain a term of the form ypy0 as this violates the re-
flection symmetry. Similarly, when we have two
symmetry-breaking fields of indices p and q, we can per-
form a global rotation of our coordinate axis by P (in-
dependent of x), so that

icos(p8)+h»cos«8)~icos(p8)cos(pp)+h»cos(q8)cos(qp) —h sin(p8)sin(pp) —h sin(q8)sin(qp) . (15)

icos(p8)+h»cos(q8)~ ( —1) icos(p8)
+(—1)"h»cos(q8), (16)

By choosing P=mm/p=nm. /q for some integers m and
n, we can make the sine terms disappear and we have

Zp»(K (hph» ) ) Zp»(K (hqh» ) )
5

(17)

so that terms of form h~h» will change to ( —1) +"h~h».
As long as (m+n ) is odd, odd power terms of (hzh» ) will
violate the symmetry of the partition function Zpq,
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and cannot appear in the expansion of Br. In solid-state
experiments, the interesting case involves the combination
of a onefold field (corresponding to Zeeman coupling to
an external field) with a q-fold field where q=2, 4, 6.
Whereas a twofold symmetry-breaking field can be a
model for antiferromagnetic coupling, a fourfold and six-
fold symmetry-breaking field corresponds to the crystal-
line anisotropy of a square and triangular lattice, respec-
tively. Thus, for these combinations of p and q, we have

IV. QUALITATIVE FEATURES
OF THE RENORMALIZATION-GROUP EQUATIONS

From our discussion in Sec. III, the renormalization-
group equations for the generalized JKKN model with
two symmetry-breaking fields of indices p and q in lowest
order are

dL
dl

=aoy o —gyp —aqyq

p2

dl "~ 2~X

dyq q
yq

dyo
=yo(2 —m'K) .

The case yz ——yq
——0 corresponds to the Kosterlitz recur-

sive relation, with yo and K ' renormalized to large
values when 2 re & 0. Fo—r 2 mK &0, the—n yo(l)~0 as
1~oo, so that K '(l)~K '(oo ) and we have a continu-
ous line of fixed points. When only yz(0) =0, then yz will
renormalize to a large value when 2 —p /2mK & 0; other-
wise it will renormalize to small values. Thus, the JKKN
phase diagram can be obtained by observing that for
p & 4, there will be K, &' and K,2' (K, ~' &K,2' ), such that
for K '&K, z' =m/2, w'e have (yo, K ')—+(oo, oo) as
l~ oo and the system is in the Kosterlitz- Thouless
vortex-gas state; for K '&K, &', yz~oo, K '~0 as
l~ oo, so that we have the low-temperature p-fold clock-
model phase; for E, I' &E '&E,2, the system is in a
phase governed by large Gaussian fluctuations with both
the symmetry-breaking field spin-wave excitation and
free-vortex excitation small since both y~ and yo~0 when
l —+00. For p =4, the region of this Gaussian fluctuation
phase (disordered XY vortex bound phase) will be
squeezed into a line; the analysis of this multicritical line
has been performed by Kadanoff.

When a p-fold and a q-fold symmetry-breaking field
are both present, the situation is fairly complicated. For
example, in the usual case of a susceptibility measure-
ment, a onefold probing field is also present. Since
2 —I/2n. K&2—p /2mK for all p & 1, the onefold field
will always dominate over the other symmetry-breaking
fields of higher index in its rate of renormalization. In
general, in a mixture of a p-fold and a q-fold field, with
p &q, the q-fold field will dominate. The interesting in-
vestigation from the point of view of an experimental test
of the JKKN model is to see the various crossovers from

a q-fold-dominated regime to a p-fold-dominated regime
when the initial values of y~ and yv are different. Consid-
er p & q but yz(0) &y&(0), then y~ will renormalize with a
faster rate so that it will at some scale lz~ be equal to
y~(l~~). For scale l &l&~, the q-fold symmetry-breaking
field dominates over the p-fold field and for I ~ I&&, the re-
verse is true. A similar analysis can be performed in the
comparison of a p-fold field activity yz with the vortex
activity yo. In general, there will be various length scales
where the crossover from one phase to another takes
place. The exact behavior of these crossovers will be
governed by the following:

(i) The size of the system since it implies an upper
bound 1 to the scaling parameter l.

(ii) The initial values of the activities in question. [For
example, if p &q and yz(0) &yz(0), then the system will
never exhibit a q-fold clock-model phase. ]

These investigations necessarily invoke finite-size stud-
ies, which are relevant in experimental situations. The
next section will. thus address the finite-size effect for the
generalized JKKN model.

V. FINITE-SIZE ANALYSIS
OF THE SUSCEPTIBILITY

The renormalization-group equations for the general-
ized JKKN model indicate that crossover from one phase
to another occurs at different length scales for different
initial values of activities and temperature. Furthermore,
the existence of a disordered XY phase governed by
Gaussian fluctuations for a single p-fold symmetry-
breaking field with p &4 implies that the divergent sus-
ceptibility in this phase is bounded by finite size. There-
fore, the incorporation of finite size into the JKKN model
or its generalized version is necessary for the comparison
with experiment. In this section, we will employ the re-
normalized spin-wave —vortex-gas techniques to discuss
the finite-size effect. The analysis on the simpler case of
the 2D XY model without symmetry-breaking fields has
been reported elsewhere. '

The renormalized spin-wave —vortex-gas technique
makes use of the spin-wave description for the correlation
function by replacing the bare coupling
(K '(0),yz(0),y~(0),yo(0)) with the corresponding terms
renormalized (K '(l),yz(l), y&(l),yo(l)) at the length scale
l. When the renormalized couplings are within the validi-
ty limit of the renormalization-group equation, the corre-
lation function can be written as

g(r) = ([S(r)—(S)] [S(0)—(S)])
= (cos[8(r) —8(0)]) —(cos8)

—(I&(&)—8(0)] )s~/2 —(8 )s~=e SW

where ( )sw denotes the harmonic spin-wave average.
These spin-wave averages with bare coupling give

d k ik.r

~z (2~) y(0) —y(k)+p h (0)+q h (0)
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d k 1(~'&sw=
Bz (2m) y(0) —y(k)+p hp(0)+q hq(0)

where

J,«(r
(k) y a r

T

(21)

(22)

[p hq(0)+q hq(0)]
u (0)= TJ,«(0)

=K '(0)[p h~(0)+q hq(0)] .

Thus, the correlation function in the spin-wave approxi-
mation with bare coupling is given by

d2g g0 A 2m

k dk dt9
Bz 2~ 2 2~ 2 Aap/L 0

with the cutoff parameter A given b'y

2 A2 ~O
a0 1 — =Wsz

4~

(23)

(24)

where ABz is the area of the Brillouin zone. We also per-
form a standard small-k expansion of y(k) so that

and the integration is performed over a circular Brillouin
zone of area equal to the original two-dimensional Bril-
louin zone of the system.

The discussion of finite-size effects enters in many
ways. The first one is that the position vector r must be
inside the fimte system so that the maximum limit of

~

r
~

is L, the linear size of the system. The second one con-
cerns the boundary conditions. The spin-wave spectrum
is usually obtained by imposing periodic boundary condi-
tions with k space being divided into Brillouin zones. We
can also solve the spin-wave problem for other boundary
conditions and the correlation function will accordingly
be modified. The third way finite-size effects enter is
through the existence of an infrared cutoff of the allowed
values of k, the lowest possible value of k being m. /L.
This is importan't since the Gaussian propagator will nev-
er diverge when the range of k excludes zero, .Finally, the
critical region is smeared out for finite systems.

The integration over the Brillouin zone can be written

g(~) =—GL, (r) =M'(u(1))(e '"'""'—1) (30}

has an exponential decay form for both the high-
temperature and low-temperature limits. At low tempera-
ture [K ' &max(4m. /p, 4m/q )], the renormalized value
of the symmetry-breaking field is large, so that M does
not vanish and has the value

M =M (u[l =1n(L/ao)])

A+u(1 )

(Aao) /L +u (1 )

—1/4m K(l )

(31)

where M is the magnetization. On the other hand, the
value for C(u (l)r ) is given by

'o~L
'

Jo(kr)k dk
C(u(l)r }= 2'(l ) o o P k 2+ Q 2(1)

1
A 0(u(r)r)

2mK 1

g(r)=M (u(0))(e '"' '"'—1)

In this equation, h~(0), h~(0), and T/J, «(0) [=K '(0)]
are the initial values (bare coupling). We replace them by
the renormalized values hz(l), h~(l), and K '(1) with
1=in(r/ao) Th. e renormalized coupling at length scale 1

is obtained by integration of the renormalization group
equation from 0 to l. .

The renormalized spin-wave expression for the correla-
tion function

J,«(0)
y(0) —y(k) = k =K(0)k

T (25)

+'0~1- Jo(kr)k dk

k +u (1)

These standard approximations for the Brillouin-zone in-
tegral yield

——,
' ([|}() —t}(0)]'&

2~J,«(0)

X
1 —Jo(kr )

kdkk'+u'(0)

Here A 0 is the zero-order Bessel function of the second
kind, Jo is the zero-order Bessel function of the first kind,
and the last term in the k integral of the first equality is
dropped because of the oscillatory nature of Jo(x) for
large x. At large r, we make use of the asymptotic expan-
sion of the Bessel function to obtain

' 1/2

=lnM (u(0)}+C(u(0)r), (26) C(Q(l)r }= 1

2vrK(1) 2Q(1)T
e ' « 1 (33)

where

lnM (u(0)) =
2~J ff(0) ~'o k + u (0)

so that

" —1 = 1+C(u (1)r )—1 =C(u (1)r ) (34)

T w Jo(kr)k dk
C(u (0)r }= 2~J,«(0) &~a k'+u'(0)

(27) has an exponential tail with decay parameter u '(1). The
other exponential form of the correlation function is given
at high temperature where the symmetry-breaking fields
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renormalize to small values while the vortex activity yo
renormalizes to large values. The magnetization is small,
and vanishes in the limit of infinite size (L~ ao ). In this
case, short-range order sets in by the Kosterlitz-Thouless
vortex-unbinding mechanism, with the Ornstein-Zernike
form of the correlation function at high temperature given
by

gH(r) =f(r /g)e (35)

The magnetic susceptibility g is given by the
fluctuation-dissipation theorem as the integral of the
correlation function over the volume of the system. For
finite systems, X pan be written as

X= f d r' f d r[(S(r) S(r')) —(S) ] . (37)

%'e can extract the finite-size effect by approximating this
double integral by

X=—f d r[(S(r).S(0))—(S) ]V
(38)

with the correlation function given by

where f(r/g') is the correction function to scaling and g is
the correlation length.

In the extreme case where L~~ and h& —+0, the re-
normalized spin-wave expression for the correlation func-
tion can be matched to this high-temperature form gH(r).
In actual computations, the high-temperature region can
be defined by the criterion that the renormalized tempera-
ture IC '(I') at some length scale l*, determined by the
initial condition (E (0),y~(0),y~(0),yo(0)), is twice the
critical temperature K, ' for the Kosterlitz-Thouless tran-
sition. The exact choice of the matching point l* and the
value IC '(l*) can be fixed by experiment or by a high-
temperature-series expansion, since these matching
schemes produce qualitatively similar results. Numerical-
ly, the quantitative difference is small between different
matching schemes [such as different values of the ratio
K '(l')/IC, ' in the neighborhood of 2]. The procedure
used in matching the correlation function is identical to
the analysis we made for the computation of the suscepti-
bility for the finite-size Kosterlitz-Thouless transition. '

We first integrate the renormalization-group equation un-

til IC '(l")=2K, ' and then match the correlation func-
tion to the high-temperature form gH(r) by requiring the
continuity of the functions, as well as their first and
second derivatives at r* =aoe . The correction function
f(r/g) used for g~(r) has the form

f(r/g) =&(r/g)

with 2, a, and g fixed by the continuity requirements.
In the next section we present the numerical calcula-

tions of the differential magnetic susceptibility for the
finite-size 2D XY model with two symmetry-breaking
fields using the renormalized spin-wave —vortex-gas ex-
pression for the correlation function discussed in this sec-
tion.

VI. NUMERICAL RESULTS
FOR THE SUSCEPTIBILITY

g(r): (—S(r) S(0))—(S)'
=gL (r) for r & r'

=gH(r) for r &r*, (39)

0.8
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FIG. 1. The calculated correlation function g(r) vs r of a
30)& 30 system with a onefold field of 1 Oe and a sixfold field of
10 Oe is plotted vs distance r for different temperatures, T/J, ff.
The value of J,qq is 7.125 K, corresponding to the experimental
value for CoC12 GIC.

where r* is the matching point of gL (r) and g~(r)
The numerical procedure that was used consists of solv-

ing the set of differential equations [Eq. (18)], thereby ob-
taining the renormalized coupling; then, the correlation
function with renormalized coupling is integrated to ob-
tain the susceptibility. In practice, we augment the
renormalization-group equations (18) with the
fluctuation-dissipation theorem in differential form,

d(TX) 2(+i~(, ~)

dl

where g(e )=gL(r), and integrate the augmented system
of differential equations. At each step of integration we
check the conditions for the validity of the
renormalization-group equation. When yo(l) is large, so
that ihe system is in the high-temperature region, we per-
form a matching of gL to gH and stop the integration of
the system of differential equations.

The numerical results provide us with a map of
X( r,&&,H~ ). The interesting case from the
experimentalist's point of view is a map of
X(T,Hz, H, =H,„,). Here H,„, is the externally applied
field and Hz is the intrinsic anisotropy field of the specif-

- ic two-dimensional magnetic system. In experimental sit-
uations, the intrinsic anisotropy field is fixed, but the
external field can be varied.

In Fig. 1 we show the correlation function versus dis-
tance for different temperatures normalized to Jgff. The
two symmetry-breaking fields are the onefold external
field and the sixfold symmetry-breaking field correspond-
ing to the CoC12 intercalated-graphite system. The size
of the system" is 30K 30. The values of the fields h i and
h6 are related to the physical applied field Hi H,„,(in-—
Oe) and the p-fold anisotropy by the relations

His
Th) ——

jeff
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and

mesc
Th6=

Jeff
(42)

where s is the spin magnitude. The sixfold field arises
from the sixfold anisotropy of the free energy

6 6
+anisotropy ~ ~+ +~-

=2M cos(68) (43)

for M+ ——(S+ ).
The initial value of the vortex activity parameter yo is

set to 1, corresponding to the original Kosterlitz-Thouless
theory. In Fig. 1 we see the sharp decay of the
T/J, ff=1.7 correlation function with distance. This is
due to the vortex unbinding at high temperature. The
susceptibility is the area under the correlation-function
curves. In Fig. 2 we show the temperature dependence of
the magnetic susceptibility for systems of different sizes.
In the limit of infinite size, we have the JKKN descrip-
tion of the susceptibility when h& approaches 0. The cal-
culated field dependence of the susceptibility for a 30&& 30
system is shown in Fig. 3 for JI,„,=O, 2, 4, 6, 8, and 10
Oe and He ——10 Oe. The value of the effective exchange
coupling Jd~ used in these figures is 7.125 K, correspond-
ing to the experimental value for CoClq GIC's. ' '
From Fig. 3 we can see the important effect of the one-
fold symmetry-breaking field on suppressing the suscepti-
bility. These results show that in the comparison of ex-
perimental data with theories of two-dimensional magne-
tism, caution must be exercised in taking into account the
effects of the probing field in the actual measurements,
since the usual theoretical predictions are made for the
limit of zero probing field. These results also illustrate
the finite-size modifications of the theory of the critical
properties of the two-dimensional XF model with
symmetry-breaking fields. The application of these nu-
merical results to experimental studies of two-dimensional
magnetism are reported elsewhere. '

VII. CONCLUSIONS

500

400—

I

H6=10 Oe

Jeff = 7.125 K

~ 500—

~ 200—

IOO—
—10

0
0 0.5 I.O

T/ Jeff
I.5 2.0

200

We have generalized the JKKN treatment of the two-
dimensional classical XY model with one symmetry-
breaking field to include multiple symmetry-breaking
fields, so that the effects of an external field on the sus-
ceptibility could be considered. The action, the
renormalization-group equations, and the effect of the
competition between the two symmetry-breaking fields of
different indices are discussed. We have also generalized
the JKKN analysis to include finite-size effects using the
renormalized spin-wave —vortex-gas theory for the spin-
spin correlation function. Our results connect the theoret-
ical work for the critical region in the JKKN model with
experimental studies of two-dimensional magnetism, so
that the experimental studies in the divergent susceptibili-
ty region and the effect of the external field can be com-
pared with theoretical calculations.

The numerical calculations of the susceptibility allow
the first systematic analysis to be made of the experimen-
tal data on CoClz intercalated graphite, which have accu-
mulated over almost a decade. "" ' The magnetic

l500
I 50—

IOOO—

500—

N =60

50
50—

0
0 0.5

I

I.O
~/jeff

I

l.5 2.0

FIG. 2. Temperature dependence of the reduced susceptibil-
ity for systems of different sizes (N)&N for N=30,40,50,60)
with a sixfold field H6 ——10 Oe, but no onefold field. The value
of J,ff is 7.125 K, corresponding to the experimental value for
CoClq-GIC's, and C is the Curie constant.

I

0.5
0
0

I I

I.O 1.5 2.0
T/Je(~

FIG. 3. Temperature dependence of the reduced susceptibili-

ty PTjC for a 30)&30 system with a sixfold field of 10 Oe and
different values of the onefold field, H& ——0, 2, 4, 6, 8, and 10
Oe. The value of J,ff is 7.125 K, corresponding to the experi-
mental values of CoClq-GIC's, and C is the Curie constant. (a)

The scale is chosen to display the Hl ——0 curve. (b) The results
of (a) are replotted on a reduced scale to display the field depen-
dence in the range 2 (HI & 10 Oe.
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properties of CoC12 GIC's exhibit a wealth of phenomena,
ranging from the high-stage case of vanishing interplane
coupling, to the possibility of studying Lifshitz points and
two-dimensional spin-flop —transition phenomena in the
low-stage case where the interplane coupling plays a cru-
cial role on the magnetic properties. The generalized
JKKN model is a unified attempt toward the explanation
of experimental studies on samples with vanishing inter-
plane coupling.
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