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Under the assumption that the Kohlrausch-Williams-Watts (KWW) function describes relaxation
near the glass transition for amorphous substances, implications are explored for the character of
the many-body potential-energy function. The ".nalysis proceeds in several stages: (1) The configu-
ration space is uniquely divided into minimum-containing cells by a steepest-descent construction on
the potential hypersurface. (2) Attention is confined to the amorphous region of configuration space
by projecting out all cells containing local crystalline patterns. (3) The potential is separated into a
hard-core part N, and a "soft" remainder 4, . (4) N, is coarse grained (smoothed) over a variable
scale of lengths l. (5) A master equation is used to describe the relaxation spectrum subject to the
interaction smoothed over any l. The demand that KWW relaxation emerge from the last con-
strains the statistical topography of 4, . Specifically it requires that on widely separated length
scales, multiply branched channels of relatively modest elevation change must exist in 4, . Further-
more, the separating barriers between these channels tend to be largest in those portions of configu-
ration. space sampled by the system at the lowest temperatures, and to scale as lnl.

I. INTRODUCTION

Substances vary widely in the ease with which their
liquid states can be supercooled into rigid glasses. ' On the
one hand, it is difficult to prevent pure molten metals
from crystallizing, even when they are cooled at the most
rapid rates experimentally attainable (10 to 10 'C/sec).
On the other hand, many network-forming substances
(B203, Si02, As2S3) and hydrogen-bonding organics (gly-
cerol) usually avoid crystallizing even under very slow
cooling rates. This distinction hinges at the atomic level
on the number and types of particle packings (mechanical-
ly stable atomic arrangements) created by the interactions
present, and on the frequency with which thermal motion
causes them to be iriterconverted.

The present paper is devoted to a general view of
structural relaxation in condensed phases, with emphasis
on low-temperature amorphous materials. The descriptive
method used is based upon one that has previously been
applied to the study of structure and dynamics in dense
media, particularly in connection with molecular-
dynamics computer simulation. Specifically, it identi-
fies the collection of potential-energy minima for the sys-
tern of interest and then maps arbitrary configurations of
the particles onto appropriate members of that collection.
This procedure is reviewed in Sec. II. Section III presents
the adaptation of the procedure to the supercooled liquid
and amorphous glassy states by projecting out all poten-
tial minima possessing crystalline order.

Glass-forming substances normally display a remark-
able increase in viscosity and in response -time to external
perturbations as they approach their so-called glass transi-
tion temperature Tg. Furthermore, the spectrum of relax-
ation times in that regime tends to become broad. The
Kohlrausch-Williams-Watts (KWW) correlation func-
tion ' has provided a convenient and accurate way to ex-

press this broad relaxational response (except at very short
times) for a wide collection of properties such as density,
eriergy, orientation, elastic properties, and various other
measures of atomic-scale order. This correlation function
has the following form:

g(t)=gpexp[ (t/r) ] . —

Exponent Pp is found (usually) to lie in the range

0.3 &Pp& 1.0, (1.2)

but may vary with substance, and with temperature and
pressure for a given substance. The time ~ is a strong
function of temperature T, and often can be represented
by the same type of Tamman-Vogel-Fulcher function that
has been used for shear viscosity rI

r, q=A exp[ —8/(T —To)], A,B &0, Tg &To&0.

(1.3)

Several tentative models and rationales for the KWW
behavior have been advanced. ' ' In one respect, the
present work differs tactically from those prior studies.
Instead of proposing a specific scenario for KWW relaxa-
tion to occur, which night be applicable to real substances
near Tz, it regards KWW relaxation as given and tries to
infer what properties consequently must be exhibited by
the many-body interaction potential 4. Toward that end
we examine statistically the multidimensional topography
of 4 over various length scales.

Section IV introduces a spatial coarse-graining opera-
tion to smooth out the fine detail present in @.This leaves
the relevant slow relaxations essentially unchanged and
they can be described by a master equation as explained in
Sec. V. Section VI employs these concepts to infer the
statistical scaling behavior of C. Section VII discusses the
conclusions and their implications.
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II. MAPPING ONTO POTENTIAL MINIMA

Let the material system of interest contain N~ particles
of species 1,2, . . . , N particles of species v, with

N= gN. .
a=1

(2.1)

The masses will be denoted by m~, m2, . . . , m . Further-
more, let r~~ represent the position of the jth particle of
species a. These positions can all be combined for con-
venience in a 3X-dimensional vector r.

Interactions in the system are described by potential-
energy function @(r), which can include wall forces if cir-
cumstances so require. @ will be bounded below and at
least twice differentiable away from configurations with
particle overlap.

Mechanically stable arrangements of the particles
("packings") correspond to local minima of N. The abso-
lute minimum presumably arises from the most-nearly-
perfect crystalline arrangement of the particles, a single
perfect crystal if the stoichiometry is proper, or a mixture
of possibly imperfect crystals if it is not. Higher-lying rel-
ative minima for 4 will include many different kinds of
particle arrangements, specifically those that are homo-
geneously amorphous.

Aside from cases with vanishing measure, any many-
particle configuration can be uniquely referred to or
mapped onto a @ minimum. For this purpose we use a
mass-weighted steepest descent on the 4 hypersurface.
Starting from the given configuration as an initial condi-
tion ( s =0), the following set of coupled partial-
differential equations are then integrated for s ~ 0:

IJ-a
ma = —V~ 4.

s
(2.2)

1 ~

(2.3)
Qt 2

In particular, that choice means that near 4 extrema the
independent solutions to Eqs. (2.2) are given by the har-
monic normal modes of Eqs. (2.3) (real frequencies
squared in the latter become exponential decay rates in the
former). Furthermore, an imaginary-frequency normal
mode at a saddle point of 4 in a cell bouridary translates
precisely into a solution of Eqs. (2.2) that follows the usu-
al "reaction coordinate" across that saddle point. '

The mapping just described assumes implicitly that the

The solution r(s)= trJ (s)] moves continuously down-
ward on the @ hypersurface from the starting point, con-
verging onto a nearby minimum as s~+ oo. The result-
ing connections between all possible starting configura-
tions and the minima constitute the desired mapping.

The set of all configurations which map onto the same
minimum a defines a cell C, surrounding that minimum.
The collection of all C, 's covers the entire configuration
space. Two minima a and b whose cells share a boundary
face normally will have a saddle point between them
which lies in that shared face.

The specific manner in which masses rn are incor-
porated into Eqs. (2.2) is motivated by the form of the
corresponding Newtonian equations of classical motion:

system volume Vis fixed, i.e., that the vessel walls are sta-
tionary. Alternatively, it can be assumed that a movable
macroscopic piston with area A forms part of the vessel
wall, spring loaded to as to impose constant pressure p. It
then becomes necessary to append a new configurational
coordinate xo to the mechanical description, giving the
piston position. Potential energy 4 would include xo ex-
plicitly as a variable, most simply by adding pAxo to the
interparticle interactions. The set (2.2) of partial differen-
tial equations defining the mapping becomes augmented
by

»0 ae
mo

Bs Bxo
(2 4)

where mo is the piston mass. With this modification the
mapping onto discrete minima can proceed essentially as
before.

Permutations of identical particles leave @ unchanged.
Hence, each @minimum is but one among

Op —+N !
a=1

(2.5)

substantially equivalent minima. Aside from this trivial
permutational factor the total number 0 of minima will
increase exponentially with X in the large-system limit:

0-Qp exp(ON), O) 0 . (2.6)

Justification for the exponential factor rests on the multi-
plicative character of the number of distinguishable pack-
ings: If a system already macroscopic in extent is doubled
in size (so V and each N double), particle rearrangements
in the two halves of the new system can be carried out vir-
tually independently of each other.

In developing the statistical-mechanical theory on the
basis of mapping and cellularization in 3N-dimensional
configuration space, it is useful to classify @ minima by
depth. In the large-system limit it is then natural to con-
sider the density of minima along the Q=C&/N axis. The
number of distinguishable minima occurring between P
and P+dP can be then written asymptotically:

exp[No (P)]dP, (2.7)

with the assurance that a is X independent. We have the
obvious relation

exp(ON) —J exp[No (P ) ]dP

and because X is large this implies

(2.8)

O=maxo(P) . (2 9)

While these general expressions apply equally to
constant-volume and to constant-pressure conditions, it
must be remembered that o changes form from one of
these alternatives to the other.

Under constant-volume conditions the canonical parti-
tion function Q can be exactly expressed as a quadrature
over the depth parameter P: '
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Q(P) = g & f expIN [a(P) 13—$ 13—f (13,$)] I dg,
+=1

13= ( kg T) (2.10)

(2.11)

Figure 1 indicates graphically how this last condition is
to be satisfied, specifically above the thermodynamic

Here, the A~ are mean thermal de Broglie wavelengths for
the various species and Nf(P, P) is the mean vibrational
free energy for (generally anharmonic) motion in those
cells whose minima lie at 4=NP. The Helmholtz free
energy and other thermodynamic functions follow from
InQ in the usual fashion.

Constant-pressure conditions generate a partition func-
tion Q' with the same superficial form as that shown in
Eq. (2.10), except (a) a thermal de Broglie wavelength fac-
tor Ao

' for the piston degree of freedom must be includ-
ed, and (b) the functions a and f must be those appropri-
ate for constant pressure rather than for constant density.
The Gibbs free energy subsequently can be extracted from
ln Q'.

When N is large, Q (or equivalently Q') can be asymp-
totically evaluated simply by identifying the maximum of
the integrand with respect to P, since the immediate
neighborhood of this maximum strongly dominates the
integral. The error thereby incurred has no thermodynam-
ic significance. For any given P=(kryo T) this maximum
at P=P (P) corresponds to a matching in slopes of a and
of 13(P+f), i.e.,

melting temperature. The downward curvature shown by
P(P+f) conforms to the finding that substances become
vibrationally "softer" on the average as they become more
amorphous. ' ' Curve segments between A and 8, and be-
tween A' and 8' reflect a dominance in this range of spa-
tially inhomogeneous packings that are partly crystalline,
partly amorphous. Subtle shape differences must exist be-
tween curves for constant-density and constant-pressure
conditions to be consistent with the fact that melting
occurs over a nonzero-temperature range only for the
former.

III. SUPERCOOLING AND AMORPHOUS STATES

We now identify a subset of the particle packings which
is "crystal free." That is, none of these packings can con-
tain recognizably crystalline arrangements anywhere
within their interiors. Projecting this amorphous subset
out of the full packing set demands, in principle, a
pattern-recognition algorithm. This algorithm is required
to identify and to discriminate against occurrence of par-
ticle clusters above a minimum size that locally reproduce
the crystal pattern within preassigned limits. Precise de-
tails are unimportant for present purposes, but a reason-
able size limit for discrimination might be a compact set
of roughly 20 unit cells, with deformations not to exceed
about one-tenth of a lattice spacing.

Materials which successfully avoid crystallization upon
cooling below their thermodynamic freezing point remain
within that portion of configuration space spanned by
cells belonging entirely to the crystal-free or amorphous
packing subset. Therefore, it is within this subset that re-
laxation behavior of the KWW type must find its ex-
planation.

Instead of a.(P) describing the entire packing distribu-
tion by potential energy, the amorphous subset will have a
distribution given by cr i(P), where obviously

~i(p) &~(p) . (3.1)

FIG. 1. Graphical construction of g (P) for evaluation of the
partition function (Q at constant density, Q' at constant pres-
sure). The case shown corresponds to a temperature above the
melting point. Inhomogeneous packings between A and 8, and
A' and 8', contain coexisting crystalline and amorphous re-
gions.

Figure 2 indicates roughly how o. and o.
1 ought to be re-

lated. In the high-P regime virtually all packings should
be amorphous, so that a and cri should be nearly (if not
exactly) identical. But at point B in Figs. 1 and 2 these
functions should begin to separate since o. alone includes
cases with coexistent crystalline and amorphous regions.
The amorphous-state function o1 is a smooth continua-
tion of the common high-P form to P values lower than
that at B. However, it must necessarily terminate at a
larger minimal P than does a on account of the noncrys-
talline constraint involved. It seems reasonable to suppose
that both o. and cr1 equal zero at their respective lower
limits as a result of having continuously exhausted avail-
able states.

Once the amorphous subset of packings has been isolat-
ed by a suitable projection, a mean vibrational free energy
Nf;(P, P) can be introduced for that subset to replace the
former Nf(13, $). Above point 8 in Figs. 1 and 2, fi
should virtually equal f.

To the extent that a supercooled liquid manages to ex-
plore the configurations counted by o.

1 in a representative
manner, partition functions and free energies can be de-
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Although it is not mandatory to do so, ease of exposi-
tion warrants treating 4, as a set of rigid-core interac-
tions. That is, N, is either infinite or zero according to
whether particles geometrically overlap or not. In this
circumstance, the set R of configurations without overlap
is the physically accessible region of configuration space,
and in R we have

@(r)=—N, (r) . (4.2)

FIG. 2. Schematic relation between o. for the full set of parti-
cle packings and 0 i for the amorphous subset.

fined for that metastable substance. This merely requires
replacement of o. and f in Eq. (2.10) (or its constant-
pressure analog) by o

&
and f&. Once again the P quadra-

ture that results can, for large X, asymptotically be
evaluated by picking the integrand maximum. This latter
corresponds to a transparent modification of the prior Eq.
(2.11), specifically,

(3.2)

Continued reduction in temperature must eventually
foreclose the possibility of a representative sampling of
amorphous-packing configuration space, so that Eq. (3.2)
and the resulting metastable-state partition function no
longer have experimental relevance. This change in
behavior is expected to occur near Tz where measurable
properties become explicitly dependent on the prior histo-
ry of the sample under investigation. One of the goals of
this work is to clarify the way in which this change arises.

To the extent that 4 consists of pairwise additive central
potentials, the separation would appear as shown in Fig. 3
for each pair. It should be kept in mind that R occupies a
fraction of the full amorphous-region configuration space
that vanishes exponentially with increasing N; yet, it is in
this vanishing portion that low-temperature relaxation
behavior is determined.

Previous work has demonstrated that the fundamen-
tal transitions between cells (passages across saddle points)
involve localized particle motions and only change 4 by
an amount of order unity. By contrast, the entire span of
the depths of minima is of order X. Indeed, laboratory
experience with different cooling histories shows that any
given glass-forming sample of macroscopic size can be
trapped in various N minima whose depths also differ by
order X. These facts indicate that the @ hypersurface for
glass formers is topographically rough over a wide range-
of length scales. The objective now is statistical charac-
terization of that scale-dependent roughness.

We next introduce a coarse-graining transformation of
4, in R which suppresses small-scale roughness, while
preserving the larger-scale features. This coarse graining
(smoothing) is accomplished by the following multidimen-
sional integral transform:

%(r, l) = J dr'K(r, r', /)4, (r'), (4.3)

wherein X is a non-negative kernel defined for l)0,
which satisfies the conditions

HARD CORE (O'C)

IV. COARSE GRAINING

We now embark on a study of the topography of the @
hypersurface. It is supposed that the crystal-containing
packings have already been projected out of the picture, so
subsequent attention focuses strictly on the amorphous-
packing portion of configuration space.

The first step involves separating the potential function
@ into two parts:

C (r) =@,(r)+C&, (r) . (4.1)

The first part„4„represents short-range "core" repul-
sions that act between any pair of particles at sufficiently
small separation. The second part, 4&„ is the "soft"
remainder which includes longer-ranged Coulombic, dipo-
lar, and dispersion interactions.

FIG. 3. Typical pair potential showing a hard-core plus
longer-range interaction to be consigned, respectively, to N, and
to N„Eq. (4.1).
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limK ( r, r', l) =5(r —r'),
l~O

f dr'K'(r, r', l)=1,
(NR) ' f dr f dr'

~

r —r'
~

K(r, r', l)=l

The first of these conditions shows that

(4.4)

%(r,O) —=C&, (r), (4.5)

while for positive l, 4 is a coarse-grained version of 4,
that involves averaging in each Cartesian direction over,
essentially, distance l.

For most of what is to come, K need not be specified
further. However, it is useful to keep in mind a concrete
realization of this kernel, namely, the solution to the mul-
tidimensional diffusion equation in R with vanishing gra-
dient conditions at the hard-core boundary of R:

K(r, r', /(t))=F(r, r', t), = DVQ—,

limF =5(r—r') .
t~O

(4.6)

The "diffusion" clearly causes the root-mean-square dis-
tance I to increase monotonically with time at a rate joint-
ly determined by the diffusion constant D and the local
geometry of the accessible region R.

As l increases from zero, the coarse-grained potential 4
becomes ever smoother, eliminating many of the minima
originally present in 4. The number of minima shown in
Eq. (2.6) for the unsmoothed potential consequently re-
quires modification to enumerate minima of %(l) in the
amorphous region of configuration space:

Q, (/) —Qp exp[8, (l)N], (4.7)

{C, (/) ) cc exp[ —8~ (/)N] . (4.8)

The mechanism for cell growth with increasing I in-
volves destabilization of marginally bistable degrees of
freedom, as Fig. 4 illustrates. As remarked above, the col-
lective coordinates describing these degrees of freedom in-
volve (at least for small l) motions of small localized
groups of particles, and these groups are to be found more

where 8&(/) decreases monotonically with l. The permuta-
tional factor Qp remains unchanged, for even after
smoothing, any remaining minimum can still be converted
into an exactly equivalent one by an interchange of identi-
cal particles. Of course, it must be true that 4 barriers
between permutationally equivalent minima become ex-
tremely low as I increases.

Just as was the case for the original potential function
@, configurational mapping to minima can be carried out
on the coarse-grained potential O'. For this purpose we
use the same equations (2.2), but with 4 replacing 4 in
the right-hand members. This mapping on the 4' hyper-
surface leads as before to cells C, (l) defined as point sets
which map to a common minimum a. These cells contin-
ue to cover the full configuration space exhaustively and
without overlap, but their number decreases strongly with
increasing l as Eq. (4.7) indicates, so the mean cell content
must increase accordingly:

REACTION COORDINATE

FIG. 4. Basic effect of coarse graining. A marginally bistable
degree of freedom is converted to monostability.

uM(/) -(Vln M/N)exp[h (l)], (4.10)

where simple attrition would require h (/) to increase

or less randomly distributed throughout the entire system.
Whenever one of these bistable groups goes monostable, a
pair of contiguous cells C, (l) and Cb(l) unite. Actually,
the cell with the deeper minimum envelops and consumes
its neighbor in an operation of a "survival of the deepest. "

The random aggregation of cells to create larger cells
will produce dendritic rather than compact objects. So
while the number of surviving cells with which a given
cell conceivably might unite declines, the boundary along
which unification could occur increases in a counter-
balancing manner.

It is useful to invert the earlier argument for the multi-
plicative property that underlies exponential growth with
X of the number of distinct minima. We may ask how
large a volume uM(l) would be required on the average so
that the number of distinct 4 packings it contains would
be some integer M &1. If V is the three-dimensional
volume of the system, we must have

M =exp[8&(/)N], u~(/) = VlnM/[N8&(/)], (4.9)

so that the requisite volume is inversely proportional to
8&(/). Formally extending this result down to M =2, we
obtain an estimate u2(l) of the size of a locale in the
potential-smoothed many-body system, which on the aver-
age is still capable of a single binary switch between alter-
native packings.

Considering that bistable degrees of freedom suffer an
attrition as l increases', it is natural to suppose that their
concentration declines exponentially with /. Since u~(/) is
inversely proportional to that concentration, we write
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h (1)-h „1», (4.11)

linearly with 1. We keep open the possibility that the
smoothing operation may generate more subtle effects,
with

Let P;(t) stand for the probability at time t that the sys-
tem lies in the union of Qz cells for the ith equivalence
class. By definition we must have the conservation condi-
tion

where the positive exponent q may differ from unity.
From Eq. (4.9) we must have

Y

gP;(t) =1 . (5.2)

(9&(l)=exp[ —h (1)]-exp( —h 1») . (4.12) The master equation describing time dependence of the
P s has the following form:

exp[No)(g, l)] .

Furthermore, we have

(4.13)

Let (t( denote %(l)/N. In extension of the former defi-
nition of o&(p), we can introduce the function oI(11,1) to
describe the distribution of amorphous-region minima on
the %' hypersurface. The number of distinguishable mini-
ma whose depths (on a per-particle basis) lie between P
and /+ de will asymptotically be given by

dP;
[LJr(E)PJ(t) L(J(E—)Pt(t)] .

j (~i)
(5.3)

Here, it is assumed that the dynamical system has a con-
served total energy E, and the transition probability at
this fixed energy from equivalence class j to equivalence
class i has been denoted by LJ, (E). The reverse rate has
been denoted by L;J(E). The time-independent equilibri-
um state is characterized by probabilities

8& ( 1)=maxo ) ( P, l),
(Q)

(4.14) P '=M;(E) QM, (E))0, (5.4)

in analogy to the earlier Eq. (2.9).
As coarse graining expands and deforms the cells C, (1),

the cell "vibrational" free energy requires redefinition.
We now let Nf((P, P, 1) represent the average vibrational
free energy for particle motion in the new cells whose
minima lie at 4 =N(t(. Evidently, f) should monotonical-
ly decrease as I increases, as a result of average cell
growth.

Partition functions [such as that in Eq, (2.10)] and their
free energies are not invariant under coarse graining.
However, the analog to Eq. (3.2),

r

Bo )(g, I) df, (P,g, l)

ay
= '+

ay
(4.15)

V. MASTER EQUATION

We have remarked above that even after coarse grain-
ing, potential minima and their cells continue to occur in
equivalence classes that each contain Qz members. Virtu-
ally all physical properties whose relaxations are of in-
terest correspond to dynamical variables that are sym-
metric under permutation of identical particles. There-
fore, measurable relaxation is connected with probability
fiow in configuration space between different equivalence
classes of cells. In order to describe that relaxation we
shall use a master equation for time-dependent residence
probabilities in those equivalence classes.

When the coarse-graining procedure has been carried
out over distance 1, the number of equivalence classes (i.e.,
the number of distinct ways of packing the particles) in
the amorphous part of configuration space is

Y(l) =exp[8&(l)N] . (5.1)

can still be invoked to identify f~(/3, 1), the dominant
depth for visited minima on the %(1) hypersurface when
temperature is given by P=(ksT) ' Of cours.e, this
presumes that the amorphous-packing portions of the hy-
persurface can still be sampled kinetically in a representa-
tive fashion, if not with full ergodicity,

where M, (E) is the total phase-space measure for those
cells comprising "i."

Detailed balance requires that the transition rates have
the form

L,J (E)=B,J(E)/Mt(E),

where B,J. is a symmetric transmission coefficient:

B;;(E)=&p(E) .

(5.5)

(5.6)

Barring accidental degeneracy, the general solution to
the master equation can be expressed as a linear combina-
tion of decaying exponentials:

Pi (t)=g A„g,'"' exp( A,„t) . — (5.7)

Here, the g,'"' and k„are eigenvector components and
eigenvalues for the Y)& Y operator L:

L X(")=X„X("),

where I. has elements

(L);,.= —L,;(E) (1&j),

(5.8)

(5.9)

(L);;= g L,,(E).
j (~i)

We suppose that the 7'"' are orthonormal:

y(m). y(n) (5.10)

Thermal equilibrium at energy E corresponds to the sin-
gle vanishing eigenvalue ko ——0; all other eigenvalues are
positive.

By increasing 1, the number Y(1) of eigenvectors and
eigenvalues will decrease in accordance with Eqs. (4.12)
and (5.1). The resulting thinning out of the spectrum of
L mostly affects the large A.„'s. The equilibrium-state
eigenvalue Ao

——0, of course, persists for all 1. Those A,„
that are small and positive should remain virtually un-
changed until 1 becomes very large because they describe
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slow reequilibration processes over large-scale topographic
features that are themselves unaffected by operations that
smooth out only small-scale features.

Let F be a property whose average value at "equilibri-
um" for the given energy E vanishes. A case in point
might set F equal to the z component of the dipole mo-
ment for a single test molecule placed in the amorphous
medium, so relaxation of initial orientation to isotropy
(F=0) measures the rate of local kinetic processes. Sup-
pose that F can be assigned mean values F; appropriate
for the interiors of each of the cell equivalence classes.
Then the time dependence of the regression of an. initial
fluctuation in F is simply to be written

F(r)=QF;P, (r) . (5.11)

By inserting Eq. (5.7) this becomes

F(t)=g A„gX,'"'F; exp( —A,„t) .
n

(5.12)

Because 7,' ' is proportional to the equilibrium popula-
tions P ', the F; must obey

y g(0)F () (5.13)

so that indeed expression (5.12) decays to zero. In fact,
for the majority of eigenvectors (particularly those with
relatively large A,„),we expect to have

y g(n)F () (5.14)

since these P,'"' will frequently alternate in sign over those
cell classes for which F; is substantially constant. This is
connected intimately with the fact that fundamental tran-
sitions are highly localized in space, and only those which
occur near the test particle measured by F will contribute
to relaxation. Put another way, only those eigenfunctions
X("' will contribute to Eq. (5.12), whose sign changes
occur solely in association with fundamental transitions
near the test particle. This principle of local influence is
just what common physical intuition would demand.

VI. IMPLICATIONS OF EXPERIMENT

Z(A, ) =ZD exp['—A(rA, ) ~+0(k ~)],
where Zo ~ 0 and

O ~0
p =Po/(1 —Po) ~ =(1—Po) o

(6.2)

(6.3)

Consequently, the spectral density vanishes strongly as

We are finally in a position to draw inferences from the
experimental requirement that the general regression ex-
pression (5.12) have the KWW form (1.1) near the glass
transition. First, we write g(t) in Eq. (1.1) as a Laplace
transform:

g(t)=go J Z(k)exp( —At)dA, , (6 1)

so that Z(A, ) formally plays the role of a spectral density
of measurable relaxation rates. It can be shown that Z
has the following behavior for small positive k:

The advantage of the coarse-graining procedure is that it
allows this cumulative spectral density at given X to be
identified with the local density of available configura-
tional switches for an appropriate l choice. As l in-
creases, the relatively few remaining effective modes of re-
laxation are slow, are associated with localized repackings
of particles near the test particle, and are substantially
equal in number to the cumulative spectral density up to
the effective upper limit on A, . Consequently, after having
used Eq. (4.10) to fix the density of "switches, " we have,
to the requisite order,

exp[ —h (I)]-=exp[ —(rA, ) ~], rA, =[h (l)] (6.5)

It should be stressed that this expression relates l to the
effective upper I, cutoff for those surviving terms in re-
gression formula (5.12) when the potential has been
smoothed over that distance I.

By appeal to the conventional wisdom of transition-
state theory, the rate A. in Eq. (6.5) will be determined by
a mean free-energy barrier height b (I) between contiguous
cells that must be surmounted on the %(l) hypersurface
for relaxation to occur. That is,

A, -=(ro) 'exp[ Pb(l)], P=—(k~T) (6.6)

where the pre-exponential factor is an appropriate attempt
frequency (assumed to be / independent, consistent with
the dendritic character of the cells). Combining Eqs. (6.5)
and (6.6), we find

b(l)=P 'in(r/r )+[(1—Po)/P P]»& (&), (6.7)

where p has been eliminated in favor of the KWW ex-
ponent /3O.

The mean barrier height b(l) contains both potential-
-energy and entropy components. For any reasonable
behavior of the 4'(I) hypersurface the former component
dominates (or at least is not dominated by) the latter.
Consequently, we can take Eq. (6.7) to be a statement
about the mean height of potential-energy barriers h%.
Substituting from Eq. (4.11),

bÃ(l) —=P ' ln(rlro)+ [(1—Po)/POP]ln(h „l~) . (6.8)

This is our principal result. It indicates that barrier
heights for kinetically important transitions only rise log-
arithmically with length scale l. The currently uncertain
exponent q only appears as a multiplier for that logarith-
mic term.

VII. DISCUSSION

It was stressed earlier in connection with Eqs. (2.11),
(3.2), and (4.15) that change in temperature causes dif-

A.—+0+, and it is the precise manner in which that van-
ishing occurs, which controls the characteristic long time
behavior of the KWW function.

The cumulative spectral density for Z(A, ) has a small-A,

form that is also generically the same as that shown in
Eq. (6.2):

J Z(X')dA, '=Z( exp[ —A (rA, ) +0(A, )], Z( & 0 .

(6.4)
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ferent portions of the 4 or 4 hypersurfaces [correspond-
ing to tt (P) or g (P, l), respectively] to be preferentially
explored. One generally must expect topographic features
to be variable from one of~these portions to another. This
property is clearly manifest in result (6.8) by the explicit
appearance of P and even more importantly by the ap-
pearance of the time 7.. If the Tamman-Vogel-Fulcher
equation (1.3) accurately represents the temperature
dependence of w near the glass transition, it is clear from
Eq. (6.8) that at fixed l, barrier heights increase strongly
with declining temperature. This is an entirely reasonable
conclusion: The deeper potential minima probed at lower
temperatures are fewer in number and further apart, so
that passage from one to another on the average requires
ascent over a larger intervening topographic feature. The
glass transition temperature Tg represents the stage at
which dynamics on the experimentally available time
scale is no longer able to provide equilibrating transitions
between these increasingly isolated regions of configura-
tion space.

Equation (6.8) also presents a more subtle aspect of
temperature dependence, namely the l dependence of
mean barrier height, established to be proportional to ln I,
must also be expected to vary in strength from high- to
low-temperature regions of the 4 hypersurface. We have
seen that the multiplier of ln 1 in Eq. (6.8) involves the

KWW exponent Po and so the statistical topography ap-
propriate for the region explored at a given temperature
thus determines Pe. This logical connection helps to inter-
pret the temperature dependence that has occasionally
been reported for Po.

Exponential size growth with l of the cells on the %(l)
hypersurface, coupled with mere logarithmic growth with
l of kinetically significant intervening barriers, leads to an
interesting picture of the relevant toPography, namely,
over a wide range of length scales, multiply branched
channels with relatively modest internal elevation change
must exist in the physically accessible region R. This pic-
ture can probably be argued as being consistent with at
least some of the published models' ' ' for relaxation
near Tg, however, it is apparently more general and may
aid in the construction of new models.

Finally, it is worth emphasizing that computer-
simulation studies of glass-forming substances are capable
of adding quantitative detail to the qualitative analysis
that has been developed here. Contiguous pairs of poten-
tial minima, the intervening transition states, and the cor-
responding reaction coordinates connecting them can and
have been studied in isolation. %'hat is now required is
a more global view of the way in which these pairs of
minima are arranged relative to one another to create the
full multidimensional transition network.
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