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Two-dimensional XFmodel in a random uniaxial field
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We present a low-temperature analysis of the two-dimensional Xl'model in the presence of a ran-
dom uniaxial field, which points in the +x directions with equal probability. We first construct a
domain argument, valid at zero temperature in all dimensions, which indicates that in all dimensions
the ground state is ferromagnetic, for small field, and the magnetization points in the y direction.
We then construct Kosterlitz-style recursion relations for this model in two dimensions. Analyzing
t;hese equations, we find an ordered phase with Ising symmetry at nonzero temperature and small
values of the random-field strength. Thus, the random field induces long-range order in a system
which exhibits only quasiorder in its pure state. We also consider the p-state generalization of the
model, and find an ordered phase with 2p-fold symmetry at nonzero temperature. Our results are in
disagreement with earlier work by Dotsenko and Feigelman, who found a paramagnetic phase at
low temperatures.

I. INTRODUCTION

Since the development of theoretical tools to study the
two-dimensional XY model, several studies have focused
on the properties of the model with quenched random dis-
order. The types of disorder considered were bond disor-
der, ' random Dzyaloshinski-Moriya interactions, and
random symmetry-breaking fields. Here we study the
XF model in the presence of a uniaxial random field.
This model was previously studied by Dotsenko and
Feigelman, but our results disagree with theirs, even on a
qualitative basis.

Our model is defined by the Hamiltonian

H = —J g cos[8(r) —8(r')] —h icos[8(r) —P(r)],
(rr') T

gument, valid at zero temperature, which demonstrates
that in all dimensionalities the ground state is ferromag-
netic.

Dotsenko and Feigelman have studied (1.1) in two di-
mensions using the renormalization group, and find a
paramagnetic phase at all temperatures including zero
temperature. As this result conflicts with our domain ar-
gument, we have undertaken an independent
renormalization-group analysis and have found that long-
range order in the y direction does exist at least at inter-
mediate temperatures. At very low temperatures we are
unable to determine the phase diagram, though we expect

where 8(r) is the angle of the spin at site r on a square lat-
tice, and J is a uniform, ferromagnetic coupling. The
field strength h is assumed to be nonrandom. The
quenched angle variable P(r) takes on values 0 and ~ with
equal probability. If 8(r) and P(r) are measured from
zero on the x axis, then for h&0 the random field at-
tempts to align the spin with the + x direction for /=0
and the —x direction for P =n.. In the isotropic random-
field models studied in Ref. 3, P assumed all values be-
tween 0 and 2m with equal probability.

For h &&J the system will be paramagnetic, with the
spins following the local random fields. Of interest is the
behavior in the nontrivial regime, h ~J. This regime was
considered in 4—e dimensions by Aharony, who found
that the spins order in the direction perpendicular to the
fields (i.e., the y direction in our model) at low and zero
temperatures. At each site the spin points primarily in
the y direction, with a small component along the local
random field. This ordered phase, which has Ising sym-
metry, is bounded by a phase boundary with Ising ex-
ponents (see Fig. 1). In Sec. II we construct a domain ar-

por Oma gnat

FIG. 1. Phase diagram for (1.1) in all dimensionalities greater
than 1. This phase diagram was obtained near four dimensions
in Ref. 5, where the Ising fixed point controlling the phase
boundary is accessible in the renormalization-group analysis. In
our two-dimensional renormalization-group analysis (Sec. III)
we can only establish the Ising nature of the phase at intermedi-
ate temperatures but we speculate on the basis of our domain ar-
gument (Sec. II) that the full phase diagram is as shown. The
Ising fixed point is not accessible in our analysis. For p=2 [see
{1.2)] the phase diagram is qualitatively similar, though the or-
dered phase now has the symmetry of a four-state clock model
and the phase transition is presumably in the universality class
of that model.
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that it has the same qualitative form as Fig. 1. Thus, a
model, which in its pure state exhibits only quasiorder at
nonzero temperatures, displays long-range order when
placed in a uniaxial random field. This order is brought
about by a fluctuation-induced nonrandom Ising
symmetry-breaking field, as is the case near four dimen-
sions. Dotsenko and Feigelman have apparently not con-
sidered this possibility.

We also study the p-fold generalization of (1.1). This
generalization is obtained by replacing the last term in
(1.1) by
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FIG. 3. Phase diagrams for (1.2) in two dimensions with

p & 3. The phase indicated by dots exhibits quasi-long-range or-
der. The low-temperature phase is ordered with the symmetry
of a 2p-state clock model. As in Fig. 1, the phase boundary ter-
minating the ordered phases is inaccessible to our theory.

where again P =0 or m with equal probability. For p=2,
e.g., the last term in (1.2) corresponds to a local easy axis,
parallel to either the x or y axis with equal probability.
By contrast, in the isotropic random-axis model, the local
easy axis points in any direction in the x-y plane with
equal probability. Our renormalization-group analysis of
Sec. III indicates that under renormalization a nonrandom
2p-fold symmetry-breaking field is generated, provided
k+T/J &4mlp . This 2p-fold field induces long-range
order with the symmetry of a 2p-state clock model. The
long-range order is along one of the 2p bisectors of the an-
gles between adjacent directions picked out by the random
field (see Fig. 2). For p=2 the phase diagram is qualita-
tively similar to that of p= 1 (Fig. 1). For p )3, however,
as first noted by Dotsenko and Feigelman, a phase of
quasi-long-range order exists for a range of temperatures
below the Kosterlitz-Thouless point. This phase then
meets the low-temperature ordered phase as shown in Fig.
3.

Our low-temperature results differ substantially from
those of Dotsenko and Feigelman, who predict a
paramagnetic phase at all temperatures for p= 1 and 2,
and at low temperatures for p)3. These authors have
apparently not considered the possibility of generating a
nonrandom 2p-fold symmetry-breaking field under renor-
malization.

II. DOMAIN ARGUMENT

(c)
FIG. 2. Illustration of the special directions in the model

(1.2) when p=4. Panels (a) and (b) denote the two sets of ran-
dom axes which occur with equal probability in the system. In
pand (c) we superpose these random-field directions, and show
the directions (using solid vectors) of the eightfold nonrandom
symmetry-breaking field generated under renormalization (see
Sec. III).

We analyze (1.1) in d dimensions at zero temperature
by means of a domain argument in the spirit of Imry and
Ma. Because of the uniaxial nature of the field, the sys-
tem can break up into domains, yet still exhibit ferromag-
netic order. We assume that the system breaks up into
domains of size I and in each domain the average mag-
netization makes an angle 8 with the average field direc-
tion (see Fig. 4). In a system of volume V, the energy of
our collection of domains is given approximately by



32 T%'O-DIMENSIONAL XY MODEL IN A RANDOM UNIAXIAL FIELD 3083

For 6=0, (2.2a) is solved by
1/{2—d/2)

4m J
hd

(2.3)

FIG. 4. Domains in the XY model with a random uniaxial
field. The dashed vectors denote the average field direction in a
domain, while the solid vectors denote the average magnetiza-
tion near the center of the domain.

(2.4)

In the case of the isotropic random field (i.e., 6=0), if
we insert (2.3) into (2.1) we find that below d =4 the ener-
gy with L =L, is lower than the corresponding energy
with L~ 00. Hence, one obtains the Imry-Ma result, i.e.,
the ground state is paramagnetic for d & 4.

In the case of the uniaxial field, though the system
prefers to have L& oo below d=4, the ground state can
still be ferromagnetic, though unsaturated. We assess this
possibility by evaluating BE/86 at 8=0,L =L, and find

4/(4 —4)
BE 4m J= —V (4m J) .

e=o, L, =L,,
Thus, for all dimensionalities the system can lower its en-
ergy by having 6&0, and thereby assume an unsaturated
ferromagnetic state with order in the y direction.

E =
&

[JL (m —26) —hL (cosB)] .
Ld

(2.1)
III. RENORMALIZATION-GROUP ANALYSIS

= V 2JL '(m —2—B)2+ L "~2 'cos8 =0,
BL 2

(2.2a)

= V[ 4JL (n.—26)+h—L d~2sinB] =0 .e (2.2b)

Rather than solving (2.2) exactly, we simply examine the
stability of the solution for 6=0 (paramagnetic behavior).

The first term in (2.1) accounts for the cost in exchange
energy. It assumes that every domain is surrounded by
domains with fields of opposite directions and the spin ro-
tates smoothly from one domain to the next. Improving
on this assumption, however, would only alter the prefac-
tor of this term and not affect the critical dimensionality.
Note that for 6=0, (2.1) reduces to the energy considered
by Imry and Ma in their analysis of the isotropic
random-field model.

We now minimize E with respect to L and 6 to see if
the system prefers 6=0 (paramagnet) or 6&0 (unsaturat-
ed ferromagnet). We obtain two equations:

We now analyze (1.1) in two dimensions (2D) by con-
structing renormalization-group recursion relations usi'ng
the Kosterlitz method. We use the replica method and
have obtained identical results without the use of replicas.
We first study (1.1) in the spin-wave approximation. It is
simple, to the order that we work, to include the effects of
the vortices in the spin field at the final stage. We consid-
er the replicated partition function,

r

n nZ"= g + f d8 (r)exp —g H
a=1 r a=1

(3.1)

where the reduced Hamiltonian Ha is given by

with —~ &8 & ~, K=J/ksT, and H =h/k&T. We
follow the usual procedure ' for studying symmetry-
breaking fields in the 2D XF model, and represent the
field portion of the action as follows:

H =—g [8 (r) —8 (r')]2 —H icos[8 (r)+P(r)),
& rr'& r

(3.2)

exp HP+cos[8 (r)+P(r)]
a r a m~(r) = —oo

~„~(H)exp i gm (r)[8 (r)+P(r))
a

(3.3)

(» a«modifi«Bessei «nctions. We can then readily average (3.3) over the quenched va„able y(r) to ob
tain

1
2m' 00

' fo ~ [ ~" + ~(") e p HXXco [8 (r)+0(r)] = ff g' I („)(H)exp imam (r)8 (r)'
a r a m (r)= —oo a

(3.4)

The prime on the summation sign on the right-hand side of (3.4) signifies the constraint induced by integrating over the
randomness, namely

n

Q m~(r)=8',
a=1

(3.5)
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where 8' denotes an even number, at every site r. By contrast, for isotropic random fields, ' ' the right-hand side of (3.5)
is replaced by zero.

Our effective partition function is then

z ff =II f ~
[5(P(r))+5(P(r)—n )]z"2~ dP(p)

f d8~(r) g' I~ (r)(H)exp —2K g +[8~(r) 8~(—r')] +i pm~(r)8~(r)
a r m~(r} (r r') a a

(3.6)

The general forms of the charges satisfying (3.5) are ei-
(s) (s&,s2)

ther m a, s even, or m a with s 1 and s 2 both odd.
The superscripts denote the absolute value of the entries
in the charge in replica space. Writing the charges as n-
dimensional vectors we have

m""=(O,O, +1,O, . . . , +1,O, O),

m'"=(o, +2,o,o, . . . , o,o,o),
m" '=(0,0, +1,0, . . . , +3,0,0),
m'"=(o, o, +4,0, . . . , 0,0,0) .

(3.7b)

(3.7c)

(3.7d)

The ellipses in (3.7) are all zero. More complicated
charges of the forms, say m""" or m' ' ', are con-
sidered to be superpositions of the most elemental charges,
i.e., (3.7a), (3.7b}, and (3.7d) at the same lattice site, and
thus are not independent entities.

The fugacities associated with the charges (3.7) take on
the initial values

Ii(H)
3'l, (

I2(H)
Io(H)

I((H)I3(H)
I()(H)

I4(H)
Io(H)

(3.Sa)

(3.Sb)

(3.Sc)

(3.8d)

Zeff (Zsw)"[Io(H)1" g f(N}Z(N},

where M is the number of lattice sites, and

(3.9)

where we have factored out from (3.6) [Io(H)]", the fuga-
city of a zero charge.

Integrating (3.6) over 8~(r) we write the result as an ex-
pansion in the numbers of the various types of charges:
for simplicity we display only m ""and m ' '. We find

f d8(r)exp ——, K g [8(r) 8(r', )]2
r

(3.10a)

X= II X II
m(1, 1) N(m(~ ~))=0 m(2) N{m(2))

N(m(' '))
3'2

II, [N( (, „)] II, [N(m(»)]

(3.10b)

(3.10c)

T

m(1, 1) i{m(1,1)) 1
'0 aO m(2) j(m(2)) 1

f j(m( ) H I~ I
T. (2)

go g20
(3 ~ lod}

and

1 N(m) N(m')
H= g g g g m m'G(r((~) —rj(~)) .

m i(m) =1 m' j(m') = 1

(3.10e)

In (3.10b), N(m"") represents the number of charges of
a particular permutation of (3.7a); a similar statement
holds for N(m' '}. In (3.10d), II (», represents a prod-

uct over all configurations in replica space of the charge
form (3.7a). In (3.10e) the summations over m and m' are

each separation sums over all permutations of the charges
m"" and m' '. The integrations in (3.10d) require that
no two charges both with a nonzero entry in the same re-
plica component come closer together than the lattice
~p~~i~g Qp. The Green's function G(r —r') is the usual
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logarithmic interaction between charges:

G(r —r') =ln
ao

+—
2

' (3.11)

The slashes in the summation signs in (3.10b) denote that
all charge configurations contributing to (3.10) must obey
spatial charge neutrality, i.e.,

(l, l)~( (1,1))+ g ~(2)~(~(2)) 0 (3.12)

—4+Ky (3.13a)

y 1, 1+4~« —»(y1, 1+y 1, 3 )
1 2 2

2mÃ

+ ~(yl, ly2+y1, 3y2+y1, 3y4) (3.13b)

The details of the renormalization-group calculation are
relegated to the Appendix. We find the following recur-
sion relations for K, yi 1, y2, yi 3, and yz, and the vortex
fugacity y, correct to second order in these fugacities:

dK
=m[2(n —1)yi 1+4y2+20(n —1)yi 3+16y4]2 2 2 2

placed by similar equations, except that in
(3.13b)—(3.13e), K~K/p . We see then that for p &3
there is a range of temperatures below the Kosterlitz-
Thouless point where all of the charge fugacities are ir-
relevant.

We now analyze (3.13) and their p-state counterparts
with n =0. As discussed in the last paragraph, our
analysis is restricted to 4m/13p &K '&m/2. We have
considered, however, the extension of (3.13) to all charges
with I ( 100, allowing us to probe temperatures down to
K '=4m. /53p (Figs. 5 and 6 are based on the latter
analysis). The generalization of (3.13) to all charges is
shown at the end of the Appendix.

Analyzing (3.13) numerically with dl=0.01, we find
that yi 1 initially grows and reaches a maximum of about
0.1. Subsequently y~ ~ drives y2 negative. The negative
y2 drives all fugacities of the form yi, , s2 odd, to zero.qSg &

Similarly, y6 drives all fugacities of the form y3, to zero,
etc. This behavior is illustrated in Fig. 5 for initial values:
H =0.1, K '=0.35m..

Since all of the double-subscr'ipted fugacities have been
driven to zero, or are negligibly small, the replica coupling
in the system has vanished and only a nonrandorn field
remains. At each site in the system, this field yields a fac-
tor in the partition function given by [cf. (3.7)]

3'2 1 2 22 — y2+Zn (n —1)(y 1 1+2y 1 3yi 1+y 1 3 )

e ' '=1+2y2(l*)cos[ZpO(r)]

+Zy4(l')cos[4p8(r)]+ (3.14)

+2~Xm4 (3.13c)

+4m(n —2)y 1 iyi 2, (3.13d)

4 2y4+Zmy2+4~(n —1)yi iyi 3,
mE

=(2 —mK)y .

(3.13e)

(3.13f)

5
y 1,3 +2 ir(y 1, ly 2 +y 1, ly 4 +y 1,3y 2 )

where only fugacities with a single even subscript appear,
and l* corresponds to our last iteration of (3.13) (see Fig.
5). We have plotted (3.14) in Fig. 6 for p= 1. We see that
V(8) is a potential, that induces order along the directions
0=1r/2 and 3m/2, i.e., along the y axis. Thus there is an
ordered phase in this temperature range with Ising sym-
metry. For general p, (3.14) is a function with Zp peaks
and periodicity Zvr/Zp We also n. ote that when the fuga-
cities yi 1 and yi 3 are set to zero in (3.13), we ob'tain the
recursion relations derived in Ref. 8 for an XY model in
the presence of a nonrandom Zp-fold symmetry-breaking
f]eld.

It is difficult to ascertain the behavior of this model at
very low temperatures where more and more fugacities be-
come relevant. Given our domain-argument result of Sec.

The most relevant charge fugacity in (3.13) is y11,
which is relevant for temperatures less than K '=4m.
The eigenvalue of the fugacity associated with a general
charge m is 2 —m /4m. K. Thus, the charges considered in
(3.13) are the only ones relevant for temperatures greater
than K ' =4m /9 (corresponding to the temperature
where m' ' ' becomes relevant). Since y becomes relevant
at K '=m/2, we can use (3.13) in the temperature range
4n/9 &K ' &n/2. We also note that unlike the situation
in the isotropic random-field model, ' ' " there is only
one coupling K here, and no off-diagonal (in replica
space) coupling is developed. In the isotropic case, the
off-diagonal coupling represents a random
Dzyaloshinski-Moriya interaction, which is not generated
when the field is uniaxial.

For the general p model defined in (1.2), (3.13) are re-

0.25

600

-0.25
itero tions

FIG. 5. Numerical solution of (A8) for charges withI & 100, for initial values H=0. 1, K '=0.35m. For simpl1c1-
ty, we plot only y&, &, y2, and y4.



3086

4 p

BRIAN J MINCHAU AN D ROBERT A COVI TS 32

osterlitz
fectiv

Inal jzat'
e Partition Z d

n group anal

tegrate out th
err defined in (3 10)

Ysjs of the ef

we integrat
-wavelength d

3' 1) We j
e short

and

e over the
. . egrees of

within a d
positions of 1

reedom

tance a +
o a 1 char es

ccompl h
Q of each

g which c

follows:
ing up the int

' Procedure is
e ra lOnS in s

0
t

m./2
(

FI~ P1ot of e p'(g)

~m/2 8Ir

va&ues Il—o.1

~ (3.14), after 588
'

and g —~

' 8 iterations

this jt
—O 35~. The

filth jnjtja1

point are
'

eration
' e nonzero

4 = 411, y6 — O 1
y1 1 1.28 X 1O

—2
gacltgescharge fu

have neglected
. 8 O 1OO, and y

y2 = —o, .562,

js r
.
d}

y&, i jn making th.
o= —3.8&&1O

—2

occurring at g=
. ~he subsid'

' ates that jt
'"y p"k. ."

tIons and Ina b
' . have no obv

In )(p[ V(g)]

e a«jfacts of th
' us physjca1 i t

e second- d
erpreta-

-«er e uatj ons.

exPect tha
in Fi .

at the phase dla r
g 1 fot p —1 d

gra swjllbe

wn to zero temperature.

ACKNOWI. EDGM ENTS

We are grateful to A
h mbl

University h
d fo h' hospitality at

s work was bee . also ack-egun. We a

Binational Science

) under
e ational nce

H1J
1

( ) ""( )r; G(r r;) —G—( r rJ )], —

(A2)
G N

APPENDIX:

o. DMR-83-02842.

: DERIVATION RECURSIONOF THE
S (3.13)

wh ere the sum
'

um is over
'

e sites indicated
'

J

t e difference of tho t e Careen's fun tc ions.In this appendix c Ion of (3.13) us-
, 7, and 9. We perform a

( 10d a

J.,=y" '
We kee

~0+5go
'

eep terms onl
onlY pairs of

& o order ga

other. W
ges that come, we integrate oout

. o+ o of each

an
r In the fu a

'
ecursjon re

nd quartets of
gacities. Co

e atlons to

or
s 0 char es

onsl eratlon

rder terms (3
g would In

of tnplets

considerat,
' lf the two ch

p Veld h;gher
S 111

Prlnci le

are equal an
arges ln the

Po e~ screening th
'

d opPosite, the
p ir under

charges. Th
interaction b

ll form a

right-hand sid
is the source of

e rema

is t
o (3 13a

o th term

e screenin d
The last te

s on the

Oli Kosterlit
ol tlces and

q ation

random-f" ld
e from the

g two terms

2
- ie charges.

e screenin d
s in

&(1,1) involv~~
.

The first te
g " « the

the term
' of charges of h (I

P oportional

P«tion
charges. Th

nal to y l
variety, wh l

~ e specific
2 involves a

'
i e

bY followj
' rIn of th

pa' of m'2)

ese terms c

siderjng th I I)
'x A of Ref 3 b

c» be derjved

Involving th.
0 we expand th

co11-

gJ we have
Pal: de t

Part of
g this part f as

1 ])

I

/j
(1,1)a = ~m "(r) m"" r(r;)[a;J VG(r —rr; r —r;)+=,'(a; V) G(IJ r —rj ) + (A3)

H;.

over m "(r; )]
of H" to second o

e "=1+ I[aJ"VG(r r;)] a" V; m —r m ' rr; aJ VG(r r)][ (—rmm"" r—V; m r m"" r; ][m(r').m""( .r; j. (A4)

where a,j —r; —r.r; —rj, &o&
opping terms that con ro a

Po P g ' "p'n'n"" rder in a , one finds [after

To trace over m""(r.r;), we use

(A.m(1, 1))( (1 1)

m(1, 1)

.g) (m(1, 1) 2m ' = m ' ) g (1) A 8
I(&, [)

(AS)

for anny vectors A and B. Thee right-hand sisI e of (AS) can bee simplified b ne y noting that (mm '') =2, and



32 T%'0-DIMENSIONAL XY MODEL IN A RANDOM UNIAXIAL FIELD 3087

„„(1)=2 (z) =2n (n —1), which is just the number of distinct charges of the m"" variety. We then integrate over
the shell, sum over a, and integrate over r; [see, e.g. , Appendix A of Ref. 3(b)]. The contribution to (3.13a) proportional
to yt t follows immediately. Similarly, to derive the contribution proportional to yz, we follow the same procedure, re-
placing (A5) by

z $ (A.m' ')(m' 'B)= (m' ') $ (1) A B=4A B .
m(2) 2n m(2)

The second-order terms in (3.13b)—(3.13f) arise from counting the number of ways two charges can form a composite
charge of the same form as the one whose fugacity we are renormalizing [see, e.g., Refs. 3(b) and 9]. For example, in
(3.13c) the term proportional to y t &

arises from the following vector addition:

(2 P P .)=(1,0,0, . . . , 0, ~1,0, . . . , 0)+(1,0,0, . . . , 0, —1,0, . . . , 0) .

(t'+ j')3;,,y;,,+ (ASa)
i =1,3,5, . . . , j=1,3,5, . . . ,

There are (n —1) positions for the + 1,—1 entries which will satisfy (A7). The «rm p«portional «yt, i then has a

coefficient 2m(n —1), the factor of 2m. arising from a geometrical factor of 2m- occurring in the integration over a. Using

these techniques it is straightforward to generalize (3.13) to second order in all charge fugacities:

=~ (n —1) i y; —4mXy
dl i=2, 4, 6, . . . ,

d3's, ,s, (s t +sz )
2 —p ~ k y$$~

l =ls3, 5, o ~ ~

2)&, , '3', . +3', +'3', , +3', + 3', , +3', + +t, ,3'+t+P, +.+t, 3'+t]

(y;, y, ;)+2~
$1 2+2n-

i=1,3,5, . . . ,

where s~ and s2 are both odd, and

$2

j=1,3, 5, . . . ,

(3'J', sP's, —J ) ~ (ASb)

dy,

dl
p 2s 2

2 — y, +2m(n —1)
4m% j=1,3,5, . . . ,

$ —2

i =I,3,5, . . . ,
yl, jyS+i,j+

l=1,3,5, . . . ,
yijy$ —i j

i=2,4, 6, . . . ,
y;y, +i+2m.

i =2,4, 6, . . ~,
yiyS —l

(A8c)

where s is even. If the upper limit in any summation is
less than the first value to be summed on, then there is no
contribution from that sum.

The generalizations of (A5) and (A6) are, respectively,

(A.m 1' 2 )(
1' 2

(s),$~ )

I

and

i X(A'm )(m 'B)= (m")' g(1) A.B.

(m ' ' )' g (1) A.B, (A9)
1' 2 (A 10)
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