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Magnon line broadening in a Heisenberg ferromagnet is analyzed by a semiclassical method that

includes the effects of both dynamical and kinematical interactions.

At temperatures where

kinematical interactions become important, appreciable broadening is generated by the same long-
range three-magnon effective interaction that gives rise to a gap in the magnon spectrum. In partic-
ular, whenever two magnon wave packets collide, there is a transient energy modulation of other
magnons throughout the crystal. This source of broadening is maximized at long wavelengths.

1. INTRODUCTION

In a recent article,! the writer analyzed the Heisenberg
model of a three-dimensional ferromagnet by a semiclassi-
cal method that attempted to include the effects of both
dynamical and kinematical interactions. At low tempera-
tures, the results of Dyson? were reproduced, thus indicat-
ing the accuracy of the semiclassical approximation. At
temperatures where the kinematical interactions become
important, it was shown that a gap appears in the magnon
excitation spectrum. This results, in part, from a long-
range three-magnon effective interaction. The most seri-
ous deficiency of the calculation was the failure to calcu-
late the magnon line broadening.. We will attempt to
correct this deficiency in the present paper.

The long-range three-magnon effective interaction re-
sults from the renormalization of the energy of a magnon
wave packet when an appreciable fraction of all the lattice
sites of the crystal are occupied by two or more magnons.
A more dynamical way of describing this interaction is as
follows. Whenever two magnon wave packets collide,
there is a transient modulation of the energy of other
magnons throughout the crystal. This modulation leads
to a line broadening of the magnon excitation spectrum.
At temperatures where the kinematical interactions are
important, it appears that this source of line broadening is
far more important than that due to two-magnon scatter-
ing, especially at long wavelengths.

We briefly recapitulate the semiclassical procedure used
in I. The Heisenberg Hamiltonian is

Hz—%zJUS,'S] s (1)
ij

JU:J([R,-—RJ|), J,',':O, (2)

where the double sum is over the N lattice sites of the

crystal. The quantum-mechanical equations of motion
are
ds;
vd_iI—ZS,'XH,', H,EﬁwlzJ,jS] . (3)
J

The semiclassical approximation consists of solving these
equations classically. We restrict ourselves to the spin-+

32

case. In the absence of magnons, we choose all spins to be
pointing along the x axis, i.e., an orientation given by the
spherical coordinates 90:%17', ¢o=0. In the presence of
an assembly of magnons, the spin on the ith site points in
the direction 6y+0;, ¢o+¢;, where

¢i: E Cksin(k-Ri——a)kt +¢k) ’
k

(4)
0:= 3, Crcos(k'R; —wpt +Py) .
k

Cy, the amplitude of mode Kk, is related to f, the number
of magnons of wave vector k, by the expression

Ci=4N"'f; . (5)

In order to solve the equations of motion, a series of
transformations of coordinates are introduced, different
sets for each lattice site, in order to make the precessing
spins appear static. In carrying the calculation to com-
pletion, it is necessary to introduce the essential approxi-
mation of linearizing certain quantities with respect to
their arguments. Specifically, we linearize a set of quanti-
ties A;, functions of ¢;,¢;,0;,0;, and a set of quantities
By;, functions of ¢;,¢;,0;,0;. The linearization of f ()
with respect to 0 is

linf (0)=5{f(O)+£(—6))
+26{(d/dO)f(O)—f(—0)]) . (6)

The angular brackets denote averaging with respect to
time and with respect to the random phases ®; appearing
in 6; and ¢;. The solution to the “static”” problem in the
transformed coordinates leads to the expression for the
magnon excitation energy,

ﬁwkz%zJij(aOij—f—a“j{l—cos[k'(Rj—R,»)]}) s (7)
J
where a;; and a;;; are functions of the three quantities:
b=N""32f
k
d=N""'3 201 fx » (8)
k

8ij =N"1! % kail—cos[k'(Rj—-R,-)]} .
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Specifically,
ayy=t(14e1/20) =1 781 e 78 420 —(1/20)
e8I _1)], ©)
(e +1/2b 4 1)=1zg

1
7 2 ij%oij =
j

_%(1+e——(1/2)b)—1e —2b
zJ (e T8 _1) (10)

From the definition of d, we have

fid =7 > Jijlagb +ay5855) - (11)
J

Thus we can choose
g =(1—b +e+1728)=
X [aiygy—e ~3/2e T —1)] . (12)
Thus both ag;; and a,;; can be expressed as functions of b
and g;; alone.

A separate calculation leads to an alternative form of
#iwy , namely

h&)k:%zjlj(aolj+azl]{I—COS[k'(R]—"R,)]}) . (13)
j

This calculation suffers from the fact that #w; contains
an unknown additive constant, independent of k. The
constant is chosen such that the two forms of %w; agree
in the long-wavelength limit k=0. We have

=113 +e e 5 (e —1)e ] . (14)

It is instructive to expand the a’s in powers of b and g;;.

Terms proportional to b" g,j result from n-magnon ef-
fective interactions, where n =(n;+n,+1):

aOijz%gij(b _gij)

— a8y (18074 3bg;; —20gj)+ - -+ (15)
ay;=1-—g;+ 58;(28;—b)

+z—lgi,-(9b2+3bg,~j—10g§-)+ s, (16)
azij=1—gij+%g,-j(2g,-j—b)

+ 18y (6b2—3bg;; —5g5)+ - -+ . (17)

To the accuracy of three-magnon interactions, a; =a,;;.
The leading terms of ag; result from three-magnon in-
teractions.

II. LINE BROADENING

The second form of 7wy, is actually an average. Specifi-
cally, Eq. (13) is

ﬁwk:<Ek) N (18)
where
Ek Eﬁ(Alx—Q)

+5 3 i { Bijex — Bycos[k-(R; —R)1} . (19)
J .

Here #{) is the already mentioned additive constant, while
Ay =~ (0;sing; — ¢;sind;) , (20)
Bijxx = <[ cos( (¢ —¢;)cosB;cosb; +sind; smG

+cos(60; —0;)cosd;cosg; +sing;sing;] , (21)
Bijyy:%[cos ¢j—d;)+cos(0; —0;)sing;sing;
+cosg;cosg; ] . (22)
Making use of the first form of #iw;, we can write
A= % Ajpex (23)
where we define -
Ajpx=7 % Ci { (g +ay;)—ay;cos[k(R; —R;)]}
X [sing;sin(k*R; —wt +Dy)

+sinf;cos(k*R; —wit +D)] . (24)

Thus

Ep +7Q=75 3 J;;((Ayjex +Bijxx — Byjpy)
J

+B,jyy{1~COS[k(R]—R,)]}) . (25)
Note that
i = Bijyy ) - (26)
We now define
(i = ER) —(Ex)?, 27)

the mean-square deviation in the magnon excitation ener-
gy (the second moment of the line-shape function). We
can write

:-‘]t—z ip(&Oijp+2&1ijp{I—COS[k'(Rj—R,')]}+&2ijp{I—COS[k'(Rj—Ri)]}{I—COS[k'(Rp—Ri)]}) , (28)
J.p



where
@oijp = {(Ajjex +Bijxx — Bijpy ) Ajpax +Bipxx —Bipyy ) )
— ((Ayjxx +Bijex — Bijpy )

X {(Ajpxx +Bipxx — Bipyy)) (29)
@1ijp = { Bippy(Aipxx + Bipxx — Bipyy )
— (Bijpy ) {(Aipxx +Bipxx — Bipyy)) (30)
@sijp = Bijyy Bigyy ) — (Bijyy ) By ) - (31
In order to determine (%@ )%, we need to calculate the &@’s.

As in I, for the angles we are considering, we have

6%y =[(2n)/n2"KO*)", (¥ *+1y=0, (32)
(cosf) =exp(—+(6?)), (sinf)=0, (33)
(¢2)=(6})=b , (34)
(6:4;)=—(;6,)=d , (35)
(6;sing; ) = — {$;sin6; ) =de ~1/2% | (36)
(6;sin0) ={(6;0){cosb) , (37
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(sin%p; ) = (sin’6; ) =e ~bsinhb , (38)

($1)=(67)=d . (39)
Here we are defining

JEN_1§2a)ifk . (40)

We can write
#d= % JijJip[%ijao;'pb +Q0ijQ1p8ip + Aoip X148
+a1ijQ1ip (8ij +8ip —8&jp)] - (41)
We have
( Ai%c ) — (A )= ‘i‘( <éi3in¢i 2+ <¢.i5in0i )2
+(67) (sin’¢; ) +($7)(sin6;))
=+e %d?+d sinhb) . (42)

It follows that

(Ajjux Aiprx ? — (Ajjuex Y {Ajpxx ) = e b (@pijQoipb +00;j Q115 8ip +Qoip @181 /(b +sinhd)

+ayj0,[88ip +(8ij +8ip —&jp )sinhb]} . (43)

Consider the angle

0= (vi¢; +v20; +v3d, +v40; +vs0; +ve0,)

= 2 Ck {Vl +’V2005[k‘(Rj —-Ri )] ‘—'Vssin[k'(Rj —R[ )]+'V3COS[1('(RP _Ri )]
k

—vesin[k*(R, —R;)]}sin(k-R; — gt +Dy)

+ 2 Cr{va+vosin[k-(R; —R;)]+vscos[k-(R; —R;)] +wvssin[k-(R, —R;)]

k

+vecos[k (R, —R;)]}cos(k'R; — gt +Py) . (44)

5(0*) =5 3 Ci({v,+vycos[k-(R; —R;)]—vssin[k*(R; —R;)]+vscos[k-(R, —R;)]
k

—vesin[k+(R, —R;)]}2+ {v4+vosin[k(R; —R;)]+vscos[k*(R; —R;)]

+v3sin[k+(R, —R;)] +vgcos[k-(R, —R;)1}?)

=N"1! Efk{(v%+v§+v§+vﬁ+v§+v§)+2(v1v2+v4v5)cos[k'(Rj——R,-)]
k

+2(viv3+v4vecos[k (R, —R;)]+2(v,v3+vsve)cos[k(R; —R, )]}, (45)

or

34 =F[(vi+v2+v3)* + (va+vs+v6)*1b —(Viva+vgvs)gi; — (Vvivi+vave)gp, — (vavs +vsvelgp - (46)

We can write

Bjjuu = T D cmCOS(Viy 18i +Vim 20 +Vm 36 +Vmab;)
m
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where u =x,y, and

+1 -1 0 O
+1 41 0 O
0 0 +1 -1
0 0 41 +1
+1 -1 +1 -1

Wmm)= (] _q _1 41| Withm=12,...,10, m'=1,2,3,4, (48)
+1 —1 +1 +1
+1 -1 —1 —1
+1 +1 +1 —1
+1 +1 —1 +1
+2 +6
-2 +2
+2 0
—2 0
. +2 b +1
(cm)= 12 (cpm)= +1 (49)
+1 0
+1 0
+1 —1
+1 —1
We now have (u,v =x,y)
{BijuuBipw ? — {Bijuy Y Bipyyy ) = L > cmene "*mn (coshB,,, — 1), ’ (50)
m,n

where we define

Xmn E‘;‘[(Vm1+Vm2)2+(vm3+vm4)2+(vnl+Vn2)2+(vn3+vn4)2]b _(VmIvm2+vm3vm4)gij‘(anvn2+vn3vn4)gip s

ﬁmn E[('le"_VMZ)(Vnl'+”Vnz)‘i"(vm3‘*"Vm4)(vn3“+“'Vn4)]b_(VnIVmZ'*_Vn}VmZ&)gij_(’Vm lvn2+VM3V"4)giP

_(Vm2vn2+vm4vn4)gjp .
For the cases uv =xx, xy, yy, there are 100, 60, 36 terms,
respectively, in the above double sum over m and n. This

makes the above expression tedious to evaluate.
Consider the angle

9:(V1¢i+V2¢j+V3ei+V4ej) . (53)
We have
<9,6> = ‘;‘ 2 C,%a)k {V1+VzCOS[k‘(Rj —R,)]}
k

=(vi+v)d —vo;; (54)

1
AixBijuu =6
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(51)
(52)
—($:0) =71 3, CRog {vs+vscos[k-(R; —R;)]}
k
=(v3+vy)d —vagy; (55)
Here we are defining
g=N""3 20 fi{1—cos[k-(R; —R)]} . (56)
k
We can write
fig; = 5 > Jiplaop8ij +a1ip (81 + 85 —gp)] . (57)
I3

We have

cm éi sing; — gb'isinG,- )COS(Vi 10 +Vim20j + Vi 30; +Vi 46;)

Crﬁéi{Sin[(VmH-l)lﬁi-*-sz(ﬁj +Vm 36 +Vma0; 1 —sin[ (v 1 — )i + V2 +Vim36; + v a6;1}

— 55 S chdsin[ vy, 14 FVm20; + (Vi 3+ 1)0; + Vi 40; 1 —sin[ vy, 16 + V20 + (Vi3 — 106, +v,,46;1} . (58)
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Thus

(AiBijuy ) — (A Y By ) =76 >, cre ~ 120 " (d(coshBy, +cOShy y —2) —[(Viy 1 +Vin2)d — Vo8 IsinhB,,

m
_“[(Vm3+vm4)d _Vm4-§ij]5inh'ym } ’ (59)

where we define

U =T [V 1+ Vm 2+ Vi34Vl 10 — Vg 1Vin 2+ Vi 3Vima 835 > (60)

B =Vm1+Vm2)b —vimagij » (61)

Ym=(Vm3+Vma)b —vmagij . (62)
It follows that

( AipxxBijuu ) - <Aipxx ><Bijuu = L(7 2 117‘1 —1/2k {(ainb +a1ipgip )(COShﬁm +COSh7/m —2)

— [V 1+ V2 ) (@oipb +Q13p8ip ) —Vim 200ip8ip
— Vi 20135 (8ij +8ip —&jp ) Isinh B,
— [V 3+ Vi) (@oipb +A1ip8ip ) —VmaQoip8ip
—Vm4Q1p(8ij +8ip —8jp)Isinhy | . (63)

In order to understand the significance of the results we have obtained, it is necessary to expand in powers of b and the
g’s. We will keep only the lowest-order nonvanishing terms, which in all cases are bilinear in b and the g’s. To this or-
der, Egs. (43), (50), and (63) become, respectively,

(Ajjex Aipes ) — Ao ) S A ) =510 (83 + 8ip — 8p) +818ip ] » (64)
<BijuuBipuu ) — <Bijuu ><Bipuu =T 128 2 Cfflcn mn > (65)
( AipxxBijuu ) < tpxx)<Btjuu - E Vm1+vm2)2+(vm3+vm4)2]bgip +(V3nZ+an4)gij(gij +gip "‘gjp)

m

[Vt + Vi 2DV 2+ Vi 3+ Vima)Vim a0 (835 +8ip —8jp ) +8ij8p 1} - (66)

Specifically, we have

((Bijxx — Bijyy (Bipxx — Bipyy) ) — (Bijxx — Bijyy) ) { (Bipxx — Bipyy ) ) = Bijpy Bipyy ) — ( Bijpy, ) By, )

=38y +8p—8p) > (67)
( Buyy ipxx _Bipyy )= <Bijyy I (Bipxx —Bipy) )=0, (68)

(Aipxx (Bijex — By ) ) — { Aipxx ) { (Bijax — Bijpy ) ) = Aipux Bijpy ) — { Aipxx ) { Bijy )
= —38;(8y+8p—8p) - (69)

|

Thus, to this order, we have ever, also included are effects of two-magnon interactions.
. ~ Since b and the g;; are linear in the statistical factors fj,
oijp=7(b —8ip (8ij +8ip —&jp ) +8ij8p 1 » (70) our expression for (%@ )* can be written as a double sum
of k' and k” of terms proportional to fj.fx». The terms
Ayjjp = — %g,-j(g,-j +8ip —8&jp) > (71) where k’s£k’ are due to three-magnon interactions; those
_ . 5 where k’=k” are due to two-magnon interactions. For
Qoijp="5(8ij +8ip—8&jp)" - - (72)  example, consider the hypothetical case where only one
statistical factor, fy, is nonvanishing. Then #®; is direct-
Inserting these results into Eq. (28), we have an expres- ly proportional to fy:, as should be the case for a two-

sion for (A& )? bilinear in b and the gij- Thus we have particle interaction between magnons of wave vectors k
included the effects of three-magnon interactions. How- and k'.
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Note that &);;, is negative. This means that & has a
maximum at k=0. Compare this with results obtained in
the literature>* for the inverse lifetime 77 ! for a magnon
of wave vector k. Rather than having a maximum, 7% !
vanishes in the long-wavelength limit. There are two
reasons for this difference. First, both decay and modula-
tion processes® contribute to @; only decay processes con-
tribute to 77 !. Secondly, effects of kinematical interac-
tions on 7 ° are almost certainly not included in any cal-
culations in the literature, for exactly the same reason that

kinematical interactions are not included in the results of
Dyson.? (Effects of kinematical interactions do not ap-
pear in calculations based on consideration of orders of in-
teraction, e.g., diagrammatic perturbation theory.) The
writer believes that the finite value of @; at k=0 results
predominately, if not entirely, from modulation effects
rather than lifetime effects, specifically the modulation ef-
fects described in the second paragraph of this paper.
This is related to the long range of the three-body effec-
tive kinematical interaction.!
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