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A new set of renormalization equations for the two-dimensional Coulomb gas is derived and
solved numerically. These equations give a new picture of the Kosterlitz-Thouless transition. A
new temperature T* is found. Above T* the value of the dielectric constant at the transition is

e, =1/{4T,} as before whereas below T the new result e, &1/(4T, ) is obtained. The singular
behavior at T* is explored. The results are translated into a renormalization-group flow diagram.
An interesting consequence is that the universal jump prediction for the Kosterlitz-Thouless transi-
tion turns into a nonuniversal jump prediction for critical temperatures below T*.

I. INTRODUCTION

A new set of renormalization equations for the
Kosterlitz-Thouless' transition of a two-dimensional
Coulomb gas is presented. A short description of the
work has been given earlier. In the present paper we give
a more complete account with detailed derivations.

The Kosterlitz-Thouless transition is of interest in a
variety of contexts. The present work has implications
for two-dimensional (2D) X1' models and to superfluid
and superconducting films. An interesting consequence
of the Kosterlitz-Thouless transition for these cases is that
the helicity modulus or equivalently, the superfluid densi-
ty ' jumps discontinuously from a finite value to zero at
the transition. The size of the jump was deduced by
Nelson and Kosterlitz from the lowest-order
renormalization-group (RG) equations together with an
assumption for the structure of the RG flow diagram.
This prediction for the size of the jump will be referred to
as the universal jump prediction. The new equations give
a different RG flow diagram than that assumed in the
universal jump prediction. As a consequence the univer-
sal jump turns into a nonuniversal jump below a certain
temperature. Possible candidates for systems undergoing
Kosterlitz-Thouless transitions with nonuniversal jumps
are the half-frustrated 2D XF models on a square and
honeycomb lattice. Some empirical evidence supporting
the nonuniversal jump alternative for these models has
been presented separately.

The organization of the paper is as follows. In Sec. II
we define the Coulomb-gas (CG) model and discuss the
lowest-order RG equations from the point of view of a
length-dependent dielectric constant. The purpose of this
section, apart from introducing notations, is to provide a
perspective, in which the new equations will be discussed
later in the paper. In Sec. III we describe the connection
to a sine-Gordon field-theory formulation and give the
field-theory analog of the charge-density correlations and
the linearly screened potential. With these prerequisites
the derivation of the new equations is described in Sec.
IV. A physical interpretation of the equations in terms of
polarization due to dipole pairs is discussed in Sec. V. A
numerical solution of the equations is presented in Sec.

VI, while Sec. VII contains' a discussion of the results. In
addition some parts of the more detailed derivations are
relegated to Appendixes A—C.

II. THE 2D COULOMB CxAS

AND LOWEST-ORDER RENORMALIZATION

A Coulomb gas (CG) consists of positive and negative
charges of equal magnitude. ' The charges interact
through the Coulomb interaction which is defined by
Poisson's equation

V V(r)= 2srft(r)— (2.1)

(the unit of charge is taken to be 1). The length g is the
linear dimension of a charge and will serve as an ultravio-
let cutoff; more precisely the charge distribution of a sin-
gle charge is given by some function f~(r), where

In two dimensions the Coulomb interaction depends loga-
rithmically on distance, i.e.,

V(r)-1n(r) . (2.2)

Z T(e H/T) g+J ~ N-

N=0 i 2

(2.3)

Here 1V is the number of particles in a neutral configura-
tion (a configuration with as many positive as negative
charges), the index i numbers the particles in a configura-
tion, r; is a two-dimensional vector giving the particle po-

For the point-charge model, for which f~(r)=5(r), the
charges of opposite sign collapse into each other for small
enough temperatures in two dimensions;" the point-
charge model does not undergo a Kosterlitz-Thouless
transition. However, the precise form of fg(r) will be of
little importance in the following, apart from introducing
an ultraviolet cutoff.

The 2D-CG is defined through the particle interaction
and the grand-partition function Z, '
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sition, g is a phase-space division, T is the temperature
(Boltzmann's constant is set to 1), and H~ is the configu-
ration energy:

Hg —,
' $——s;s~[U(r;J) —U(0)]—gTlnz, (2.4)

V,"'(k)=
k2

(2.5)

In the presence of the CG, Vl is polarized and screened
by the Coulomb-gas charges. This effect may be
described by a dielectric function e,

VL (k)= VL '(k)/e(k) =2m/[k e(k)] . (2.6)

The dielectric function e is related to the charge-density
correlations of the CG,

I e/( k)=1 — (n(k)n( —k)),
Tk

(2.7)

where n(k) is the Fourier transform of the CG charge
density. The charge density for a configuration of N par-
ticles is given by

N

n(r) =—gs, f~(r —r;), (2.8)
Q,.

where Q is the volume. The angular brackets in Eq. 2.7,
( ), stand for a thermal average in the grand canonical
ensemble defined by the grand-partition function Z [given
by Eq. (2.3)].

The Kosterlitz-Thouless transition is reflected in VL in
the following way On the low-temperature side of the
transition VL is polarized but not screened (the screening
length A, is infinite). The leading behavior of VL, for small
k is given by

VL (k) =
eok

where

(2.9a)

stance betw~e~ particles
is the interaction energy

U(r; )= fd2r fr(r; r) V—(
~

r —rj ~
),

U(0)/2 is the electrostatic self-energy of a particle,
s;=+1 is the charge of a particle, and z is the particle
fugacity. The fugacity is related to the chemical potential
p by z =exp(p/T). The interaction term U(r) —U(0) is
to leading order equal to ln(g'/r) for r/g » l. Only neu-
tral configurations contribute to the grand-partition func-
tion because the particle self-energy U(0)/2 is infinite. '

Our object is to find a description of the Kosterlitz-
Thouless transition for this model with temperature T
and fugacity z as variables. A key quantity in our reason-
ing will be the linearly screened potential (per unit
charge), VL (r) It ma.y be defined in the following way:
Introduce into the CG two test particles with opposite
infinitesimal charges, 5s, separated by a distance r;
VL(0) —Vz (r) is the interaction energy between the test
particles divided by (5s) . In the absence of the CG,
VL (r) is just the "bare" Coulomb interaction VL '(r)
which in Fourier space is given by

eo—= 1ime(k) .
k~p

(2.9b)

On the high-temperature side of the transition VL is
screened (i.e., A, is finite) and the leading behavior for
small k is

VL, (k) = 1 1

~, k'+A, -' (2.10)

where e is a constant describing the polarization. Note
that eo ——oo on the high-temperature side [compare Eqs.
(2.6), (2.9b), and (2.10)]. It follows that, precisely at the
transition, the quantity 1/eo jumps from a finite value,
denoted by 1/e„ to zero. This jump and the quantity E,
will play an important role in the following.

Now, since

1
lim
k o e(k) Ep

exists and is finite, it follows that

(2.11)

1 - 27K—=1— dr dP re'"""~(n (r)n (0) )
2Tk Bkz k=0

=1+—fdr der coszp(n(r)n (0) )T

=1+ f dr r (n(r)n(0)) . (2.12)

In the intuitive picture of the Kosterlitz-Thouless transi-
tion, the low-temperature phase consists of dipole pairs. '

One may interpret Eq. (2.12) within this picture in the fol-
lowing way: The density of dipole pairs with separation
r, Wd;~(r), is given by

( )
(n(r)n(0)) ~ (2.13)

2

[The minus sign arises because the charges in a dipole
have opposite sign and (n(r)n (0) ) is the charge-density
correlation. The factor —,

' arises because

f d2rd r'(n(r)n(r'))

counts every pair twice. ] The polarizability of a single di-
pole pair with separation r, a(r), is a(r)=r /2T. One
inay then define an electric susceptibility, Xo, correspond-
ing to an "independent dipole-pair approximation"

yo fdzr a(——r)N—d;p(r)0

f dr r (n(r)n(0)) . (2.14)

lim (n (k)n ( —k) )
k Ok2

also exists and is finite [compare Eq. (2.7)]. Consequently
orie has the following identity:

lim (n(k)n ( —k) ) =— (n (k)n ( —k) )
1 1 8

k~p k 2 Bk
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In terms of this quantity we may express the dielectric
constant E'0 as

1 —1 2 IT+Q ~

CQ

In usual electrostatics one would have

(2.15)

ep ——1+2m. (2.16)

in terms of the actual electric susceptibility and hence

Xpx=
1 —277+0

(2.17)

F(r)= — VL(r) .
a

BI"
(2.19a)

In the absence of the CG this force is given by Fo 1/r-—
In Sec. IV we will make use of the following expression
for the force F which follows directly from Eqs. (2.6),
(2.7), and (2.18) (see Appendix B)

One notes that XQ ( &
m in the low-temperature phase and

+0———,
' ~ in the high-temperature phase.

The point of the above reasoning is that one may under-
stand ep in the low-temperature phase as being caused by
polarization due to dipoles of all length scales. To get a
feeling for how dipoles of different length scales con-
tribute to ep one may introduce a length-dependent dielec-
tric function e by

77=1+ I dr'r' (n(r')n(0)) . (2.18)
e(r)

One notes that e(r) involves all dipole pairs up to the
separation r and that e( oo ) =@0. One ingredient in the
present paper will be to express VL, (r) in terms of e(r).
The result may be expressed in terms of the mutual force
E acting between the test particles

elusion of dipole pairs with separations larger than the
test pair will, in fact, add qualitative new features to the
Kosterlitz- Thouless transition.

The argument within the "smaller dipole approxima-
tion" goes as follows ' The force acting between a di-
pole pair of CCi particles separated by a large distance r
is, within this approximation, given by F,(r) =1/re(r),
i.e., the force is polarized by the smaller dipole pairs and
this effect is taken into account by a length-dependent
dielectric constant. " The interaction energy relative to
the situation when the particles are separated by a dis-
tance g is then approximately

r 1
Ud;z(r) = f dr'

r'e( r')
(2.20)

The effective Boltzmann factor for finding a dipole pair
separated by a distance r is approximately
z exp[ —Ud;~(r)/T]. The phase space available for a pair
with the separation in the interval [r,r+dr] is 02~dr/g
and the density of dipole pairs with separation r is thus
(per orientational angle)

Wd;„(r) = z exp[ —Ud;~(r)/T], (2.21)

which using Eq. (2.13) gives

( n (r)n (0) ) = — z exp[ —Ud;„(r)/T] .2 2 (2.22)

The key feature is now that Eqs. (2.18), (2.20), and (2.22)
constitute a self-consistent set. By introducing a logarith-
mic length scale l =in(r/g) and a length-dependent fuga-
city

z (l) =z exp[2l —Ud;~(r)/2T],

this set of equations may be expressed in differential form
10, 12

F(r) =F~(~)+F~(~)+F3(r)

F
&
(r) = 1/re(r)

(2.19b)

(2.19c)

d 1

dl TE(l)

2m z (l)
T2

(2.23a)

Fz(r) = f dr' r'(n (r')n (0)),
r

(2.19d)

d (l)= z(l) 4 — 1

T~((l)
(2.23b)

F3(r)= J dr'r'ln(r'/r)(n(r')n(0)) . (2.19e)

A physical interpretation will be given in Sec. V. The
point to note is that F involves contributions both from
dipole pairs with separations smaller than the test-pair
separation (F~) and from dipole pairs with separations
larger than the test-pair separation (Fz and F3).

In the original argument by Kosterlitz and Thouless'
and the later improvements by Young' only dipole pairs
smaller than the test pair were included. The point of
Young's improvements was to demonstrate that this
"smaller dipole approximation" leads directly to Koster-
litz RG equations. We will reproduce the argument
below in order to get the connection to the present work
precise.

The point of the present paper is to show that the in-

These equations will be referred to as the lowest-order RG
equations. The quantity EO=F(oo) may now be obtained
by integrating Eqs. (2.23) from some known initial condi-
tion. For l =0 one has z(l =0)=z and e(l =0)= 1, where
the last approximate equality rests on the assumption that
there are few pairs with separation of the order of g. This
approximation is, of course, both dependent on the
single-particle charge distribution, f&(r), and on T. We
will in the following assume that f~(v) is such that
e(l =0)=1 always holds and will supplement our renor-
malization equations in the present paper with the initial
conditions z(0) =z and e(0)= l.

Some further perspective on this condition is given by
the following example. Suppose that the charges are
unimpenetrable disks with diameter g. As the tempera-
ture is lowered for constant z the separation of pairs de-
creases. The smallest separation distance is g which cor-
responds to the polarizability a(g)=g /2T. Thus, for
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1
4

T

'2
4zm 1

TEp

'2

(2.24)

valid for epT & 4 . The phase transition is given by
epT = —,

' (Refs. 8 and 10) or

small T, Xp may be estimated by Xp-z /2T for small z.
This means that for a fixed small z there will always be a
phase transition at a temperature defined by the condition

Consequently, the Kosterlitz- Thouless phase
line will start at (0,0) in the (T,z) plane. It follows that
the Kosterlitz-Thouless transition for the hard-disk model
will always have a reentrant behavior.

However, for the soft cutoff models for which
e(l =0)= 1, considered in the present paper, no such reen-
trant behavior is found. We believe that the soft cutoff
implied by e(l =0)=1 is the relevant one in connection
with XF models and superfluid and superconducting
films. An explicit calculation of f~(r) in connection with
superconducting films is given in Ref. 13.

The object of the present paper is to find approximate
renormalization equations which are valid outside the
range T= 4 and z=0. To leading order in T—

4 and z
the lowest-order RG equations quoted in the literature
are, of course, all equivalent. However, the nonleading
terms are different. The equations by Jose et al. '4 and by
Young' correspond to the approximation

XQX= Xp
7T+p

This approximation changes Eq. (2.13a) to

—[Te(l)]=2m z (l) .
dl

On the other hand, the Kosterlitz renormalization pro-
cedure leads precisely to Eq. (2.13). The RG equations
may also be obtained through a sine-Gordon field-theory
formulation. ' '

The lowest-order RG equations obtained by this ap-
proach also correspond to Eqs. (2.23). In Sec. IV we will
rederive Eqs. (2.23) as the lowest-order equations by yet
another approach. This leads us to believe that, from the
point of view of obtaining an approximation outside the
range T= —,, Eqs. (2.23) constitute the best set to leading
order in z.

Equations (2.23) are easily integrated into

2

0.2-

0. I

O. I O.P. 7'

2m.z (l) m 2l 1

Te(l)

—z(l) = 4—d z(l)
dl 2

1 5 m
z (l),

Te(l) 4 T

(2.26a)

(2.26b)

which to leading order is integrated into (for epT ( ~ )
'3 r

1 1 1 m2z2 1——4 +———4 4+5 ——4T 2 T T2 T

I 1 1

GpT 2 AT

3

(2.27)

giving the phase transition line

T (1/T 4) + —,
' (1/T —4)—

4+5(1/T —4)
(2.28)

As an illustration Fig. 1 shows the phase line in the (T,z)
plane as obtained from the two lowest-order RG approxi-
mations. In the following section we give a second pre-
requisite needed in the present approach: the sine-Gordon
formulation.

FIG. 1. Kosterlitz-Thouless phase-transition line in the ( T,z)
plane for a 2D Coulomb gas as obtained from the two lowest-
order renormalization-group equations. Solid line: loest-order
RG equations [Eqs. (2.23)]. Dashed curve: Next-order RCx
equations [Eqs. (2.26)].

2 1z= —( —,—T) .
7T

(2.25) III. SINE-GORDON FORMULATION

In Ref. 16 the next-order RG equations are obtained to
leading orders in —,

' —T and z for an explicit soft cutoff
procedure. Transcribed to the present notation these
equations are

A thermal average for the CG may be turned into a
functional integral over a real field. ' ' ' The key identi-
ty in this connection is the following: I.et the angular
brackets ( )~ denote

(O(P(r)) )

'2
VP m

2 +2
VQ

2

fdPexp ~ —fd r

fdPexp —fd r

O(P(r))

I $2
2

(3.1)
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where P(r) is a real field, fdP denotes a functional in-

tegral over this field, and O(P) denotes some functional of
P. Then one has the identity' '

We will in the following also make use of sine-Gordon an-
gular brackets & ),G which are defined by [in analogy
with Eq. (3.1)]

2'
exp —i

T

1/2

Qs;P(r;)
m=0

=exp — QU(r, J )
1

2T ~ ~

(3.2a)

fdPexp —fd rA, G(r) O(P(r))

fdPexp —f d r~, G(r)

(3.4)

where The one particle Green's function in the sine-Gordon
theory G (r) is given by

P(r)= fd r'fg(r r')()I(r—') . (3.2b)
G(r)=&/(r)P(0)), G . (3.5)

Using this identity the grand-partition function of the CG
[Eq. (2.3)] may be expressed as' '

d rZ= exp 2zcos
f2

fdgexp —fd rA, G(r)

We will in the following need the linearly screened poten-
tial VL(r) and the charge-density correlation function
&n(r)n(0)) expressed as sine-Gordon correlation func-
tions. They are given by' (the derivations are indicated
in Appendix A)

exp — r-2(V)
(3.3a) Vl (r)=2nG(r) .

The point-charge density is defined by

(3.6)

where A,G is the Hamiltonian density for a nonlocal
sine-Gordon theory:

N
n (r) = gs;5(r —r;) (3.7)

A,G(r) = (VP)
2

i'2
2

COS

1/2

P(r) . (3 3b) for a configuration of S particles, and the point-charge-
density correlation function is given by

42
& n (r)n (0) ) = — sin

2m'

T

' 1/2

P(r) sin
21T

T

1/2

()(0)
l +5(r), (ccr

sG

1/2

y(0)
)

(3.8)

One notes that the point-charge-density correlation func-
tion is related to the CG—charge-density correlation func-
tion by convolutions

& n(r)n(0)) =f d r'd r"f~(r r')f~(r")—
X &n'(r')n'(r")) . (3.9)

[(i)(r)+((()(0)]
sG

and keep only the lowest-order nonvanishing curnulant,
1.e.,

As a check on the correctness and consistency of these ex-
pressions, in Appendix A we give an unusual derivation of
the linear screening formula (

2~
exp l

' 1/2

[()(r)+4(0)]
l

Vz (k) = 1 — &n(k)n ( —k) )
k k T

(3.10)

entirely within the sine-Gordon formulation. Equation
(3.10) will be important in the following.

)

IV. NEW RENORMALIZATION EQUATIONS

The basis for the new equations is straightforward in
the sine-Gordon formulation. We make a curnulant ex-
pansion of the correlation

=exp ——
& [P(r)+P(0)] ),G . (4.1)

Our faith in this approximation stems from the following
reasons: It is the first term in a 'systematic expansion, it
turns out to be connected to an appealing physical inter-
pretation (given in the following section), and it leads to
equations which compare favorably with lowest-order RG
equations [Eqs. (2.23) and (2.26); compare Sec. VI].

Applying Eq. (4.1) to the correlation, Eq. (3.8), gives
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(sin
277

T

1/2

(TI(r) sin
2m

T

' 1/2

P(0) = —,Re exp i
sG T

1/2

[P(r)—P(0)] —exp i
T

1/2

[()(r)+4(o)] )

= —,
'

exp ——([P(r)—$(0)] ),G 1 —exp — ($(r)P(0)),G

(4.2)

Using Eqs. (3.5) and (3.6) we may express this in the
linearly screened potential as

1/22' -™
P(r) sin

' 1/2

y(o)
l(s)n

217

T

= —,exp —[VI (r) VL (0)]-T
1 —exp ——

VL, (r)T

VI (r)-ln(A, /g) . (4.4)

Consequently, in the low-temperature phase Eq. (4.3a}
simplifies to

1/2 1/2

(})(r) sin(sin O(o)
l

2m

T
2m.

T

(4.3a)

where

VI. (r ) =fd r 'd r"fr( r r' ) VI. (
~

—r' —r"
I

)fg (r"} (4 3»

We will in the following only deal with the low-
temperature phase where the screening length A, is infinite.
To leading order in A, /g one has'

r
z(l)=exp 21 — f F(r) dr

2T
(4.8)

Equations (4.6) and (4.7) may then be expressed in dif-
ferential form as

d 1

dl Tekel)

2z (l)H
T2

(4.9a)

d
(1)

z (1) 4 ~d „1
dl 2 o Tg 1 +x /2)

(4.9b)

which turns Eq. (4.6) into a self-consistent equation for
(n(r)n(0)). The derivation is given in Appendix B. In
Eq. (4.7) we have also made some minor simplifications;
the CG test charges are replaced by point test charges so
that V~(r) is replaced by VI (r}, which is valid for r &g
(see Ref. 13); in addition we used VL(g) —VL(0)=0 (see
Ref. 13) so that the lower integration limit may be re-
placed by g'.

In order to make a connection with the RG equations
[Eqs. (2.23) and (2.26)] we introduce a logarithmic length
scale 1 =ln(r /g) and a renormalized fugacity z (1)

= —,exp —[VI (r) Vl (0)]—(4.5)

For r & g one may ignore the difference between
(n (r)n (0) ) and the point-charge-density correlation
(n (r)n (0) ). Combining Eqs. (3.8) and (4.5) then gives

2z2
(n(r)n (0))= — exp [VL(r) V—r (0)]-

T
(4.6)

Equation (4.6) together with the linear screening expres-
sion Eq. (3.10), constitute a self-consistent set of equa-
tions. This set of equations is the basis for the present pa-
per.

The self-consistent character is brought out more ex-
plicitly by expressing VL (r) —V(0) as

dxe x (4.10)
TE(1+x/2) p 2 dl TE&1)

which inserted in Eqs. (4.9) gives

where eel) is the length-dependent dielectric function in-
troduced in Eq. (2.18), expressed here as a function of the
logarithmic length scale l. The initial. conditions are
z(1=0)=z and @+1=0)=l. The key quantity ep ——e(00)
may be obtained by integration (see Sec. VI). The algebra
leading to Eqs. (4.9) is given in Appendix B. Equations
(4.9) are our new renormalization equations.

The last term on the right-hand side of Eq. (4.9b) may,
by partial integration, be expressed as

r dVI. (r) r dVr (r)
VL, (r)—V(0)=f dr= f dr

ar r ar

z(l) = 4— +O(z'(1)) .
dl 2 Teal }

(4.11)

= —f F(r) dr, (4.7)

where F, the force between two infinitesimal test charges
of opposite sign, is given in Eqs. (2.19). The point is that
F may be explicitly expressed in terms of (n(r)n(0))

One notes that the lowest-order RG equations [Eqs.
(2.23)] are regained as the lowest-order approximation of
the new renorrnalization equations [Eqs. (4.9)]. In the fol-
lowing section we give an interpretation for the physical
origin of the higher-order terms of the new renormaliza-
tion equations.
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V. LENGTH-DEPENDENT SCREENING

Figure 2 shows two (2D) test particles of opposite
charge separated by a distance rp with the origin at the
center of the test pair. The (2D) electrical field D(r)
caused by the test pair in the absence of surrounding CG

charges is given by

(5.1)
r —ro/2 r'+ ro/2

D(r) =D)(r)+D2(r) =
(r—ro/2) (r+ ro/2)

The interaction energy between the test particles in the ab-
sence of the CG charges is then

Up(rp) = fd r2D)(r) D2(r)
1

4m

oo 2nd/' r (r rp/4—)
dr

7' —tTpcos +Tp 4 r +rrpcos +rp
= —f dr z

"z sgn(r rp/2)—
+Tp/4

(5.2)

(for the last equality see Ref. 19). Let us now introduce a
length-dependent dielectric function E(r) which takes into
account the polarization of the test-particle interaction
due to CG dipoles with a separation less than r. The in-
tuitive length-dependent screening idea may be stated as
follows: The electric field D taken on a circle of diameter
d centered at the origin is effectively polarized only by
CG dipoles with a separation smaller than d. Following
this intuitive argument one obtains for the interaction en-

ergy between the test particles

1 I 1+ —1
rpE(rp) ro E(rp)

1 d 1
Pp

r p+ r dr E(r)

OO ] 1
+rP dr 2r +ro dr E(r)

Now we use the approximation

(5.6)

2D)(r).Dz(r)
U)(rp)= d r

4~ Eq2r)

which, using Eq. (5.2), becomes

ro /2 1
U) (rp) = dr

r +ro/4 E(2r)
OO r 1

d7
r'+rol4 E(2r)

(5.3)

(5.4)

1
for r)ro

p
+~o

1/rp ' for rp ) r

and Eq. (5.6) reduces to

1 1 d 1
+rp „dr, —

rpE(rp) "& r «E(r)
(5.7)

The force F acting between the test particles,

F= U, (rp),
dI'p

is then

1+ dr
r p E(r p) o dro r +r p /4 E(2r)

d r 1

'o~& dro r +rol4 E(2r)

By partial integration and change of variable this becomes

(5.5)

FIG. 2. The test dipole pair. The test particles have opposite
charge, are symmetrically placed with respect to the origin, and
are separated by the vector ro.

By inserting the expression given in Eq. (2.18) for E(r) this
results in

1 ~ Tp OOF= + f drr(n(r)n(0)) .
roE(ro) T "o

(5 8)

1 2Ut..t = —
2 ~(ro)D (5.10)

where D is the average of the square of the electric field

The point is that we have rederived the two first contribu-
tions to F in Eqs. (2.19) from the length-dependent screen-
ing idea. As a consequence, these two contributions may
be given the following physical interpretation: The first
term is caused by the electric field between the test parti-
cles polarized by CG dipoles which have smaller separa-
tion than the test pair. The second term is caused by the
dipole field outside the test pair polarized by CG dipoles
which have larger separation than the test pair.

The remaining contribution F3 [see Eqs. (2.19)] may
also be tied to an intuitive physical interpretation: The
polarizability of the test pair is given by

2
P'p

a(ro) —
~

2T
' (5.9)

The dipole energy of the test pair is given by
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caused by the CG particles. The total energy of the CG in
the absence of the test pair is given by 0.2-

0
U...= D,

4m

which may also be expressed as

U„,=—fd2rU(r)(n(r)n(0)) .tot

(5.11)

(5.12)

O. I

Now since U(r) = —ln(r /g') +const and

fd r(n (r)n(0)) =0 by the charge-neutrality condition,
we obtain from Eqs. (5.9)—(5.12) that

2' 7'p2

f dr r ln(r/rp)(n(r)n(0) ) . (5.13)
p

dUtest

dI"p

VI. NUMERICAL SOLUTION

One notes that dU«„/drp is equal to F3 of Eqs. (2.19) ex-
cept that the lower integration limit is 0 instead of rp.
However, this difference is also intuitively understandable;
only CG dipoles with separations larger than the test pair
contribute to the average electric field felt by the test pair.

The point with the physical reasoning in the present
section is the following: In the preceding section we de-
rived new renormalization equations [Eqs. (4.9)] from the
first term of a cumulant expansion. We can now give a
heuristic derivation of the saine equations by improving
the arguments leading to the lowest-order RG equations
[Eqs. (2.23)]. The only difference is the estimate of the
force F acting between the particles in a dipole which
gives rise to the change

Ud;&(r)= f dr'F(r), (5.14)

where F is given by Eqs. (2.19) instead of Eq. (2.20). The
reason for this new estimate is that the force between the
particles of a dipole is affected both by smaller and larger
dipoles. The larger dipoles polarize the dipole field sur-
rounding the dipole pair considered, and provide an elec-
tric field in which the dipole pair considered orients.
From this viewpoint the difference between the lowest-
order RG equations [Eqs. (2.23)] and the new renormali-
zation equations [Eqs. (4.9)] is the inclusion of the effect
of the larger dipoles.

O. l 0.2

FIG. 3. Kosterlitz-Thouless phase-transition line in the ( T,z)
plane as obtained from the new renormalization equations [Eqs.
(4.9) and (6.1)]. Solid curve: new equations; dashed line:
lowest-order RG equations [Eqs. (2.23)]; dashed-dotted curve:
next-order RCy equations [Eqs. (2.26)].

The key quantity ep is obtained as
00 —].

ep —— 1+Tf dx h(x) (6.2)

Figure 3 shows the critical line in the ( T,z) plane as ob-
tained from Eqs. (6.1) (solid curve). It is compared to the
result from the lowest-order RG equations [Eqs. (2.23)]
(dashed line) and to the next-order RG equations [Eqs.
(2.26)] (dashed-dotted curve). One notes that the critical
line from Eqs. (6.1) comes close to the result from the
next-order RG equations [Eqs. (2.26)]. This indicates that
the new equations are indeed an improvement of the
lowest-order RG equations [Eqs. (2.23)] as we expected.
In this comparison it should be noted that the lowest-
order RG equations [Eqs. (2.23)] are by construction valid
close to z =0, the next-order equations [Eqs. (2.26)] close
to z =0, and T —

~ =0, whereas the effective expansion
parameter in the cumulant expansion leading to Eqs. (4.9)
is unknown at present. However, we believe that the cu-

with the boundary conditions h (0)= —2Hz /T,
h ( oe )=0, and e(0)= 1. Equations (6.1) may be solved by
numerical iteration, e.g., starting from

h„,~(l) =h (0)exp[(4 —1/T)l] .

The solution of Eqs. (4.9) may be obtained by numerical
integration. For this purpose we found it convenient to
rewrite Eqs. (4.9) as (see Appendix C)

h (1)= h (0)exp 4— —Cp(l) 1
1

e(0)T

—Cp(1)+ C|(1)—C2(l) (6.1a)

(6.1b)

(6.1c)

(6.1d)

E

Cp(l)= f dx h(x),
E

Ci (1)=f dx xh (x),

C2(l) = ,' f dx(x-+2)e "[h (1+x/2) —h(x/2)],

I

0 O. l
I 0.2

FKx. 4. Value of the dielectric constant at the phase transi-
tion, e„as a function of temperature T. The function e, (T) has
a cusp at the temperature T .



3096 PETTER MINNHAGEN 32

mulant expansion is less restrictive.
Figure 4 shows e, (the value of ep at the critical line) as

a function of temperature. This quantity has a cusp at a
temperature T* (=0.1436). As the critical temperature
approaches T* from below, e, behaves as

04'

e, (T, ) = —const&((T* —T, )'iz . (6.3)

This is demonstrated in Fig. 5, where (e, —1/4T") is
plotted as a function of T, (solid curve). The solid curve
falls on the dashed line in the figure as T* is approached,
in agreement with Eq. (6.3). Above T* the quantity e, is
equal to 1/4T, . This result is in agreement with the RG
equations ' [Eqs. (2.23) and (2.26)]. Below T' Eqs. (6.1)
give e~ & 1/4T, (compare Fig. 4). This result is not con-
tained in the lowest-orders RG equations ' [Eqs. (2.23)
and (2.26)]. However, it is compatible with these equa-
tions since the critical properties derived from them in-
volve the restriction

~
T, ——,

'
~

&&1. As T approaches T,
from below for constant z the quantity ep obtained from
Eqs. (6.1) behaves as

0.0 I-

0.00 I

O. I 498 0. I 499

(b)

0. I 500

ep( T)=e, —const X ( T, —T )
'~ (6.4)

This behavior is demonstrated in Fig. 6. Figure 6(a) is a
case when T, & T*. We use the fact that e, =1/4T, and
plot (ep —1/4T) as a function of T (solid curve). The
solid curve in the. figure approaches the dashed line as T
comes close to the critical temperature T„ in agreement
with Eq. (6.4). Figure 6(b) is a case when T, & T',
(6p —E, ) is plot'ted as a function of T (solid curve). As in
Fig. 6(a) the solid curve approaches the dashed line as T
comes close to T, . The constant in Eq. (6.4) diverges log-
arithmically at T . This is demonstrated in Fig. 7. We
rewrite Eq. (6.4) as

ep(T) =e, —A+ ( )(T, )(T, T)'i—(6.5)

where A+ ( ) refers to T, &T* (T, &T*). The constants
A+ and A are plotted as functions of
X=—ln(

~
T, —T'

~

). As T, approaches T*, X becomes
large, and both A+ and A turn into straight lines as

O. I I 995 0. I 2000 T

FIG. 6. As the critical line is approached from below for con-
stant z, the function Ep( T) behaves as Ep( T)=E ( T )
—constx(T, —T)' . Panel (a) is a case when T, & T . In this
case E,(T, ) =1/4T, and we have plotted (Ep —1/4T) as a func-
tion of T. Solid curve: (Ep —1/4T); dashed hne: tangent of
solid curve at T, . Panel (b) is a case where T, & T*. In this
case E,&1/4T, and we have plotted (Ep —Ep) as a function of T.
Solid curve: (Ep —E, ) ' dashed line: tangent of solid curve at T, .

20-

IO-

O.OI, -

IO -En (I)' —'I I )

0. I 40 ) + O. I 45 -)
C

FIG. 5. As the temperature T is approached from below,
the function E, ( T) behaves as E,( T)= 1/4T* —const
)&(T —T)' . This is illustrated by plotting (E, —1/4T*) as a
function of T. Solid curve: (E,—1/4T ); dashed line: tangent
of solid curve at T*.

FIG. 7. As the critical line is approached from below for con-
stant z, the function Ep( T) behaves as Ep( T)=E, ( T, )
—A+ ( )(T,—T)' where A+ ( ) refers to T, & T* (T, & T*).
A+ ( ) diverges logarithmically as T, approaches T . This is
illustrated by plotting A+ ( ) as functions of —ln(

~
T, —T"

~
).

The figure shows that both A+ and A are within numerical
accuracy straight lines for a large enough abscissa.
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seen in Fig. 7. We note that a slight adjustment of T*
(i.e., T'=0. 143 S6) would make the two lines in Fig. 7
parallel. However, our estimated numerical accuracy for
T" is only about T*=0.1436+5X10 . In the following
section we discuss some implications of the numerical
solutions described in the present section.

VII. CONCLUSIONS

A striking feature of the solution to the new renormali-
zation equations [Eqs. (4.9)] is the appearance of a new
temperature T*. This temperature is related to the struc-
ture of the RG flow diagram. The RG trajectories are
trajectories with constant Too, where Tao is regarded as a
function of Te(l) and z(l)/T. The RG flow diagram cor-
responding to Eqs. (4.9) is given in Fig. 8. The critical
line between T, = 4 and T, =T is given by the RG tra-
jectory Tao ——4. Between T, =T* and T, =O, the critical
line is the loci of starting points for the RG trajectories
(dashed curve in Fig. 8). The RG trajectories in Fig. 8
(solid curves with arrows) correspond from right to left to'
Tao ——4, —,', and —,', , respectively.

Above the critical line ep is infinite. At the critical line
ep jumps from e, to infinity. This means that the quanti-
ty I/Tap jumps from 4 to 0 at the critical line in the inter-
val T' & T & 4 since the critical line is given by Te, =

4

in this interval. This is the universal jump expressed in
the CG language. ' The new feature is that this predic-
tion only holds for T, & T'. Below T* the jump in
1/Tep at the critical line is larger and nonuniversal The.
size of the jump as obtained from Eqs. (4.9) is given in
Fig. 9.

The question whether a particular system has a univer-
sal or a nonuniversal jurnp at its Kosterlitz-Thouless tran-
sition consequently depends on whether the CG tempera-
ture corresponding to the transition is larger or smaller

than T'. This is discussed further in a separate paper in
connection with half-frustrated XY models, where empiri-
cal evidence in favor of a nonuniversal jump was found.

The quantity Tao also turns up in connection with criti-
cal indices, e.g., from Eq. (4.6) we have

for r~oo . (7.2)

It is likewise possible to show that the leading behavior
for the spin-spin correlations of the XY models below the
critical line is -(1ir)"I for large r, where rl is given by
g= Tap. ' Thus, for example, the critical index q has the
universal value 4 at the critical line in the CG tempera-
ture interval T* & T & 4, whereas it is nonuniversal and
smaller than 4 in the interval 0 & T & T*.

In recapitulation, we have presented a new set of renor-
malization equations for the Kosterlitz-Thouless transi-
tion. These equations were motivated both from a cumu-
lant expansion of a field-theoretic formulation, and more
physically, from the point of view of length-dependent
screening in a Coulomb gas. These equations single out a
new special temperature T'. This temperature is reflect-
ed in the structure of the RG flow diagram. The RG
flow structure leads to nonuniversal behavior at the criti-
cal line below T* like g & 4 and a nonuniversal jump.

It should be noted that the cumulant expansion used to
derive the new equations involve an unknown expansion
parameter. Hence nothing is known at present about the
influence of the higher-order cumulants on the results
presented here. On the other hand, the physical motiva-
tion of the equations in terms of length-dependent screen-

{n(r)n(0) ) -exp —[VL (r) V—z (0)]T (7 1)

For large r the leading behavior of VL (r) . V—L (0) is
( I /ep)ln(g/r) 'below the critical line [compare Eqs. (2.9)]
so that

'
E./Tao

O. l-

20—

O. I 0.2

FIG. 8. Structure of the renormalization flow diagram corre-
sponding to the new renormalization equations [Eqs. (4.9) and
(6.1)]. Solid curves with arrows: trajectories with constant Tap.
From right to left the trajectories are Tao ~, 6, and —,2,
respectively. Dashed curve: The loci of starting points for tra-
jectories with constant Tao. The trajectory Too ——

4 starts at T*
and is the critical line for T &T, & 4. For T, &T the critical
hne is given by the loci of starting points (dashed curve).

0.2S 'I

FICx. 9. Size of the jump as obtained from the new renormali-
zation equations [Eqs. (4.9) and (6.1)]. In the interval
T & T & 4 the value is given by the universal jump prediction

1/e, T=4. Below T* the value of the jump is larger and
nonuniversal.
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ing suggests to us that they are physically sound.
It should also be noted that the new equations comple-

ment the low-order RG equations in the sense that the
low-order RG equations are derived within a restricted
part of a two-dimensional parameter space, whereas the
new equations represent an attempt to find approximate
equations applying to a larger part of the parameter
space.
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2 a(5s)2,F = & [P(r) —P(0)]2 &,

= —2m (P(r)P(0) &,o+ 2m (P(0) &,o .
(A2)

From the definition of the linearly screened potential,
VL, (r), (given in Sec. II) it follows that

VL (0)—VL (r) = 2~G(r—)+2m 6(0), (A3)

It follows that the part of the free energy which is propor-
tional to (5s) is given by

APPENDIX A

d I'= —T ln exp 2z cos
g2

2m

T

' 1/2

In analogy with Eqs. (3.3) we use the identity Eqs. (3.2)
to rewrite the total grand-partition function, Z„„which
includes two point test charges with opposite infinitesimal
charge, 5„one at the origin and one at r. The total free
energy then becomes

F= —Tln(Z„, )

and hence

Vr (r) =2nG(r)+. const . (A4)

The constant on the right-hand side is 0, as is found by
performing the functional integral for G(r) in the case
z =0, and Eq. (3.6) follows.

Equation (3.8) may also be deduced by use of Eqs. (3.2):
Start with the point-charge density for a CG configura-
tion with X particles

2'
X exp —i5s

T

1/2

[0(r)—0(0)l
SG

N
n (r)=ps;5(r —r;) .

(A 1) It follows that
I

sksl
kl 2

' 1/2

gs;P(rJ ) 5(r —rk)5(r&)
m=0

X
z + exp i-

/2 T

'2
t

2

r

z 2m
exp —i

' 1/2

[4(r)+P(0)]
) +(exp i

' 1/2

[()(r)+0(0)]
)

2m—exp i
T

1/2

[P(r) —P(0)]
m=0

2m
exp —i

T [()(r)—()(0)] )

X & I z"'
(exp —i

1/2

gsjp(rj )
m=0

+5(r) — —!
z

2 2

—2 2'
exp —i

T

' 1/2

P(0) ) + (exp i

1/2

()(0) ) =e .

1/2

gs;P(r, )
m=0

(A5)

Summing all configurations with different X gives
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( no(r)n c(O) ) = — (sio
2m

T

1/2

P(r) sin

1/2

()(O)'
) +5(r) s (cos

so

' 1/2

()(o) ) (A6)

A derivation of linear screening within the sine-Gordon formulation goes as follows: Define an auxiliary function Z~is
by

r

Z~~= exp d rA ~& r
L m=0

with
1/2

(A7a)

2z
A ~p(r) = cos itp(r)+af~( k)e—'"'+pf~(k)e'"' (A7b)

where f~(k) = fd rf~(r)e ' ' is the Fourier transform of the single-particle charge distribution. It follows that

a a,
a=P=O

1/2

T (j)(r) sin

1/2

y(')
)

2
= —fd rd r'f~( —k)fg(k)e '"" '' sin

r 1/2

p(0) = fg(k)fg( ——k)(n (k)n ( —k) ) = —(n(k)n( —k) ) . (A8)
SG

2z
sf~i)s)f)( —)s)(cos

2m

T

(A9)

which gives

In deriving Eq. (A8) we have dropped a term proportional to [(sin(2m/T)P(r)), o] since (sin(2n/T)(t)(r)), o ——0 which
follows because it is an odd function of P(r). Now make the transformation

1/2 1/2

p'(r) =p(r)+ ae ' '+ pe'"',
2& 2m

A ' p(r)=—

Thus

1/2
—ikr

1k8 CX-
2m'

' 1/2
T

2m
i ke'"'p V()I)'(r) — k ap — + cos

T z a+ 2z

2g 2
2m

T

1/2

P(r) . (A10)

ln(Z' ) = —d rd r'e '"" ''k (Viti(r)Vitp(r')) — k'= k G(k)—n aa aP
" ' , , 2~ n 2~ 2~ 2~

(Al 1)

where the last equality follows by partial integration.
Combining Eqs. (A8) and (All) gives f(r)= f 1 — (n(k)n( —k)) e'"'.

(2n. ) k 2T (8 lb)

—(n(k)n( —k)) = G(k) — k
277 2m.

(A12)
Do the angular integrations in Eq. (8 la) which give

which by aid of Eq. (3.6) turns into the well-known for-
mula for linear screening

Vl (r)=2m f dr'dk Jp(kr)JO(kr')f(r')d ~, T

dr dr
(82)

Vg(k) = 1— (n(k)n( —k) )

APPENDIX 8

(A13)
where J„ is the Bessel function of order n. Next use

d
Jo(z) = —Ji(z)

dZ

The calculation of I" = —(d/dr) VL (r) goes as follows:
VL (r) is given by the linear screening formula Eq. (3.10)
so that

V (r) j eikr fd2 ikrf(

where

resulting in

VI (r)= —2mf dr'dk r'J~(kr)JO(kr')f(r') . (83)
dr

The k integration may now be carried out using the for-
mula"
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00 1/a, P (a
xJ&uxJo x= ~

0 0, &a

which gives

2mVI(r)= —f dr'r'f(r') .
dr r

(84)

(85)

( n(k)n( —k) ) =fd r'e' '(n(r')n(0) )

=2m f dr'r'Jo(kr') (n(r')n (0) )

=2m f dr'r'[Jo(kr') 1](—n (r')n (0)),
(87)

where ~n the last equality we have used the charge-
neutrality condition fd rn(r)=0. Thus f(r) may be
written as

Integrating Eq. (8 lb) results in

f(r)=5(r) ——f (n(k)n( —k))Jo(kr) .1 ~dk
T 0 k

The Fourier transform of the charge-density correlation
function may be written as

f (v) =5(r) f—dk dr' J(kr—)[J (kr') —1]T o k '
X(n(r')n(0)) .

Inserted in Eq. (85) this gives

(88)

P

VL(r) = ——+ f dk dr' f dr rJo(kr)[Jo(kr') 1]—(n(—r')n (0) )dr r Tr 0 k

Next we use the formulas'
a
dx xJo(x) =aJ, (a), (810)

~ dxf [Jo(ax)—1]J~(bx)= .

b Q1+2 ln

Q
, . 0&a &b

0&b&a
(811)

and express Eq. (89) as

r f dr'r'f 1 +2ln(r'/r)](n(r')n(0) )

d 1 4n"dk.
dr r T o

VL (r)= ——+ f dr'r'J, (kr)[Jo(kr') 1](n(r')n (—0))

2 y r' r' n r' n 0
r Tr

1 m 2% ~, , r+ r f dr'r'(n(r')n(0))+ r f dr'r'ln —(n(r')n(0))
re(r) r (812)

Using Eqs. (4.6) and (4.8) it may be expressed as

d 1 2m2z (l)z
dl g(l) T (814)

which is Eq. (4.9a). Starting with Eq. (4.8) and differen-
tiating gives

where in the last equality we have used the definition of
e(r) given by Eq. (2.18). The force between the test
charges is F= —

BVI (r)/Br and Eqs. (2.19) follow with
I'~, E2, and I'3 corresponding to the three terms on the
right-hand side of (812},respectively.

To produce the calculation of Eqs. (4.9) start with the
length-dependent screening function e(r) [Eq. (2.18)] and
differentiate with respect to l =ln(r/g),

r (n(r)n(0)) .d 1 7T (813)
dl p(l} T

T

d
l

z (l) 2vF(r) (815)

where F(r) is the force acting between two infinitesimal
test charges [see Eq. (812)]. From Eq. (812) one has

2rF(r) (816)T
2 +A (l),

Tekel)

2' r3 (l) = f dr'r'[1+21n(r'/r)](n (r')n (0) )

f 2 fl+21n(r'/r)]
T f r dr' p(r' )

and Eq. (2.18) was used to obtain the last equality. Partial
integration now gives
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A(l)=— +4f dl'(l' —l )e
Te'(l) ' Te(l')

2 + GX Xe
Te(l) Te(x /2+ l)

(819)

Insertion in Eq. (816) yields

2 4r f d, 1n(r'/r) 1,
( )

Te(r) T " (r ) E(r')

Switching to a logarithmic length scale l'=1n(l'/g) and
changing variables give

The integral appearing in Eq. (4.9b) may by partial in-
tegration be rewritten as

Idxe x
Te(l +x /2)

+ —,f dx(x+1)e "h(l+x/2) .
Te(l)

(C2)

From Eq. (4.9a) one has

2rF (r) ~d „1dx xe
TF(x /2+ l)

2z (l)H
T2 (C3)

Now insert Eq. (820) in Eq. (815) and Eq. (4.9b) follows.

APPENDIX C

Start with Eqs. (4.9) and define

Combining this with Eq. (4.9b) and using Eq. (C2) gives

dl Te(l)
1n[h(l)]=4 — ——,

' f dx(x+1)e "h(l+x/2),

h(x)= d 1

Te(x)
(C 1)

which upon integration becomes

(C4)

h (l)
h (0)

l
dx 4—

Te(x)
Gfx x+1 8

Te(l+x /2)
1

Te(x /2)
(C5)

Partial integration of the terms on the right-hand side and exponentiation turns Eq. (C5) into

h(l)=h(0)exp 4— l+ f dxxh(x) —f dxh(x) ——,
' f dx(x+2)e "[h(l+x/2) —h(x/2)]

Te(l)
(C6)

One notes that
I

+ f dx h(x)
Te'(0)

and Eqs. (6.1) fo11ow.
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