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If (CH3)&NMnC13 (TMMC) in a transverse magnetic field is represented by a quantum sine-
Gordon Hamiltonian, the computed quantum renormalization of the classical soliton mass agrees
well with experiment. However, the theory also predicts a substantial magnon-mass renormalization
which is not observed. %e compute the magnon-mass renormalization for the exact spin-chain
Hamiltonian to the two-loop level, and show that, for the physical parameters appropriate to
TMMC, the substantial sine-Gordon mass renormalization is largely cancelled by contributions
from out-of-plane fluctuations not included in the sine-Gordon model. Our final result is in excel-
lent agreement with recent experimental work.

I. INTRODUCTION

Much of the recent work on the magnetic properties of
(CH3)4NMnC13 (TMMC) has been based on approximat-
ing it by a sine-Gordon system. ' " The generally accept-
ed TMMC spin-chain Hamiltonian [given in Eq. (2.1)
below] is a one-dimensional (1D) antiferromagnet of spins

~, with an anisotropy term tending to keep the spins in an
easy plane perpendicular to the line of magnetic ions. ' In
the classical ground state (thought to be a good starting
point for TMMC in fields of a few tesla), the spins are in
this easy plane, almost perpendicular to the applied exter-
nal field. Elementary excitations are thought to consist of
spin waves (magnons) and kinks. In the latter the spin
direction twists through 180 while staying more or less in
the easy plane. Thus, qualitatively, the spin chain has
features in common with the sine-Gordon system. It has
also been established, with certain approximations, that
the spin-chain Hamiltonian can be transformed into the
sine-Gordon Hamiltonian. ' One of the important ap-
proximations is that each spin is nearly confined to the
easy plane, even though for TMMC the measured value of
the anisotropy parameter 5 (which favors planar confine-
ment) is quite small. Usually one argues that the strong
nearest-neighbor coupling forces the spins to go out of the
easy plane together, increasing the effectiveness of the an-
isotropy term.

Many properties of the quantum sine-Gordon system
have been worked out using various field theoretic tech-
niques, and recently some of these have been compared
with experimental TMMC results. ' The classical esti-
mate of a bare kink or soliton mass is computed by as-
suming that the spins are classical, and by transforming
the spin-chain Hamiltonian to a classical sine-Gordon
equation. But, as pointed out by Maki, quantum effects
are actually quite important for TMMC. When they are
included, the bare, or classical, soliton mass is renormal-

ized downwards by about 40% (in a field of 5 T). This re-
normalization produces good agreement between theory
and experiment. A similar result should hold true for the
magnon mass: In the sine-Gordon theory of TMMC the
magnon mass is renormalized downward by about 30%
from its bare value glJ, ~H (where H is the external mag-
netic field perpendicular to the chain). Experimentally,
however, only a small renormalization is observed. ' ' In
this paper we show that the application of field theoretic
techniques directly to the spin-chain Hamiltonian yields a
small mass renormalization very close to that experimen-
tally observed; therefore, the sine-Gordon system is not in
this respect an adequate representation of TMMC.

It should be noted, at this point, that in the absence of
the easy plane anisotropy in the TMMC Hamiltonian (2.1)
(i.e., for an isotropic Heisenberg antiferromagnetic chain
in an external field), the spin waves have mass gpss&, cor-
responding to the classical frequency. The Hamiltonian

=A 0+% t commutes with the total spin component
in the direction of the field, S"=g„S„",so the energy of
a zero momentum state is quantized in units of gp&II:
there is no quantum renormalization. %hen the easy
plane anisotropy term A s=5Jg (S„')2 is introduced, S"
is no longer a good quantum number and this argument
fails. It might seem that a natural approach to the
TMMC model (2.1) would be to do perturbation theory in
the small term A s. Unfortunately, the ground state of
the unperturbed system A =A 0+@,„,is very complicat-
ed.

In this paper, following Riseborough and Reiter, ' we
take the classical easy plane antiferromagnetic state as the
zeroth approximation, and expand. in powers of the ampli-
tude of the out-of-plane fluctuations ((S„') )/[S(S+ I)],
and in-plane fluctuations ((~p„) ). This turns out to be
the loop expansion of quantum field theory, '6 where, for a
semiclassical spin, the leading term is the classical system,
one-loop graphs are of order A, two-loop graphs of order
fi, and so on. More accurately, the graphs are of order
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1/S, 1/S, etc. , and for a semiclassical system AS is of or-
der unity. Because S = —,

' for TMMC, we adopt the latter
description: graphs are of order I[S(S+1)]'~ I

I [S(S+1)]' I, etc. We carry out the expansion to the
two-loop level, which involves computation of about 600
diagrams. Going beyond this order does not appear to be
practical. We find, however, that the second-order correc-
tion is quite small (although it involves many cancella-
tions among large terms), so we believe our approximation
to be accurate.

An important feature of a loop expansion is that sym-
metries are preserved order by order. In particular, in the
limit of 5 going to zero, the magnon-mass renormalization
disappears in each order (the dressed mass equals the bare
mass) as discussed above. A difficulty is that some of the
graphs diverge as 5 goes to zero, so a good deal of care is
needed in computing at small 5. Nevertheless, to first or-
der the cancellation is readily apparent. Evaluation of the
two-loop graphs is more challenging, but it is clear that
the second-order renormalization from these graphs is
also tending to zero with 5 (at least until divergences
render the numerical methods suspect). For TMMC the
symmetry is only slightly broken (we find 5=0.019 in
Sec. V), and therefore the renormalization to each order
should be small. This indeed turns out to be the case, as
explained in Sec. V.

%e have been able to compute the magnon-mass renor-
malization over a wide range of the anisotropy parameter
5 and the external field H. For 5«H the spins precess
about the external magnetic field. For 5»H the spins
are confined to the x,y plane and behave in sine-Gordon
fashion. We find that the spin-chain magnon-mass cor-
rection goes from zero to the sine-Gordon value (about
30% in a field of 5 T) as 5 increases from zero to of order
unity.

%'ith these computations we are able to ascertain, for
the first time, whether the actual 5 for TMMC is large
enough to enforce sine-Gordon behavior. We find this not
to be the case. Nor is the assumption of Riseborough and
Reiter' —that the in-plane graphs are dominant —valid
for TMMC. Because of the large cancellation of in-plane
by out-of-plane diagrams, we predict a mass renormaliza-
tion for TMMC of 8% in a field of 5 T, so TMMC is
much closer to the isotropic limit than to the sine-Gordon
limit. What effect this out-of-plane motion has on soliton
modes remains to be investigated.

It is assumed throughout this paper that the external
field and anisotropy terms are sufficiently strong for the
picture of magnon excitations from the ground state to be
qualitatively valid. In particular, we assume that the
external field is strong enough to suppress the (zero-field)
nonlinear sigma excitations recently discussed by Hal-
dane. '

We have used zero-temperature Green's functions
throughout. Maki and Takayama have shown that in the
sine-Gordon approximation, at temperatures comparable
to those used in the experiments on TMMC, the magnon
mass undergoes a further renormalization of a few per-
cent. ' However, the spin-chain renormalization is zero in
the isotropic limit, as explained above, even at finite tem-
peratures. For TMMC, in which the isotropic symmetry

II. THE SINE-GORDON APPROXIMATION

In this section we review the derivation of the sine-
Gordon (SG) Hamiltonian from the generally accepted
TMMC spin-chain (SC) Hamiltonian

cP —A o+A fj+A

where
N

A p
——J g S„.S„+i, A s

——5J g (S„')
n=1

N

m,„,= —gI,H g S„".
n=1

(2.1)

The SC is a line of spin vectors, one on each central Mn
ion, with nearest-neighbor interactions. Each Mn ion has
five valence electrons which, according to Hund's rules,
half fill its d shell, giving S = —,, L =0, and g =2. The
large value of the ionic spin has prompted consideration
of TMMC as a nearly classical system. The intrachain in-
teraction, whose strength is of order JS, is much stronger
than the interchain interaction, J'S, as a result of the
physical separation imposed by the large (CH3)4N+ com-
plexes. Since TMMC has a ratio J/J' of roughly 1000, it
has essentially ID behavior above the three-dimensional
ordering temperature Tz. (T~ is a function of field,
varying from 0.84 K at H =0 to approximately 3 K at
H =8 T. ) The spin-chain parameter J is large and posi-
tive (antiferromagnetic) and 5 is rather small. Currently
accepted values for these parameters are J/k~=13. 4 K
and 5=0.016.' (As a result of our improved SC calcula-
tion, we determine the best fit to be J/k~ ——13.1 K and
5=0.019.) As explained in the Introduction, the mass re-
normalization varies slowly with temperature near the iso-
tropic limit; therefore, the use of zero-temperature

is only slightly broken, the spin-chain renormalization
should vary with temperature even less than in the sine-
Gordon approximation.

After this work had been submitted for publication, Dr.
H. Shiba drew our attention to some recent experimental
results' which are in very close agreement with the
present analysis. In contrast to earlier work, the new ex-
perimental results are in clear disagreement with classical
predictions. They agree well with the one-loop quantum
corrections, as discussed by Shiba, ' although the loop ex-
pansion is in powers of 1/S, with S = —,. We believe that
an important feature of the present work is that, by using
sine-Gordon type variables and symmetry arguments, it
can be seen for the first time why higher-order terms in
the series are much smaller than might be expected. We
have been able to confirm this result numerically for the
two-loop terms, which we find make only a tiny correc-
tion in the range of interest.

In Sec. II of this paper we review the derivation of the
sine-Gordon Hamiltonian from the spin chain, and intro-
duce some of the formalism used later. In Sec. III we give
the sine-Gordon mass renormalization. Section IV de-
scribes the magnon-mass renormalization in the full spin-
chain model to the two-loop level, and the results of the
computation are presented in Sec. V.
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Green's functions should be accurate over the experimen-
tal temperature range.

The following simple picture of TMMC dynamics in a
transverse field has led to the belief that a sine-Gordon
picture might be reasonable. For a chain along the z axis,
with a magnetic field along the x axis, the classical
ground-state spins on the even- (odd-) site sublattice are
almost along the + (—) y axis. Each spin is in fact
slightly canted in the direction of the field through a
small angle a (a-H/4JS). For the T«JS /kz dynam-
ics, the short-range antiferromagnetic ordering is
preserved, and for low enough temperatures, most of the
spins will be approximately in the +Q direction. Howev-
er, there will be thermally generated magnons and kinks
or solitons, where the local antiferromagnetic order turns
through n (like a twist in a ribbon) as one moves along the
chain. Assuming the spins stay in the easy plane, this is
sine-Gordon-like behavior. For TMMC the small value
of 5 casts some doubt on the validity of the sine-Gordon
representation from the beginning. However, as men-
tioned above, it has been argued that for the temperature
range of interest ( T«JS /kii ) the large value of J forces
spins leaving the easy-magnetization plane to take others
with them (of the order of the number of spins in a coher-
ence length). Moving a number of spins out of the easy-
magnetization plane would increase the energy cost, there-
by enhancing the effect of the anisotropy term 5.

We now present a formal derivation of the sine-Gordon
equation from the spin-chain Hamiltonian (2.1). The
natural variables for an easy x,y-plane system are P and

S*, where P is the angular variable in the x,y plane de-
fined by

S+ (S+S&)1/2 ~i n(s —Sz}i' (2.2)

S„'$„"=V'S(S+1)g a
&S(S+1)

where

S„'
X v'S(S+1)

ga x =&I—x.

m

cos(P„}

(2.4)

(2.5)

Note that the mth term of this expansion is of order
(S'/S)™,so that physical properties computed using this
series should converge rapidly if the system stays close to
the easy-magnetization plane. Substitution of the series
(2.4) and the more complicated

(2.3)

The transformation (2.2) is used by Haldane, '~ and is
equivalent to that used by Riseborough and Reiter, ' ex-
cept for the commutation relation (2.3), as explained
below. [In addition, the form (2.2) establishes the proper
ordering of the operators S„' and P„at the outset. ] Prom
(2.2) and (2.3) we find, following Haldane,

S' z
—,
' (S+S„+i +S„S++i ) =S(S+ 1) cos(P„—P„+,) —— cos(P„—P„+,)2 S(S+1) " S(S+1)

2 &S(S+1) " "+ V'S(S+1)
into the Hamiltonian (2.1), and expanding to second order in S'/v'$(s+ 1), gives"

(2.6)

~=JS(S+ 1) g cos(P„—P„+i )— gpgH
cos(P„)+ SnSn+]

a= I J&s(s+1) " s(s+1)
r

~S(S 1)
cos 0n '(('n+1 +cos Pn —i Ppg ) — ~ sc(of„)—25J S S+1) S(S+1)

(2.7)

{In Appendix A we continue this expansion to order
[S'/&S(S +1)],necessary for Sec. IV.}

We assume that the local quantum fluctuations in P are
small enough ( «2m), to allow us to neglect its angular
nature and treat P„, S„' as conjugate variables. Rather
than the commutation (2.3) (true for action-angle vari-
ables), we take

(2.8)

where a is the canting angle, and thus +„ is the planar an-
gle measured from the classical ground-state position of
the spins. The canting angle a is found by minimizing
the ground-state energy

gpgHEos ———JS(S+1)N cos(2a)+ sin(a)Jv'S(s+1)
(2.10}

Next we transform variables from P„ to %„using'5

t}}„={—I )"(m/2 —a)+ Ii„, (2 9)

g1V1ng

gpgHsina =
4Jv's(s+1) ' (2.11)
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This choice of a [equal to the classical canting angle ex-
. cept for the replacement of S by v'S(S+1)] eliminates
the linear term in the Hamiltonian which results from the
substitution (2.9). The expansion based on (2.9) will be
used in Sec. IV.

For the purposes of this section, we will use a modifica-
tion of (2.9). In general, the canting angle depends on the
field strength perpendicular to the spins (changing as the
spins twist around to form, say, a soliton). To allow for
large fluctuations, a more natural transformation for P„
would be

In comparing our expressions with the literature, note
that sometimes 2J is used in place of J in the Hamiltoni-
an (2.1). In our notation, a is the Mn-Mn spacing, not the
classical antiferromagnetic sublattice unit-cell size, which
we write as 2a. Finally, note that PS(S+1) occurs in
place of S because of the transformation (2.2) used to ex-
pand the Hamiltonian. The difference is significant for
TMMC, where S = —,.

III. SINE-GORDON MAGNON-MASS
RENORMALIZATION

P„=( —1)"[m./2 —a cos(%„)]+0'„. (2.12)

Substituting (2.12) into (2.7), subtracting off the
ground-state energy, and dropping terms higher than
second order in the small parameters n, 4n —4'n+1, and
S„'/&S(S+1),we find

N
A =JS(S+1)g a [1—cos(2'4„)]+—,'(4'„—4„+i)

n=1

(S')
S(S+1) (2.13)

In (2.12) the canting angle, a cos(%„),becomes a dynami-
cal variable, so that (2.8) no longer implies [O'„,S„']=i.
The extra terms in the commutator are smaller by order
a, however, and can be neglected. To leading order, then,
(2.13) gives

m =m*exp( —~g D) (3.1)d (4 ) = 2J(2+~) Sz
dt

(2.14)
and

The computation of the mass renormalization for the
sine-Gordon Hamiltonian is a standard quantum field
theoretic exercise. ' ' ' Here we briefly recapitulate the ar-
gument and the results.

One expands the 2(coo) [1—cos(gB)]/g term in (2.16)
to obtain the mass term, (coo ) B, and an infinite series of
higher-order interactions —g B /4!, g B /6!, etc. Di-
agonalizing the quadratic terms gives the bare (classical)
magnon dispersion relation; the higher-order terms renor-
malize this energy. It is well known that the logarithmi-
cally divergent contributions (as the momentum cutoff
A~ oo ) to the dressed mass can be eliminated by simply
normal ordering the Hamiltonian (2.16). ' The result is
that the bare mass m' (given by ficoo lc ) is replaced by a
dressed mass m, where, at T =0,

We define

28 =—+n n (2.15)

D=(B )= f A

1n(2A/mc) .
4ir A (~ 2+ 2)1/2

(3.2)

to give the conventional sine-Gordon angular variable
which undergoes a 2ir/g rotation between successive
ground states, where g, the dimensionless coupling con-'

stant, is proportional to the ratio of the magnon mass to
the classical soliton mass. With these substitutions, and
in the continuum limit, (2.13) becomes

Graphically this renormalization represents the series of
terms depicted in Fig. 1, where the dressed propagator is
used self-consistently in the loops. The underlying lattice
structure imposes a momentum cutoff A =iriii/a.

Solving for the dressed mass in terms of the bare propa-
gator, we find

~sG= i ~g dx (B~) +& (B„)+ [1—cos(gB)]2 2(coo )

g 2

m =m'exp( —,'g D*), —

where

(3.3)

where

At =
16J(1+5/2)a

A'c =2Jav'S(S+ 1)&1+5/2,

(2.16)

(2.18)

and

2
2 g

1 g /8~

D*= ln(2A/m*c) = jn(m/a) .2' 2m

(3.4)

(3.5)

fico() gpii H v' I +5/2, —— (2.19)

Ag =A/c .
For the antiferromagnetic spin chain,

1/2
1+5/2

S(S+1)

(2.20)

(2.21)

a equals the spacing between Mn ions, and g is chosen so
that

In the next section we shall compute the magnon-mass
renormalization to two loops using the spin-chain Hamil-
tonian, without the simplifying SG approximations. For
comparison, we compute the SG renormalization to two
loops, including the diagram not divergent with A, for the
discrete form of (2.16). The appropriate diagrams are
shown in Fig. 2.

Using the zero-temperature Green's function, the renor-
malized mass m (to two loops) is the solution of
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FIG. 1. Series of logarithmically divergent diagrams
equivalent to normal ordering the sine-Gordon Hamiltonian.
The dressed propagator is used self-consistently in the loops.

FIG. 2. One- and two-loop SG diagrams. Bare propagators
are used to obtain correspondence with the SC results.

m = (m '
) (1+g" '+g' '), (3.6)

g($) 1 (3.7)

where the one- and two-loop corrections are, respectively, g(2) ) g4(D e )2 g4D + +F
16m.

(3.8)

and
F44, the contribution from the m-dependent graph of Fig.
2, is given by

COq +COq +COq
F44= 4~0a f dq) f dqz f dq3&(q)+q2+q3)aq aq aq(2~)z (co +co +co ) —co —Ie

(3.9)

where

aq ——(eqe q) =
2 (c/a),

2coq

(3.10)
fico« ——4J&S(S+1)&1+5/2[a +sin (q/2)]'

To order g (i.e., to order [S(S+1)] '), the mass is
given by

I

ratic Hamiltonian

A 0——JS(S+1)g (I(„(I(„—cos(2a)%'„(Il„+(

S„'S„' S„'S„'+)

2 S(S+1) S(S+1)
(4.1)

m +[1+ ( g(1)+ ( g(2) ( (g(1))2] (3.11)
and the interaction terms shown in Appendix A. '

Transforming to momentum space,

O'„= Q e'q"'Ilq,1

IV. MAGNON-MASS RENORMALIZATION
IN THE SPIN-CHAIN MODEL S„'= Q e'q"Sq,

(4.2)

In this section we investigate the magnon-mass renor-
malization directly usirig the TMMC spin-chain Hamil-
tonian (2.1), going to the two-loop level. In contrast with
the sine-Gordon field theory, in SC diagrams the vertices
are momentum dependent, and the lines can be formed
from any of four different propagators. The multiplicity
of diagrams and their greater complexity make it imprac-
tical to go beyond two loops. Nevertheless, we believe the
calculation is accurate for two reasons. In the SG approx-
imation, discussed above, the mass renormalization in-
cluding only "divergent" graphs through two loops [set-
ting F44=0 in (3.8)] gives an answer within 1% of the
infinite-order mass (3.3), for fields of 2 to 8 T. Moreover,
in TMMC the isotropic symmetry is barely broken,
suppressing the renormalization from each order. In the
SC analysis the second-order correction (two-loop graphs
plus the second-order contribution from one-loop graphs)
adds from 0.2% to 2% to the one-loop renormalization,
which for corresponding fields ranges from 5% to 15%.

We find, as previously mentioned, that the rather large
magnon-mass renormalization predicted by sine-Gordon
theory (but not observed experimentally in TMMC) does
not occur in the SC calculation. The difference is ex-
plained by the inclusion of significant out-of-plane terms
neglected in the SG approximation.

The change of variables (2.2) and (2.9) yields the quad-

where q (=ka) C[—~,m. ], Eq. (4.1) becomes

~0——JS(S+1)g (Ilq(II »[1—cos(2a) cos(q)]

1/4S(S+1) 1 —cos(2a)cos(q)
4 1+.5+cos(q)

(4.5)

~0= g~»(aqaq+ —,
' ), (4.6)

+ [1+5+cos(q)] . (4 3)S S+1
This is diagonalized by the Bogoliubov transformation:

pq =aq(Qq+0 «),
(4.4)

S'=ip (a a), —
1where aqP» = —, Preserves the canonical commutation re-

lations in 4'„and S„'. We find'

1/4
1 1+5+cos(q)

4S (S + 1) 1 —cos(2a ) cos(q)
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where

ficoq =2J&S(S + 1)

Xv'[1+5+cos(q)][1—cos(2cc) cos(q)] . (4.7)

D%S

Osano, Shiba, and Endoh' obtain a slightly different
result because their expansion is in S ', rather than
[S(S+1)] '~. Also, their division of the system into
sublattices splits our [O,m] range into two ranges:
[O, m. /2], which gives their a magnon; and the range
[ir/2, ir] (mapped into [O,m/2], which gives their P mag-
non.

The transformed Hamiltonian, written to sixth order in
Appendix A, exhibits the momentum dependence which
complicates the SC diagrammatic analysis. A greater
complication is the fact that the magnon-magnon interac-
tion terms are functions of both 4 and S', unlike the
sine-Gordon case which has only the single operator 0.
We treat qI and S' on an equal footing by using a matrix
form of the (phonon-type) zero-temperature Green's func-
tion:

0------& ------S )I)

D(p, co) = 2', cd, (1+8» ) ico(1+ Oq,s )

ico—(1+Oq's) 2Ppcoq(1+8@,q, )

X [co (1+Ops) —(cop iE—) (1 +8@q)

X(1+Oss)] (4.11)

where

2CXp 2''
&qq(p ~» Oss= '

&ss(p ~»
COp COp

(C)

FIG. 3. Diagrammatic representation of bare SC propaga-
tors: (a) D@~, (b) Des (c) Dse, (d) Dss

ase Dss
(4.8) l

Oqs= —&qs(p ~)
CO

(4.12)

where

D„„(q,t t') = —i ( T[—M(t)4" q(t') ]),
p, v=9' or S, @q ——%q, Nq ——Sq . (4.9)

In terms of ctq, Pq, and coq [Eqs. (4.5) and (4.7)], the bare
propagators are given (after Fourier transformation) by

2
2cxp cop l co

D (p, co)= —i co 2P& co&
(4.10),

We represent the bare propagators graphically by the four
lines shown in Fig. 3. The Green s function for the in-
teracting system obeys a matrix form of Dyson's equation
(see Appendix 8), and can be written

and the X„„are elements of a self-energy matrix. The
dressed magnon, energies are given by the poles of the
propagator function (4.11), where, in the two-loop calcula-
tion, we keep only terms up to order [S(S+1)] ' [cf. Eq.
(4.19)]. For comparison with the SG, we distinguish be-
tween in-plane graphs (those depending only on 4 and
therefore contributing only to Xq,q ) and out-of-plane
graphs [which include powers of S'/v'S(S+ I)].

The remaining task is the computation of the self-
energy (irreducible connected) graphs which sum to give
the X functions. To show the procedures involved, we
summarize the calculation of a few of the simplest graphs.
Diagrams' are terms in the Wick's expansion of the usual
perturbation series in the interaction Hamiltonian A ':

D „(p,t t')= g— f dt, f dt2 f td„( T[4~(t)@'~(t')4 '(t&)A '(t&) Pc"(t„)])„„„.
n=0 (4.13)

Xp. is the sum of the self-energy parts of all irreducible
diagrams with input (output) operators M (@ ) (as ex-
plained in Appendix 8).

Consider the simplest graphs, the n = 1 contributions of
A 4 to Dq, q, From (A6), .A 4 is itself the sum of three
terms:

cP 4 —A 4+can 4+% 4

I

The n =1 contributions of A 4 to D@@ are shown graphi-
cally in Fig. 4. A 4 contributes only to X@@,A 4 only to
Xss and A 4 contributes to all of Xqq Xss Xqs and Xsq
(although the latter two terms vanish in this case). The
diagrams in Figs. 4(b) and 4(d) are the connected graphs
in the Wick's expansion of

Dq, q, (p, t t')—
cP 4—

e~ q2 q3 e4

V'(q) +q, %'q, %'q, q'q, ,

(4.14)

=( i)' f dt, (T[%~(t)% —~(t')A', (t, )])„„„,
(4.15)

bcP 4—

cP 4—

0) i92,~93i6'4

g ), tg2, $3,g4

Vb(q)Sq, +q, %'q, Sq, ,

V'(q)Sq Sq Sq Sq

which we write (after Fourier transformation) as

Dqq (p co)=Dqq&qq Dqq+Dqs&ss Dsq
(4b) 0 (4b) 0 0 (4b) 0

+D%% ~QSDS% +DQS~S% D%% ~

0 (4b) 0 0 (4b) 0 (4.16)
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(C)

( )

FIG. 4. The n =1 contributions of A 4 to Dq@ [see Eq.
(4.13}]:{a)A 4, (b) ~4, (c) A 4, (d) graphs from ~4 which can-
cel.

where

+2 cos(2a ) sin2(p /2) ]dq,
FIG. 5. One- and two-loop in-plane SC diagrams.

&ss'(p, ro) = ——f aq[sin (a)

+2 cos(2a) sin (q/2)]dq,

&vs =&s~ =o .(4b) (4b)
(4.17)

~u=~ [1+ (4e+gss —2@s)

+ I
( g(&) +g(&) 2g(2) )

—
2 ges(gee+ gss —2ges)(&) (I) (I) (I)

—8(gee —gss) ] .(I) (I) 2 (4.19)

Note that the computation of the self-energy terms
(4.17) is greatly simplified by the symmetry of V (q)
under the exchange of qt and q4, or of q2 and q3 [i.e., ex-
changes of indices within the set of Sz or 4& operators
separately; see (4.14) and (A6)]. As a result, terms in the
Wiok's expansion of (4.13) which differ by permutations
of the 4&'s or Sz's give the same result —a nontrivial sim-
plification since the vertices are momentum dependent.
We have written the entire expansion of A ' in Appendix
A to take advantage of such symmetries. Appendix C
shows several more examples.

The number of loops in a diagram is

I. =I (N —1), — (4.18)

where I is the number of internal lines and X is the num-
ber of vertices. The number of loops equals the order of
the diagram in the expansion parameter [VS(S+1)]
which, in the semiclassical limit, is equivalent to the usual
loop expansion in fi of quantum field theory. ' Figure 5

shows the one- and two-loop in-plane graphs for the SC
expansion. Each of these in-plane diagrams represents a
family of graphs in which the lines are replaced by out-
of-plane propagators (as in Fig. 4). The three one-loop
families represent 15 graphs, and the 23 two-loop dia-
grams represent 582 graphs. The contributions of the 597
graphs are summed to give the g&„ in Eq. (4.12).

To compute the magnon-mass renormalization con-
sistently to second order, in the two-loop computation we
expand the square-root expression for the poles of the
Green's function (4.11), keeping terms only to
[S(S+1)]

The first-order correction is due only to one-loop graphs,
while the second-order correction results from the two-
loop graphs and products of the g's of one-loop graphs.
By the two-loop mass renormalization, we mean the entire
second-order expansion (4.19). With this definition of
one- and two-loop renormalization, we indeed find (as ex-
plained in the Introduction) that, as 5 tends to zero, the
renormalization vanishes separately in each order. The
one-loop renormalization is less than 0.005 for 5& 10
(and fields 2 T&H &10 T). The two-loop graphs are
much more difficult to compute numerically, especially as
5~0, since some are more than logarithmically divergent
with 5. However, we have seen that the two-loop correc-
tion decreases smoothly to less than 0.01 as 5 decreases
down to 10

V. RESULTS

We have calculated the renormalized magnon mass (i.e.,
the energy of the q =0 magnon) to the two-loop level as a
function of external field and anisotropy parameter 5.
Figure 6 shows the results for TMMC along with the un-
renormalized mass, the SG results (3.11), and the experi-
mental data. ' ' (Figure 6 uses the best-fit values
J!k~——13.1 K and 5=0.019, found by matching the
two-loop calculation to the measured. magnon energies at
k =m. /2 and m.. '9) Experimentally the zero-momentum
renormalization is quite small, but the SCx approximation
results in a substantial change. The SC calculation, by in-
cluding out-of-plane graphs neglected by the SG approxi-
mation, predicts a small renormalization, in close agree-
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H (T)

FIG. 6. Magnon mass as a function of field. The experimen-
tal results are taken from Ref. 13, denoted with &(, and the
more recent data from Ref. 14, denoted with diamonds. The
theoretical curves are (a) the harmonic SC [Eq. (4.7)], (b) the
two-loop SC renormalized mass [Eq. (4.19)], (c) the two-loop SG
renormalized mass [Eq. (3.11)].

0.0

ment with experiment. In this section we compare the SC
and SG results in more depth, with an expectation of
understanding when the latter is valid (as far as a descrip-
tion of the magnon energy is concerned). We also briefly
discuss the accuracy of the two-loop calculation.

It is convenient to distinguish between diagrams that
diverge with the cutoff A and those which remain finite.
Of course for a real system the cutoff is fixed by the lat-
tice spacing and there is no actual divergence. Nonethe-
less, in the limit of a small field (a—+0), the renormaliza-
tion is dominated by the "divergent" graphs. In the SC,
divergent in-plane diagrams [even the simple one-loop
vacuum fluctuation graph in Fig. 4(a)] also have finite
pieces, due to the momentum dependence of the interac-
tion vertices. We can show that in the SG limit (a~0)
the divergent parts of the SC in-plane diagrams reproduce
the divergent SG diagrams, through two loops in both
theories. Thus the SG approximation is accurate when
the out-of-plane SC graphs and the momentum-dependent
finite parts of the in-plane graphs can be neglected.

As one would expect, the in-plane diagrams dominate
when the motion is predominantly planar. It is easy to
show [from (4.2), (4.4), and (4.5)] that in the harmonic ap-
proximation (4 ) -1n(n. /a) and

((S')') /S(S+1) -in(~/v 5) .

The relative size of these zero-point motions is controlled
by the ratio of the in-plane (p =0) to the out-of-plane
(p =n ) energy gaps, which, from Eq. (4.7), is proportional
to a/~5. In the case a && v 5 the spins are predominant-
ly in the easy plane, and the in-plane graphs dominate.
[For the SC system to be truly SG-like, and not merely
planar, one also needs ln(m. /a ) &~ 1 so that the
momentum-dependent finite parts of the SC in-plane
graphs can be neglected. ]

Figure 7 shows the one-loop downward renormalization

FIG. 7. One-loop SC downward renormalization of the mag-
non mass as a function of field, for curves of fixed 5. The bot-
tom three curves are for the values 5=0.0019, 5=0.00019, and
5=0.000019. The renormalized mass is m =(1—r)mo.

of the magnon mass as a function of field for several
values of 5. For any 5, as H decreases, the renormaliza-
tion increases as the SG-like terms grow. However, for
any value of H, the smaller 5, the smaller the renormali-
zation. As explained in the Introduction, this symmetry
must appear order by order in the loop expansion and
indeed as 5 tends to zero the first-order mass renormaliza-
tion vanishes. For 5-10, the one-loop renormalization
is less than 0.005 for 2 T & H & 10 T. For 5 smaller than
0.1, the renormalizations resemble the isotropic 5=0 limit
much more than the planar (large-5) limit. Figure 8 em-
phasizes the universality of small-5 behavior by plotting
the one-loop renormalization against the mass gap ratio
coo/ro . Curves for 5&0.019 lie on top of the 5=0.019
curve. From Fig. 8 we also see that an in-plane approxi-
mation is quite good for large 5 (e.g. , 5= 1.9), but is very
unsatisfactory for the TMMC value 5=0.019.

0.6

0.2

0.0 —2
1n(~ /~ )

FIG. 8. One-loop downward renormalization of the SC mag-
non mass as a function of the gap ratio cop/co (solid lines): (a)
5= 1.9, {b) 5=0.19, (c) 5=0.019 (TMMC), (d) 5=0.0019,
0.00019, and 0.000019. In-plane downward renormalization
(dashed lines) (e) 5=1.9, (f) 5=0.019 (TMMC).
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The good agreement evident in Fig. 6 between experi-
ment and the SC analysis applied to TMMC is due to the
almost total cancellation of in-plane graphs by out-of-
plane graphs. For example, in a field of 5 T, the two-loop
in-plane renormalization is 28%, while including the out-
of-plane diagrams reduces the correction to 8%. The
presence of significant out-of-plane motion explains the
deviation of the TMMC magnon mass from the predic-
tion of the planar SG model. As explained in the Intro-
duction, this cancellation must occur for systems (such as
TMMC) which are near the isotropic limit.

Finally, we comment on the accuracy of the two-loop
calculation as applied to TMMC. In the SG theory, keep-
ing divergent terms (as defined above) to two loops is an
excellent approximation to the infinite-order renormaliza-
tion which results from normal ordering. (For TMMC at
H=5 T, the corrections are, respectively, 40.6% and
40.5%.) One might hope for similar convergence for the
SC theory, which adds out-of-plane corrections to the SG.
Moreover, TMMC is very close to the isotropic 5=0 lim-
it. Since the isotropic symmetry is barely broken in

TMMC, order by order in the SC loop expansion the re-
normalization must be small. Although some individual
two-loop diagrams are quite large (t9 up to 0.4), there are
significant cancellations within each subset of graphs. In
the end, the two-loop contribution to the renormalization
is indeed small for TMMC. For example, at H =5 T, the
one-loop renormalization is 7.8% and the second-order
correction adds only an extra 0.2%. The two-loop correc-
tion remains small over the usual range of fields, so we
believe the two-loop mass renormalization is quite accu-
rate.
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APPENDIX A

The expansion (2.7), continued to order [S'/v'S (S +1)],is written

A =JS(s+1) g cos(P„—P„+,) —4sin(a)cos(P„)+ S(S+1)
S„' S„'

[cos(P„—P„+i)+cos(Pn i Pn ) — sin(—a) cos(P„)—25]S(S+1) " "+ " S(S+1)

1 S S„'

S(S+1)
[cos(P„—P +in) +cos(P„ i

—P„)—4 sin(a) cos(P„)] S(S+1)

2

1 SnSn+1 Sn n+1
4 S(S+1) " "+ S(S+1)

3
Sn S„

16 S(S+1) [cos(P„—P„+i)+cos(P„ i —P„)—4 sin(a) cos(P„)] S(S+1)

3

cos( „—„+i)+cos( „ i
—„)16 [v'S(S+1)]' " ' " [v'S(S+1)]'

T 8
S„'

v'S(S+1) (Al)

Using the change of variables (2.9), and transforming to momentum space (4.2), we write

p+A

where A 0 is the quadratic term given in (4.3), and

3+% 4+cP 5+% 6+
In the following, we use the notation

q =q&+q2+q3+ - . +q within A

The terms in (A3) are

(A3)

(A4)
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~z= —JS(S+1)sin(2a) g &z, + —,[1+4e'e ' sin( —,
'

q~ ) sin( —,
'

qz) sin( —,qz )]4

Sq, %'q Sq,
+cos(qz) (A5)

A 4 ———JS(S+1)— g $ o —,[sin a+4cos(2a) sin( —,q~) sin( —,qz) sin( —,qz) sin( —,q4)]%& %~ 4z %e
ql~q2~q3~q4

Sq, Vq, %'q,Sq„
+ (sin a —2cos(2a) sin( —,

'
qz) sin( —,

'
qz ) cos[ —,

' (q]+q4)] } S S+1

——,', (3—cos(2a)[cos(q&+qz)+cos(q&+qz)+cos(qz+qz)]}

Sq l Sq~Sq3Sq4
X S'(S+1)' (A6)

A 5
——JS(S+1)sin(2a)

1

~3/2

5&+ 4'0[1 —16e'e ' sin( —,'q~)sin( —,'qz)X '. Xsin( —,'qz)]%'z %e %z %z 4'z

q4
+ —,

' (1+Be'& ' sin( —,'qz) sin( —,
'

qz) sin( —,
'

q4) cos[ —,
'
(q~+qq)] } S S+1

Sqlsq2%'q3sq4sqs——,
' [2cos(qz)+cos(q&+q4)+cos(q&+q5)+cos(qz+q4)+cos(qz+q5)] z zS'(S+1)'

M6 ——JS(S + 1)
1

+2

(A7)

X g 5~0 „,[sin a —16cos(2a) sin( —,q&) sin( —,qz)X ' ' Xsin( —,q6)]%'e, @~,X ' X'P~,

S,', %„%„%q„%„S,',
+—„(sin a+8 cos(2a) sin( —,qz) sin( —,qz) sin( —,q4) sin( —,q5) cos[ —,(q~+q6)] } S S+1

——,
' (sin a+2cos(2a) sin( —,qz) sin( —,'q4) cos[ —,

'
(q& —qz)] cos[ —,

'
(q~ —q6)]

Sqlsq2%'q3%'q4sqssq6
+2cos(2a) sin( —,

'
qz ) sin( —,

'
q4)cos[ —,

' (qz+q4)] I zS' S+1 '

+ 15—cos(2a) g cos(q;+q~ ) S'(S+1)'
i=1

(AS)
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APPENDIX B
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Define the zero-temperature magnon Green's-function matrix using Eqs. (4.8) and (4.9). In this appendix we show
that, if S' and )IJ are canonical variables, a matrix form of Dyson's equation holds true:

[D(p ~)] '=[D'(p ~)] ' —X(p ~» (81)

(82)

where Do is the free propagator matrix and X, the self-energy matrix, is the sum of the irreducible vertex parts as defined
below. The proof closely follows the ordinary development. 22

We expand each element of D in the usual perturbation series:

)n+(
D„„(p,r —r')= g, f dr( f dt2 f d r(T[W~(t)4" ~(t')A '(r()A '(t2)X . XA '(r„)]}„

n=0

D(4b)(p ~) DOX(4b)DO (84)

and in fact it is easy to see that this gives the correct
n =1 contribution for each Dz„ in Eq. (82). If we define
X&'~ to be the sum of all the n =1 self-energy parts with
entry (exit) operator M (4"), then an equation such as
(84) gives the total n = 1 contribution.

For n arbitrary, D'"' consists of all graphs with n ver-
tices. Note first that each graph represents n! equal terms
in the Wicks expansion of ( }«„„,terms which differ
only in the rearrangement of the r;, so that the permuta-
tions of ti, t2, . . . , t„c ncael the 1/n! in Eq. (82).

where ( }„means only the connected graphs are in-
cluded in Wick's expansion of the bracket.

Consider again the form of n = 1 contribution of A 4 to
(82) [Eq. (4.16)]:

Dqg (p, ~)=Dy+X++D+q +DesXss se{4b) Q (4b) 0 0 (4b) 0

+D@q Xgs Dsg +DesXse De@ .

In our notation D&„ is the free propagator and X&
' are

the self-energy parts, the graphs with the initial and final
propagators factored out. The subscripts )M and v in X&
mean the entry and exit operators are @"and N, respec-
tively. The notation of (83) is suggestive: D++'(p, co) is
the (%,%') component of a matrix

The higher-order graphs ( n & 1) are either reducible (se-
parable into two lower-order graphs by cutting a single
line) or irreducible. Consider the irreducible graphs. Ex-
actly as in the n =1 case, the contribution to D„'"„' of an
nth-order irreducible graph with entry (exit) operator (I~J'

(@") can be written

(85)

N"
pv

X(n) y X(n,J)

j=1
(86)

then the contribution of all the nth-order irreducible
graphs to D" is

D (n)
(p ~) D0X(n)D0 (87)

Finally, consider the entire term D'"', including reduci-
ble diagrams. D&"„' is the sum of all terms of the form.

(n) 0 (n) 0Dp„(q, co) =D~q X~ „D„„.
X&"„'~ is the "self-energy part" of the graph and includes a
factor ( —i)" ' from (82). Define %&„ to be the number
of irreducible graphs of order n, with entry (exit) operator
M ((Ii") obtained in the Wick's expansion of Eq. (82).
We will label these self-energy parts X&"„'J',

j=1,2, . . . , X&„. If we define X&"' to be the sum of the
irreducible self-energy parts,

Pl
IX

+)'J)
I

1 I 2 IX(+2~J2)I 2
(BS)

where

n&+nz+ - - +n =n,
so that the graph is nth order. The ith term (in curly
brackets) above consists of the (j;th) irreducible graph of
order n;, with entry (exit) operator M (@"). The above
diagram represents the following contribution to D'"'.

(n) 0 "~ ~~ o "~ J~ '"~ j~' oD„(p,~)=D„„,X„, , D,), (, , X . XX„„'
(810)

[Note that the m +1 lines in the above figure each absorb
a factor ( —i ), and a self-energy part X'"' absorbs ( —i)"
so that the ( —i)"+' in (82) is used up. ]

The total nth order contribution D'"' is the sum of all
such graphs; that is, including every possible choice of m
and arrangement In;j;I, and then summing over each
choice of )M;, v;. Using (86) we find that the total nth-
order contribution is

D(")(pen)= g DOX 'DOX ' X XX Do, (Bll)
m, I n,. )

where the sum is over all m, I n; I satisfying (89).
The total Green's function is the sum of (811) over all

n, or equivalently, the sum of all graphs like diagram (88)
with any choice of m, I n; ]. This gives

(p ~) Do+ g g DoX" DoX
"2 X. . . XX "~ Do

(812)
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Finally, define the self-energy matrix as the sum of all the
irreducible self-energy parts: S ' .

q
.-'

y(n)
n=1

Then (812) becomes

(813)
(c) (d) (e)

D =Do+ $ DoXDoX X . X XD (m factors of X)
m=1

(814)

Do(1+DoX+DoXDQX+. . . ) (815)
We formally sum (815) to obtain (81).

The analytic structure of D(q, co) in the co plane is due
solely to the denominator of (4.11). A pole in, say, Ozz in
the numerator is cancelled by H~q in the denominator.

»agrams of the n =2 graphs from I~3,A ', I,
evaluated in Appendix C.

APPENDIX C

As a further example of the graphical technique applied to the spin-chain Hamiltonian, we compute the n =2 contri-
butions to the X functions arising from the cross terms A 3,A z in the expansion (4.13):

Dp„' '(p, t —t')=( —i) f dt) f dt's(T[4p(t)P" p(t')A 3(t))A 5(t2)])„„„. (Cl)

From the expansion of A ' in Appendix A, we obtain

D„„' '(p, co) =( i) f d—(t —t')e'"" ' ' f dt, f dt2 g V3(q) V&(k)
q, k

X(T[dp(t)0"-p(t')ISq +q Sq l(tl)ISk Sk +k,Sk Sk l(t2)])

From the Wick s expansion of (C2) we obtain the noncancelling graphs drawn in Fig. 9. The graphs in Figs. 9(a)—9(e)
are dependent upon co; those in Figs. 9(f)—9(i) are not. Using the notation q =m+p —q, their contributions to the X
functions are as follows:

4J sin (2a) 1 f~
d f dk p2 p2 p2

coq+coq

S(S+1) (2m)2 —~ —~ (coq+coq ) co ie— —

X cos(p) [1+2cos(p)+2 cos(k)[cos(q)+cos(q')] J, (C3)

2J sin (2a) 1
d dk p2 p2 ico—

S(S+1) (2m. )
—~ —" (coq+coq ) co ie— —

X cos(q') [1+2cos(p)+2 cos(k)[cos(q)+cos(q')] I, (C4)

2J sm(2a) 1
d dkp pS(S+1) (2m) —~ —~ (coq+coq ) co ie— —

X cos(p)I1+2cos(q')+2cos(k)[cos(p)+cos(q)]I, (C5)

(o)( )
2J stn (2a) 1 ~

d
~

dk p2
coq+coq'

S(S+1) (2m )' —~ —~ (coq+coq )' co' ie——

X cos(q) Il+2cos(q')+2cos(k)[cos(p)+cos(q)]],

(,)( )
8J sin (2a) 1

d dk 2 p2 p2 q+ q'

S(S+1) (2~) —~ ~ (coq+coq ) co ie——

X cos(q) I 1+2 cos(q) +2 cos(k) [cos(p) +cos(q') ] ] . (C7)
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With the notation q~+q2+q3 ——m we write

&ss(p co)=—(&) 2J sin (2a) 1 1

S(S+1) (2„) — ~ — »3~ + +dq) f dq2 P
q3

X cos(q2)I1+2cos(q~)+2cos(p)[cos(q2)+cos(q3)]I, (CS)

( ) 4J sin (2a)
&Ps(p co)=- dq2a' P' P'S(S+1) (2 )2 — ' ' »)»2»3

CO&

&ss(p, ~)=-(h)

&ss(p, co) =—

X cos(q) )I I+2cos(q&)+2cos(p)[cos(qz)+cos(q3)]I,

J sin (a)
S S+1 ]2 2 2 dq dkP»pk[1 —4cos(p)cos(q)],

J sin (a)
dk P» Pk [1 4cos—(k) cos(q)] .

(C9)

(C10)
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