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Effects of kinematical interactions on magnon line broadening in a ferromagnet
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Magnon line broadening in a Heisenberg ferromagnet is analyzed by a semiclassical method that
includes the effects of both dynamical and kinematical interactions. At temperatures where
kinematical interactions become important, appreciable broadening is generated by the same long-

range three-magnon effective interaction that gives rise to a gap in the magnon spectrum. In partic-
ular, whenever two magnon wave packets collide, there is a transient energy modulation of other
rnagnons throughout the crystal. This source of broadening is maximized at long wavelengths.

I. INTRODUCTION

In a recent article, ' the writer analyzed the Heisenberg
model of a three-dimensional ferrornagnet by a semiclassi-
cal method that attempted to include the effects of both
dynamical and kinematical interactions. At low tempera-
tures, the results of Dyson were reproduced, thus indicat-
ing the accuracy of the semiclassical approximation. At
temperatures where the kinematical interactions become
important, it was shown that a gap appears in the magnon
excitation spectrum. This results, in part, from a long-
range three-magnon effective interaction. The most seri-
ous deficiency of the calculation was the failure to calcu-
late the magnon line broadening. We will attempt to
correct this deficiency in the present paper.

The long-range three-magnon effective interaction re-
sults from the renormalization of the energy of a magnon
wave packet when an appreciable fraction of all the lattice
sites of the crystal are occupied by two or more magnons.
A more dynamical way of describing this interaction is as
follows. Whenever two magnon wave packets collide,
there is a transient modulation of the energy of other
magnons throughout the crystal. This modulation leads
to a line broadening of the magnon excitation spectrum.
At temperatures where the kinematical interactions are
important, it appears that this source of line broadening is
far more important than that due to two-magnon scatter-
ing, especially at long wavelengths.

We brieAy recapitulate the semiclassical procedure used
in I. The Heisenberg Hamiltonian is

JJ ——J(
i
R; —RJ i

), J;;=0,

where the double sum is over the X lattice sites of the
crystal. The quantum-mechanical equations of motion
are

ds;
dt

=S;&&H;, H;—=fi 'g J;,S, .

The semiclassical approximation consists of solving these
equations classically. We restrict ourselves to the spin- —,

case. In the absence of magnons, we choose all spins to be
pointing along the x axis, i.e., an orientation given by the
spherical coordinates 0p ——, tr, pp=—0. In the presence of
an assembly of magnons, the spin on the ith site points in
the direction 0p+ 0;, Pp+ P;, where

P; = g Cksin(k R; cokt +4—t, ),
k

(4)
0; = g Ck cos(k R; cok t +—4&k ) .

k

Ck, the amphtude of mode k, is related to fk, the number
of magnons of wave vector k, by the expression

In order to solve the equations of motion, a series of
transformations of coordinates are introduced, different
sets for each lattice site, in order to make the precessing
spins appear static. In carrying the calculation to com-
pletion, it is necessary to introduce the essential approxi-
mation of linearizing certain quantities with respect to
their arguments. Specifically, we linearize a set of quanti-
ties A;, functions of P;,P;,0;,0;, and a set of quantities
BJ, functions of P;,PJ. , 0;,0J. The linearization of f(0)
with respect to 0 is

linf (0)= —, (f (0)+f ( —0) )

+ —,
' 0((did 0)[f(0) f ( —0)] ) . —

The angular brackets denote averaging with respect to
time and with respect to the random phases Nk appearing
in 0; and P;. The solution to the "static" problem in the
transformed coordinates leads to the expression for the
magnon excitation energy,

flcok =.
2 g Ji(txpj +ct] J [ 1 —cos[k (RJ —R;)]j )

J

where ao,z and o. &,z are functions of the three quantities:

b—:N '+2fk,
k

d:—N ' g 2cokfk,
k

g J =N '+2fk [1—cos[k (RJ —R;)] j .
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Specifically,

' (1+e—(1/2)b) —1[e 'j(1+e ij +2e —(1/2)b)
CX&pj

+ —2b( + lj 1)]
—' g J "=(e+" '"+1) 'fid

J
(

( 1 + —( 1 /2 ) b
)
—1 2b—

2

II. LINE BROAI3ENING

The second form of Amok is actually an average. Specifi-
cally, Eq. (13) is

(18)

where

X g J;j(e "—1) .
J

From the definition of d, we have

fid = —,
' g Jj(apjb+a„jg;j) .

J

(10) Ek =fi(/jj;„—fl)

+ —,
' g Jj IBj„„Bjyy—cos[k (Rj —R;)]I .

J

Here A'A is the already mentioned additive constant, while

Thus we can choose 3;„=—,
' (9;sin(t; —(tl;sin9; ), (20)

a "—= (1—b+e+('/ )
)OEJ

&&[a g —e"""(e+ "—1)] (12)

Bj„„=—,[cos(pj —ltl; )cos9;cos9j+ sin9;sin9j

+cos(9j —9; )cos(tl;cosPj + sing;sinl)) j], (21)

Thus both cxo;J and a&;J. can be expressed as functions of b
and g;J alone.

A separate calculation leads to an alternative form of
Acuk, namely

B jyy
= —,

'
[cos(Pj —(tl;)+cos(9j —9;)sing;sinltlj

+cosp;cosl()j] . (22)

fink = —,
' g Jj(apj+ai j I 1 —cos[k.(Rj —R;)] I ) .

J
(13)

This calculation suffers from the fact that ~k contains
an unknown additive constant, independent of k. The
constant is chosen such that the two forms of Acok agree
in the long-wavelength limit k=O. We have

Making use of the first form of Acuk, we can write

1

~~ix 2 g Jij ~ijxx r

J
(23)

where we define

A,j = —, g Cj, I(apj+a(;j) —a);jcos[k (Rj —R;)]I
k

a2; —
~ [(3+e 'j)e "+(e "—1)e ] . (14) && [sing;sin(k R; pjkt +@k)—

It is instructive to expand the o.'s in powers of b and g;J. .
pg ) 71~

Terms proportional to b g,J result from n-magnon ef-
fective interactions, where n =(n)+n2+1): Thus

+ sln9;cos(k'R; —(22k t + 12k )]

3
apij 4 gij (b gij )

„gj(18b +3—bg;j 20gi2j)+—.

1

allj glj + 2 gij ( glj

k + 2+ 2 g Jij ((~ijxx +Bijxx ijyy )

J

+Bjyy [1—cos[k.(Rj —R;)]I ) . (25)

Note that
+ 24gij(9b +3bgj —10gj)+. . .

1

a2ij 1 glj+ 2 gij ( gij'

+ —,', g,j(6b —3bg,j —Sg(2j)+ . . .

(16)

(17)

a2~j=(Bjyy)

We now define

(fii'pk )—:(Ek ) —(Ek )

(26)

(27)

To the accuracy of three-magnon interactions, o. &,J ——o,2,J.
The leading terms of ao;J. result from three-magnon in-
teractions.

the mean-square deviation in the magnon excitation ener-

gy (the second moment of the line-shape function). We
can write

(fjcok) =
4 g J&J&(apjz+2a)j&I1 —cos[k. (Rj —R;)]I+a2j&I 1 —cos[k. (Rj —R;)]I Il —cos[k (Rz —R;)]I), (28)

JP
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where

apijp —& (Aijxx +Bijxx Bijyy )(Aipxx + ipxx ipyy ) &

& (Aijxx +Bijxx ijyy ) &

(sin P;) =(sin 0;)=e sinhb,

Here we are defining

(38)

(39)

+ & ( Aipxx +Bipxx ipyy ) &

alijp = & ijyy(Aipxx +Bipxx Bipyy ) &

(29) d—:X g 2Cpkfk
k

We can write

(40)

&Bijyy & & (Aipxx + ipxx ipyy ) & (30)

(31)a2ijp —= & ijyyBipyy & & ijyy & &Bipyy &

In order to determine (iriplk ), we need to calculate the a 's.
As in I, for the angles we are considering, we have

+alijalip(gij+gip gjp )] (41)

2
4 ~~ij ip[aoij oipb +aoijalipgip+aoipalijgij

JP

( g2n) [(2ii)}/n }2n]( g2) n ( g2n+1)

(cosg) =exp( ——,
' (0 )), (sing) =0,

&y,') =(0,') =b,
«y, ) = —(j,g;) =d,
(0;sing; ) = —(P;sing; ) =de

(0;sing) = (0;0)(cosg),

(32) We have

(A; ) —(A; ) =—'((0;sing;) +(P;sing;)

(34)

(35)

(36)

+«,'&( 'y, &+&j,'&&. '0, &)

= —,'e "(d +d sinhb) .

(37) It follows that

(42)

( A jxxA'p ) '( Aijxx ) ( A'p ) z e I ( ap ja'ppb+'ap jal~pgip +'ap'pal'J'g j )(b +sinhb)

+ lij lp[gljgp+(gJ+gip gjp) lj

Consider the angle

0= (v, p; +V2pj +V3pp +v40;+ v501 +v60p )

= g Ck [vl +v2cos [4 ( R~. —R; ) ]—v5sin[k. ( Rj —R; ) ]+v3cos [k ( Rp —R; ) ]
k

—v6sln[k ( Rp —R; ) ] j sin(k R; cok t +C k—)

(43)

+ g Ck [v4+v2sin[k (Rj —R;)]+v5cos[k. (RJ —R;)]+v3sin[k (Rp —R;)]
k

+v6cos[k (Rp —R;)]jcos(k R; —cpkt +4k) . (44)

—,
' (0 ) = —,

' g Ck(Iv, +v2cos[k (RJ —R;)]—v5sin[k (RJ —R;)]+v3cos[k (Rp —R;)]

—v6sin[k (R —R;)] j + [v4+v2sin[k (Rz —R;)]+v5cos[k (Rz —R;)]

+v3sin[k (Rp —R;)]+v6cos[k (Rp —R;)]j )

=&—' g fk [(v, +V2+ v3+ v4+ v5+ v6)+2(v, v2+ v4v5)cos[k (RJ —R; )]

+2(vlv3+ v4v6)cos[k (Rp —R; )]+2(v2v3+ v5v6)cos[k (Rz —Rp )]j, (45)

or

2 [(vl +V2+ V3) + ( V4+ V5+ V6) ]b ( vlv2+ V4V5)gij ( vlv3+ v4v6)gip ( V2V3+ V5V6)gjp
2 1 2 2

I

(46)

%'e can write

Bijuu 8 g em COS( V i/i +mVm 2Pj+Vm 30i +vm 40j ) (47)
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where u =x,y, and

+ 1

+ 1

0
0

+ 1
( v )

+ 1

+ 1

+ 1

+ 1

—1 0
+ 1 0

0
0

0 + 1 —1

0 + 1

—1 + 1

—1 —1

—1 + 1 + 1

—1 —1 —1

+ 1 + 1 —1

+ 1 —1 + 1

—1
with m = 1,2, . . . , 10, m ' = 1,2, 3,4, (48)

+2
—2

+2

+ 1

+ 1

+ 1

+ 1

We now have ( u, U =x,y )

+6

+2

0
0

+ 1

+ 1

0
0

(49)

( B&„„Bp„,) —(.B&» ) ( Bp„„)= —,4 g cmc„"e mn (coshP „—1 ), (50)

where we define

+mn=2[(vm 1+Vm2)+(Vm3+Vm4)+(Vn I +Vn2)+(Vn3+Vn4) lb(vmlvm2+Vm3vm4)gij(vn lvn2+Vn3vn4)gip

pmn —[(Vm l + Vm 2)(Vn l + Vn 2 ) + (Vm 3 + Vm 4)(V„3+V„4)]b—(V„ lVm 2+ Vn 3vm 4)Rij (Vm 1Vn2 +Vm 3vn4)gip

( Vm 2vn 2 +Vm 4vn 4 )gjp

(5 1)

For the eases u U =xx, xy, yy, there are 100, 60, 36 terms,
respectively, in the above double sum over mand n. This
makes the above expression tedious to evaluate.

Consider the ang 1e

—(p;8)= —, QCkCOk IV3+V4cos[k(Rj —R;)]I
k

= (v3 +v4)d —v4gij

Here we are defining

(55)

9= (v, p; +V2pj +v38; +V46'j ) .

We have

(53) g~ =N ' g 2cokfk [ 1 —cos[k (Rj —R; )] I .
k

We can writ

(56)

(g, g)= —,'+Cking Iv, +V2cos[k. (R, —R;)] I

( vl +v2)d —v~,z,

1

~gij 2 g Jip [i20ipgij + i2 lip (tij +g'p gjp )]

(54) We have

(57)

0

2;„Bj„„=—,', pc" (0;sing; —p;sin8; )cos(v ip; +v 2pj +v 38; +v 48j )

32/m ~i [ Sln[(Vm l + 1 )itli +Vm 2 j +Vm30i +Vm40j ] Slnl (Vm l 1 )itli +Vm24j +Vm 36 i +Vm40j ] I

3$ + Cm ((li I Sin[Vm lp; +Vm

2'�+�

(V 3+ 1 )8;+V 49j]—Sin[Vm lp; +Vm2itlj+ (V 3
—1 )8; +V 4'�] I . (58)
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Thus

&A; Bj„„&—&A;„&&BJ„„&=—,', gc"e " ' e td(coshp +coshy —2) —[(v 1+v 2)d —v 2gj]sinhp

—[(v 3+v 4)d —v 4g~j]sinhy

where we define

am = z [(vm 1+vm2) +(vm3+vm4) ]b (vmlvm2+vm3vm4)glj

P =(v 1+v 2)b —v

Ym =(Vm3+Vm4)b Vm4gij

It follows that

& A p Bjuu &
—&A p„x &&Biju„&=—

16 pc" e "~ '"e .[(aopb+al pg p)(coshPm+coshy —2)

(60)

(61)

[(vml+vm2)(aolpb +alipgip) vm2aoipgip

—vm2a1, p(g,j +g p gjp )]sin—hP

[(vm3+vm4)(aoipb +alipgip ) vm4aoipgip

m4 —lip(gij+gip g,, )]—slnhym I . (63)

In order to understand the significance of the results we have obtained, it is necessary to expand in powers of b and the

g s. We will keep only the lowest-order nonvanishing terms, which in all cases are bilinear in b and the g s. To this or-
der, Eqs. (43), (50), and (63) become, respectively,

A'j A'p & & A'j & & A'p & [b (g j+gp gjp )+g jg'p]

& BijuuBipuu & & ijuu & &Bipuu &
=

128 g m nPmn
m, n

& AipxxBij uu & & Aipxx & & Bijuu & =
16 P em I [( Vm 1+Vm 2 ) + ( Vm 3 +Vm 4 ) ]bgip + ( Vm 2+ Vm 4)gij (gij+gip gjp )

(64)

[(vm 1+vm2)vm2+(vm3+ 4)v 4][b(gj+gp g'jp)+gijgip] I

Specifically, we have

V~ B~iyy (Bipxx Bipyy & &(Biixx iiyy ) & & ( ip~ Bipyy ) & = & ~byBipyy & & ijyy'& &

= T(gij+gip gjp )

ipyy ) & & ~J'yy & & ( ip~ ipyy

(Aipxx(Bijxx Bijyy ) & &Aipxx & & (Bijxx ijyy ) &
= & AipxxBijyy & & Aipxx & &Bijyy &

1

2 g i(gi+«P gip) '.

(67)

(68)

(69)

Thus, to this order, we have

aoijp 2 [(b gip )(gij +gip gjp )+gijgip]

1

alijp 2 gij (gij +gip gjp ) ~

2
2'jp 2 g'J +g'p gip

(70)

(71)

(72)

Inserting these results into Eq. (28), we have an expres-
sion for (hook) bilinear in b and the g J. Thus we have
included the effects of three-magnon interactions. How-

ever, also included are effects of two-magnon interactions.
Since b and the g;j are linear in the statistical factors fk,
our expression for (lriiok) can be written as a double sum
of k' and k" of terms proportional to fk fk . The terms
where k'&k" are due to three-magnon interactions; those
where k'=k" are due to two-magnon interactions. For
example, consider the hypothetical case where only one
statistical factor, fk, is nonvanishing. Then A'cok is direct-
ly proportional to fk, as should be the case for a two-
particle interaction between magnons of wave vectors k
and k'.
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Note that cY&,&&
is negative. This means that Dk has a

maximum at k=O. Compare this with results obtained in
the literature ' for the inverse lifetime ~k

' for a magnon
of wave vector k. Rather than having a maximum, ~k

'

vanishes in the long-wavelength limit. There are two
reasons for this difference. First, both decay and modula-
tion processes contribute to cok, only decay processes con-
tribute to rk . Secondly, effects of kinematical interac-
tions on ~k

' are almost certainly not included in any cal-
culations in the literature, for exactly the same reason that

kinematical interactions are not included in the results of
Dyson. (Effects of kinematical interactions do not ap-
pear in calculations based on consideration of orders of in-
teraction, e.g. , diagrammatic perturbation theory. ) The
writer believes that the finite value of cok at k=0 results
predominately if not entirely, from modulation effects
rather than lifetime effects, specifically the modulation ef-
fects described in the second paragraph of this paper.
This is related to the long range of the three-body effec-
tive kinematical interaction. '
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