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Hyperfine tails and exchange-field distributions in amorphous magnetic spin glasses
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Almost nothing is yet known about the nature of the "frozen disorder" of magnetic moments in
concentrated magnetic spin glasses (or "speromagnets") such as {amorphous) a-YIG (yttrium iron
garnet), a-FeF3, and a-NaFeF4, beyond the qualitative description of "randomlike. " This paper
probes the nature of the nearest-neighbor spin correlations in such systems by analysis of hyperfine-
field distributions as measured by 4.2-K Mossbauer spectroscopy. Low-field tails are found to exist
on the hyperfine distribution spectra of amorphous speromagnets but not amorphous ferromagnets.
They indicate the presence of low-energy exchange-field states in the former caused by the cancella-
tion of nearest-neighbor contributions within the frustrated spin network. Their interpretation has
been used to determine the detailed exchange distribution function for a-YIG, a-FeF3, and a-
NaFeF4 and, by comparison of the results to the expectation for a set of randomly oriented spins, to
monitor the nature of nearest-neighbor spin frustration in those amorphous speromagnetic systems.

I. INTRODUCTION

All amorphous systems containing a high enough con-
centration of localized magnetic moments appear to un-
dergo magnetic transitions as the temperature is lowered
to phases in which each spin S; acquires a nonzero time-
averaged value (S; ). These "magnetically ordered"
phases fall into one of two classes, according to whether
they possess, or do not possess, a bulk magnetic moment.
For the purpose of this paper these two classes are re-
ferred to as ferromagnetic and "speromagnetic, "' respec-
tively, without any further implied restrictions. Experi-
mentally, most amorphous ferromagnets are metallic,
while amorphous speromagnets occur both in metals and
nonrnetals.

In the course of conducting Fe Mossbauer experi-
ments on several amorphous iron-containing ferromagnets
and speromagnets we have observed a feature of
hyperfine-field distribution phf(H) at 4.2 K which is con-
sistently present in speromagnets and absent in ferromag-
nets. It is an extended low-field tail on phr(H) which sig-
nifies the presence of a non-negligible fraction of spins
which are not close to saturation

~
(S;)

~

=S at 4.2 K,
even when the spin-ordering temperature is an order of
magnitude or more higher. These are spins which experi-
ence an exchange field H,„ for which glj,sH,„(k&(with
T=4.2 K) and implies the presence of low-field states in
the exchange-field distribution p,„(H,„) as well. In gen-
eral, speromagnetism results from magnetic frustration;
the inability of spins to simultaneously minimize all pair
exchange interactions 2J~S;.SJ for topological reasons.
The result is an outwardly randornlike orientational con-
figuration of "frozen" spins. Most theoretical work on
the form of the function p,„ for systems of this kind has
been performed in the context of the classic metallic "spin
glasses" for which the concentration of magnetic atoms is
small but the exchange interaction range r large. Con-
clusions here favor the existence of a "hole" in the ex-
change distribution at small fields. Thus, for example, in
a Ruderman-Kittel-Kasuya- Yosida —like model, with

J,J ~ r and alternating in sign with increasing range, the
computer generated p,„shows a distribution which is only
modestly perturbed from the random-spin molecular-
field approximation

p,„(H,„)cc rIH, „/(H,„+rl ),
where g is a constant proportional to the spin concentra-
tion.

In sperornagnetic insulators, such as amorphous a-YIG
(yttrium iron garnet), a-FeF3, and a-NaFeF4, exchange in-
teractions Jz are not only restricted to single-anion-
bridged nearest neighbors (NN), but are dominantly (and
in some cases probably exclusively) of one sign, viz. anti-
ferromagnetic. In these cases frustration is presumably
produced by the presence of odd-numbered rings of anti-
ferromagnetically interacting spins although, to our
knowledge, no modeling of the magnetism of such amor-
phous speromagnets has yet been carried out.

In this paper we calculate first the theoretical distribu-
tion p,„of exchange fields for a rigorously randomly
oriented molecular-field configuration of magnetic mo-
ments, each with z nearest neighbors (NN) magnetically
interacting via a NN-only Heisenberg exchange coupling
2JS;.SJ. This distribution is found to have no exchange
hole as H,„~O and, in fact, reaches its maximum value
at H,„=O. Such a distribution has a significant number
of tail states. However, via the intermediary of the
hyperfine-field distribution as deduced from Mossbauer-
Zeeman spectra, we are able to extract p,„(H,„) for a-
YIG, a-FeF3, and a-NaFeF4 and find that, while all are
qualitatively similar, they are grossly different from the
random-spin orientation distribution. In particular, they
all do possess an exchange hole as H,„~O which must
therefore be entirely produced by exchange-induced NN-
spin correlations.

Section II calculates p,„(H,„) in a random-orientational
approximation. Section III presents the Mossbauer-
Zeeman evidence for the existence of tail states in the
amorphous ferric speromag nets and their absence in
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amorphous ferromagnets. Section IV describes the
manner in which the grosser aspects of hyperfine-field
distribution (such as linewidth) in these speromagnets re-
flect the local magnetic coordination of the iron atoms
while Sec. V sets out the manner in which the finer details
of hyperfine line shape (including the tails) can be used to
determine the actual exchange distribution. The experi-
mentally determined p,„(H,„) is contrasted with the
random-orientational approximation of Sec. II in Sec. VI
and a final summary is given in Sec. VII.

II. THE RANDOM-SPIN-ORIENTATION
MOLECULAR-FIELD APPROXIMATION

Consider the zero-temperature limit of an assembly of
randomly oriented saturated spins S subject to the Hamil-
tonian

1, 0&h &1
z=1 p1(h)= 0 h 1

z=2

z=3

2 —h, 0&h&2
p (h)= '0

3—h2, 0&h &1
p3(h)= (9—6h+h )/2, 1&h &3

0, h&3

(32—12h +3h )/6, 0&h &2
z=4, p4(h)= . (64—48h+12h —h )/6, 2&h &4

0, h&4

TABLE I. The distribution p, (h) of Eq. (5) for z=1,2,3,4.

~=gg Jjs, s, . (2) H „=(2JS/gpss ) g cosO„

If each spin S; is assumed to interact equally (JJ. J) with-—
z nearest-neighbor spins, but not (J;J——0) with further
neighbors, the exchange field experienced by a representa-
tive spin So is

in which cosO„= So.S„/S and pz is the Bohr magneton.
For randomly oriented NN spins it follows that the distri-
bution of reduced fields h =gp~H, „/2JS over all states is
given by

7r 7r Z

p, (h) = f dO& sinO& f . f dO, &
sinO,

& f 5 h —g cosO„d8, sinO, .
n=1

Writing x„=cosO„ for all n =1,2, . . . , z, this simplifies to

1 1 1 Z

p(h)= f dx& f f dx, , f dx5 h —gx„
8 =1

For small coordination numbers z the integrals of Eq.
(5) can be performed directly, but with increasing algebra-
ic complexity as z increases. Analytic results for
z=1,2, 3,4 are given in Table I. For larger coordination
numbers numerical results are easier to obtain via the in-
tegral representation of the 5 function by use of which the

multidimensional integral of Eq. (5) can be transformed to
the one-dimensional form

p, (h) =( I/rr) f [2(sinK)/K]'cos(Kh)dK . (6)

Using Eq. (6), numerical computations for the distribution
functions p, (h), normalized to unit-total probability, have
been obtained and are shown in Fig. 1 for coordination
numbers up to z=10. In general they are seen to peak at
zero field (h=0) and, of course, for z (4 conform with
the exact representations of Table I.

0.8

0.6
CL

0.4

0.2

'l 2 3 4
h

FIG. 1. Distribution p, (h ) of exchange fields

8,„=2JSh /gp& evaluated from Eq. (6}for a randomly oriented
distribution of z nearest-neighbor spins. Areas under the curves
are normalized to unity.

III. HYPERFINE TAILS

In Fig. 2 we show the experimental Fe Mossbauer-
Zeeman spectra for (a) the amorphous ferromagnetic met-
al' Fe828&8 and (b) amorphous speromagnetic insulator
a-FeF3. Each is typical of its class; the former with very
broad overlapping lines resulting primarily from local
variations of magnetic moment with metalloid environ-
ment in the unfilled d-band context of the metal, and the
latter with Inuch narrower quasidiscrete lines in the fully
localized 3d context of the ferric ion.

More accurately, each Zeeman line on both types of
spectrum has additional significant width contributions



3069HYPERFINE TAILS AND EXCHANGE-FIELD. . .

—6 -4
I

—2 0
I

loo =-

97

96

F:95-
CQ
lX

UJ

loo

O 99

98—

97—
FeF~ T=4.2 K

II

—8 —4 0
VELOCITY (rnrn/s)

of ferromagneticuer-Zeeman spectrum o
Fe BI8 at T=296 K. (b) Correspo

for speromagnetic a rpmo hous e 3a

0

two hyperfine lineshapes L(H) whichxp
nex onential "low-fie d aicon e o po

I as mmetric Gaussian tria u
curves). o e. N t the formof themis i si

er shifts, electricdistributions of isomer
ld S'n" "'hd h erfine ie s.

~ ~

h 1'

t d'1 obt d h t
a different way to eac

h nviro t th s dis-
d od o 11o y

4, 5, 10

ians wi r'th emaining deviations stu ie y

h d't'b tio d d
ted residuals.

he details, i t e isg
in s then the ittingrapidly in the wings

f a least-mean-squares
h h b k d h

r encebymeanso a - - s
urately matc e

t p

h 11 mf
nex onential orm s

f the distribution, t engy
but most simp y

'
itself in several ways,

lly in Figs. 3(a) anwe de ict schematica y
'

mismatch. This we p'
th two types of low-3(b) for a single-line-line example wit w

zero as the energy goes toenergy tai, ogy '1 one which goes to zero as e
z ich does not.

the degree o ac
er Zeeman fits usingf ~o~~e~ged co~p~te

Cz ian distributions oasymmetric aussian

or three amorphous memetallic ferromag-Lorentzian lines) for
etic insulators. Us-orpo hous speromagne ic '

ding 0
ata averaged over t e

d d
g

case is (A) metallic ferromagnets
10):

a-Fes28is (0.1+0.6)%,
a-Fe7qPi6B6A13 (0.0+0.6)%,
a-Fe83Pi7 ( —0.3+1.5)%;

an
'

ma nets (T=4.2 K) (Refs. 4, 5,and (B) insulator speromagnets
and 11):

a-Y3FegOi2 (0.6+0.4)%,
a-FeF3 (4.0+0.9)%%uo,

a-NaFeF4 (4.7+3.9)% .

MS)re resent t e roo-h t-mean-square (RM
1dt d'ex erimenta a a a

diff b hthere a statistically significant di erence
spectral. ends.



3070 M. E. LINES AND M. EIBSCHUTZ 32

A pattern emerges. The metallic ferromagnetic spectra,
which with their very broad overlapping lines should be
the more difficult to interpret using a simple heuristic
model, 'have no statistically significant mismatch whereas
the insulator speromagnets all have a mismatch which
exceeds one standard deviation in the experimental
scatter. The mismatch is most clearly evident for a-FeF3
and, in fact, is easily visible to the eye in Fig. 2(b).

Since the major lines (1, 2, 5, and 6) of the six-line Zee-
man spectra are dominated by the distributions of hyper-
fine fields, we conclude that this mismatch, where it
occurs, is produced by a low-field tail on the hyperfine
distribution pht(H). The latter must be due to the ex-
istence of some iron sites for which the thermally aver-
aged electronic spin is very markedly reduced from sa-
turation. This, in turn, implies the existence of some iron
sites for which the exchange field energy gp~H, „&kT.
%'e conclude that such sites do not exist in the amorphous
metallic ferromagnets which we have studied (even at
room temperature) while they do exist in each of the insu-
lator speromagnets even at 4.2 K. Physically one would
anticipate that these abnormally low exchange-field sites
arise in speromagnets as the result of the exchange cancel-
lations produced by the complex orientational configura-
tions of NN spins. In particular, they obviously do exist
in the random orientational approximation of Fig. 1.

IV. LOCAL STRUCTURES

The hyperfine field H for ferric nuclei has two princi-
pal components H~ and Hsz. ' ' The local component

Hi„= —CSp/S (9)

is proportional to the electronic spin So on the site in
question, while the supertransferred component

Hsg ——g B„S„/S (10)

has contributions from all single-bridged nearest-neighbor
iron spins S„. In particular, for ferric ions the super-
transferred coefficients B„depend on iron-anion-iron
bond angles P„ in a known fashion, ' ' viz.

B„=H +(H —H )cos P„,
where H and H are known for many materials. For
example, their values (in kOe) for YIG, FeF3, and NaFeF4
are, respectively, ' (H;H ) = (35;6), (19;3.5), and
(17.8;3.2).

Hyperfine linewidths o(H) in ferric speromagnets are
expected' to be dominated by their supertransferred com-
ponent o(Hsq) as T~O. In a-YIG and a-NaFeF4 we
have earlier observed ' that the use of Eq. (11) coupled
with the assumption of quasirandom spin orientations
adequately accounts for the experimental observations.
For example, assuming a quasirandom spin-
configurational ordering of S„, the mean-square fluctua-
tion in the projection of Hsz on H~„ follows as'"

o'(H») =(z/3)(H —H )'(t'+2t/3+1/5), (12)

if P„exhibits a random-packing distribution [where z is

the mean number of singly bridged magnetic NN and
t=H /(H —H )], and as

cr (Hs~)=(z/3)[H +(H —H )cos P] (13)

o(Hs~) =23 kOe, a-YIG

o(Hs~)=22 kOe, a-FeF3

o(Hsz)=16 kOe, a-NaFeFz.

(14)

V. EXPERIMENTAL DETERMINATION
OF EXCHANGE-FIELD DISTRIBUTIONS

The manner in which the distribution of exchange
fields influences the hyperfine distribution at T =0 in fer-
ric speromagnets has been set out in Ref. 14. It arises via
the supertransferred hyperfine component Hsz since both

if P„=P is approximately constant, as expected for a
quasicrystalline local structure.

Amorphous YIG is already known to be an essentially
random-packed structure" ' with mean coordination
number z=5. From Eq. (12) we find that o(Hs~) ac-
counts for 23 kOe of the measured total hyperfine width
o(H) =29 kOe at 4.2 K. The difference is presumably ac-
counted for by C parameter variations in Eq. (9) due to
the not insignificant distribution of local ligand coordina-
tions in the random-packed environment.

Amorphous NaFeF4 on the other hand, is known to be
quasicrystalline on a local scale with z =4. Using Eq.
(13) with P set equal to its crystalline value of 150 we
find that o(Hsz) is 16 kOe. This compares with a mea-
sured o(H) of 25 kOe at 4.2 K seemingly at odds with ex-
pectations, but the origin of the discrepancy is known. It
results from the fact that 4.2 K for this case alone is not a
good approximation to T =0 since the spin ordering tem-
perature for a-NaFeF4 is only 12 K (as opposed to 30 K
for a-FeF3 and -40 K for a-YIG). The extra contribu-
tion is due to a distribution of IIj„resulting from non-
negligible thermal variations of local spin Sp in Eq. (9)

for all (not just tail) spins in this case.
For a-FeF3 the random-packed or quasicrystalline na-

ture of the local environment has not yet been determined
and models of each type have appeared in the litera-
ture. ' ' The determination can now be made using Eqs.
(12) and (13). In the random-packed model of Ref. 15 the
average magnetic coordination number is only z =4, lead-
ing to a value o(Hs~) =11 kOe from Eq. (12). Even if we
raised this coordination to z =6 the supertransferred
width is increased only to 14 kOe. The quasicrystalline
result, using Eq. (13) with z =6 and P set equal to its
crystalline value of 153', provides a very different value,
o(Hsz)=22 kOe. Since the measured total hyperfine
linewidth at 4.2 K is o(H) =24 kOe, and there are no sig-
nificant thermal perturbations of Sp for most spins in this
case, the conclusion is clear: a-FeF3 is a quasicrystalline
structure with predominantly sixfold magnetic coordina-
tion and should be modeled along the lines of Ref. 16.

Finally, from this section, we note for use below the fol-
lowing values deduced for RMS supertransferred hyper-
fine linewidths as T—+0:
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H,„and HsT depend on the same Fe-anion-Fe local
bridge angles in a closely-related manner. Assuming that
a relationship between H,„and HsT can be expressed at
least approximately in a functional manner

He. -f(HsT) (15)

f(HsT) —exp( aHsT—/wo), (16)

in terms of which the hyperfine shape deviation from
exp( —HsT/wp) takes the form [Eq. (5.17) and Fig. 4 of
Ref. 14]

r(h)-he " [e " —(I+a ) '], (17)

0.06—
0,04—
0.02—

—0.02—
0.06

0.04

0.02

I

-2.0
I i I

q0+ $0 ~c

then the form of the function f can be probed from the
experimental hyperfine distribution phr(Hsr) which can
be determined from the shape of the outside Mossbauer-
Zeeman lines L ~ and L6 via their residuals. We examine
in particular the computer-generated deviation of
phf(HsT ) frotn an equal area symmetric Gaussian,
exp( —HsT/wo), the latter being assumed to adequately
approximate the distribution when H,„=O,' i.e., to
represent curves of the type p, of Fig. 1 when z & 4 (see
also Fig. 14).

A trial function of the qualitatively anticipated form, '

v1Z.

where h =HsT/wo provides a convincing fit to the experi-
mental data if a=1.0+0.3 as shown in Figs. '

4(a), 4(b),
and 4(c) for a-YIG, a-FeF3, and a-NaFeF~, respectively,
except in the wings. The discrepancies in the wings are
merely another manifestation of the tail effect due to the
finite temperatures (4.2 K) of measurement and will
be elaborated below. Meanwhile, writing H,„= a exp( —a h ) from Eqs. (15) and (16) and, in lowest or-
der, phf(h), -exp( —h ), . we formally derive the corre-
sponding unnormalized exchange distribution

p,„(H,„)=(H,„/a )" 'i [ln(a /H, „)] '
( l8)

which is shown in Fig. 5 for a =0.8, 1.0, and 1.2.
Since Eq. (16) is only a trial function of a qualitatively

anticipated form, no great significance should be attached
to the detailed algebraic form of Eq. (18). On the other
hand, its qualitative shape is presumably realistic. The
distribution p,„(x) is zero or nonzero in the limit x~0
according to whether n & 1 or u ~ 1 and rises to a max-
imum at x =1 before dropping sharply to zero (Fig. 5).
The divergencies at x =1 for all a, and as x~0 when
a & 1, contained in the specific analytic form of Eq. (18),
should probably be rounded to finite values in a less ideal-
ized approximation.

Defining tail states to be those for which gjc~H, „&kT,
the hyperfine tail amplitude near gp~H, „=k T (or
equivalently for ferric ions S/S=0. 77) can be approxi-
mately measured as the summed deviation of theory and
experiment in the wings of Fig. 4; viz. —1.5%, -5%,
and —8% of peak distribution for a-YIG, a-FeF3, and
a-NaFeF4, respectively, at 4.2 K. The total fraction f of
iron sites in this tail can be derived from these numbers
only if the shape of the hyperfine tail is known. This, in
turn, depends on the shape of the exchange distribution

—0.02
-0.04.r

0.06

0.04

0.02

-0.02

-0.04

-0.06
~oo ~

~y

h= H/Wo

FIG. 4. Measured T=4.2 K residuals r (h) of hyperfine line
shape (solid circles) are compared with the theoretical forms
(solid curves) of Eq. (17) with a=1 for (a) a-YIG, {b) a-FeF3,
and (c) a-NaFeF4. The ordinate scale is given as a fraction of
the parent symmetric-Gaussian peak value for each case and the
abscissa is measured fram this peak position as origin (i.e.,
h =0). Note that the abscissa scales are different for (a), (b), and
(c).

0.2 0.4
Hex«

0.6 0.8 1.0

FIG. 5. Unnormalized exchange-distribution function
p,„(H,„)of Eq. {18)for the a values 0.8, 1.0, and 1.2. The area
under each curve (and hence the normalizing factor for the dis-
tribution) is aver.
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TABLE II. Parameters relating to the exchange-field distribution of Eq. (18), or equivalently Eq. (6.8) of Ref. 14, as determined
from residual fits to the theoretical form of Eq. (17) [or Eq. (5.13) of Ref. 14] for the trial a values 0.8, 1.0, and 1.2. The detailed fits
for a= 1.0 are those shown in Fig. 4.

Material

wo (kOe)

Trial a value
c' (kOe)
a=c/2 (kOe)
~max

(a, & ao
%%uo spins in the

tail at 4.2 K

'Notation of Ref. 14.

0.8
5.0

360
48
38

1

a-YIG

33
0.014
1.0
4. 1

290
39
28

3

1.2
3.7

260
35
22
9

0.8
10.5

380
51
40

1

a-FeF3

31
0.028
1.0
8.8

310
42
30

3

1.2
7.9

280
38
24

8

0.8
8.1

250
33
26

2

a-NaFeF4

23
0.033
1.0
6.7

200
27
19
5

1.2
6.0

180
24
15
12

p,„(H,„) in the region gp&H, „&kT. For p,„=const in
this region the explicit form for this tail has been given
for ferric spins (Fig. 4 of Ref. 4) and, for this case, the
above amplitudes translate into f values of -2%, -7%,
and —11%,respectively, at 4.2 K.

These f values may'also be probed directly via a mean
Zeeman line position analysis as set out in Ref. 4 since
mean line positions depend on tail shape. Using the
p,„=const hyperfine tail shape, this latter analysis gives
corresponding estimates of -0%, -3%, and —10%.
The inference is that while the p,„=const approximation
is self-consistent for a-NaFeF&, the other speromagnets
have fewer states at low exchange fields than the
p,„(H,„)=const distribution would require. Within the
a= 1.0+0.3 band of values which provide acceptable resi-
duals in Fig. 4, this suggests a=1.2 for a-NaFeFq [for
which value p,„ is flat over an extended range (see Fig. 5),
and nonzero as H,„~O], while 0.7 &a & 1.0 is the more
relevant range for a-YIG and a-FeF3 (with f= 1% and
4%, respectively). Accordingly, a hyperfine tail shape of
qualitative form as in Fig. 3(a) is indicated for a-NaFeF4
and of form of Fig. 3(b) for the others. This difference is
confirmed by examining the computer mismatch at the
Zeeman spectra center (H =0) (between lines L3 and L4)
where, averaging over the 11 center channels, we find
mismatches:

function p,„(H,„). Once this function is known for each
trial a value, the fraction f of sites for which
gp~H, „(kT at any temperature is easily determined, as
well as the mean exchange energy (H,„). Quantitative
results for a-YIG, a-FeF3, and a-NaFeF4 for each of the
trial values o, =0.8, 1.0, and 1.2 are given in Table II.
They conform with the known 4.2-K tail fractions if
a=0.8 (YIG), =1.0 (FeF3), and =1.2, (NaFeF4). The re-
sulting equally normalized exchange distributions are
shown in Fig. 6.

Of particular interest is the mean exchange field (H,„)
(in Kelvin units) experienced by the ferric spins in each
speromagnet. Using Table II one observes a striking
correlation between (H,„) and the corresponding spin-
glass temperatures TF as follows:

0.07

0.06

0.05

a-YIG (+0.1+0.8)%,
a-FeF3 (+0.1+0.7)%%uo

a-NaFeF4 ( —2.6+2.6)%,

0.04
(P

statistically nonzero only for a-NaFeF4 for which the sign
is opposite to that of the equivalent "Zeeman-extreme"
finding of Eq. (8) as expected from Fig. 3(a).

A final independent confirmation and refinement of
these a assignments may be obtained quite independently
from the fit of the residual amplitudes in Fig. 4 as de-
tailed in Ref. 14. Using the Gaussian relation
wp =V 2o'(HsT ), with o.(HsT ) taken from Eq. (14) for
each speromagnet, these amplitude fits (for any trial a
value) determine the maximum exchange energy H,„'"
[(i.e., the parameter a in Eq. (18), or c/2 in the notation
of Ref. 14] and hence the complete exchange distribution

0.02

0.01

20 30
gg.aH«(KI

40

FIG. 6. Normalized exchange distributions p,„(H,„) for the
three ferric speromagnets a-YIG, a-FeF3, and a-NaFeF4. The
"tail-states" at T=4.2 K are shaded.
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a-YIG, (H,„)=38 K, T~ =40 K (Ref 1.7),
a-FeF3, (H,„)=30 K, T~-29 K (Ref. 18), (20)

a-NaFeF4, (H,„)=15 K, Tz-12 K (Ref. 18) .
The suggestion is that

(21)

for these S=—,
'

speromagnets, in approximate accord with
the molecular-field expectation for ordering temperatures
T, in ferro- and antiferromagnets, viz.

kT, =gIJ~(H,„)z c(S+1)/3 . (22)

VI. THE SPEROMAGNETIC SPIN CONFIGURATION

Within a distorted crystalline model of a-FeF3 and a-
NaFeF4 we expect distributions of exchange parameters J
to be centered on their respective crystalline values of 14.5
K (Ref. 15) and 11.5 K (Ref. 19). The situation in a-YIG
is more complex. However, within ihe random-packing
model of Ref. 20 (in particular Fig. 12 of that paper) one
can calculate the major (kinetic) component of (J ) from
its known dependence on bond angle'

I

0.2
I

0.3
I

0.5

J=cH~[2H~+(H —2H~)cos P] (23)

in which H =35 K, H =6 K, and [from the known
values for crystalline YIG (Ref. 21) J= —33 K at
P = 126'] factor cH = 1.6. Using the computer-generated
P distribution in Eq. (23), we find a mean value (J)=28
K appropriate for a-YIG.

Combining these mean exchange-parameter values (J)
with the mean exchange-field values (H,„) of Eq. (20),
we find approximately the same ratio gps (H,„)I2(J)zS
for all three speromagnets, namely 0.06+0.01. The impli-
cation is that in the speromagnetically ordered phase near
T=0 the auerage NN spin is rotated by only about three
to four degrees (i.e., sin '0.06) towards antiparallel align-
ment from a random orientation.

In this sense the deviations of a speromagnetic spin
alignment from a random orientational spin configuration
seem small. However, within the above average, much
larger counterbalancing rotations can possibly be present
and there are strong indications that such is the case. The
largest effect of these spin correlations is manifest in the
exchange-field distribution for which (Fig. 7) no recogniz-
able feature of a random-orientation spin distribution
remains at all. In fact, the correlations reflect primarily a
quasiconstraint on the z nearest-neighbor spin orienta-
tions, restricting their sum to small values.

In spite of this, for many other quantities involving
spin orientations these same correlations may appear to be
minor, only modestly perturbing the relevant distribution-
function from its random form. The hyperfine field is
one such example (see Fig. 8). The formal manner is
which the same set of variables can be "quasirandom"
with respect to one distribution function but dramatically
nonrandom with respect to another can be trivially
demonstrated by use of Eq. (5). In this equation for the
distribution of a function h =x&+x2+ . . +x„ the re-

FIG. 7. Exchange distribution p,„(h '), where
h'=gp~H, „/2JSz, as deduced from the Mossbauer data on
amorphous speromagnets (drawn for a=1) is contrasted with
the equivalent distribution for truly randomly oriented spins,
viz. p6(h/6) of Eq. (5).

striction of any single variable x„ from the random set
x&, . . . , x, to the value x =0 perturbs p, (h) to p, ~(h), a
small effect if z »1. On the other hand, with respect to
the function h=x~xzX . . Xx„ the same restriction
collapses p, (h) to a 5 function at h =0 for all z.

2,0
a-Fe F

-0.4 -0.2 0
hz6

0.2 0.4

FIG. 8. Normalized probability distribution p6(h/6) from
Eq. (5) and Fig. 1 for a reduced projection h /6= 6 g„,cos8„
of z =6 randomly oriented spins is compared with a symmetric
Gaussian of equal area and RMS linewidth (dashed curve) and
with the scaled hyperfine distribution as measured for a-FeF3 at
4.2 K (asymmetric solid curve).
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VII. SUMMARY

Hyperfine-field tails at low fields are observed con-
sistently (by Mossbauer-Zeeman spectroscopy) in amor-
phous ferric speromagnets but not in amorphous fer-
romagnets. They indicate the existence of low-exchange-
field sites in the distribution p,„(H,„) of exchange fields
H,„ in speromagnets caused by frustration. The shape of
the hyperfine distribution spectrum at low temperatures
reflects primarily the coordination and orientational dis-
tribution of NN spins via the supertransferred hyperfine
component. Its detailed form, including the tails, can be
used to deduce both the mean local magnetic coordination
and the distribution p,„(H,„) of exchange fields in actual
speromagnets.

Using the 4.2-K Zeeman spectra for speromagnetic a-
YIG, a-FeF3, and a-NaFeFz, we conclude that although
these materials are structurally quite different in terms of
local coordinations (a-YIG is quasirandom-packed; the
others locally quasicrystalline) they are remarkably simi-
lar, though not identical, as regards the shape of p,„(H,„);
see Figs. S and 6. This distribution, however, is grossly

different from that corresponding to truly randornly-
oriented spins (Fig. 7) and reflects an extremely large
modulation of exchange distribution produced by the
exchange-induced spin correlations. The implied correla-
tion is one of quasiconstraint on the z nearest neighbors of
any given spin, restricting their vector sum to small
values.

This finding for NN-exchange ferric speromagnets con-
trasts with the equivalent situation in long-range exchange
(i.e., RKKY) spin glasses for which computer simulations
suggest that spin correlations only modestly perturb the
analogous random-spin-orientational distribution. Al-
though the aUerage spin orientational perturbation from
true randomness towards local antiparallel alignment (in-
duced by the very dominantly antiferromagnetic NN ex-
change) is only between three and four degrees in each of
the speromagnets a-YIG, a-FeF3, and a-NaFeF4, they are
correlated in such a way as to produce a dramatic effect
on the distribution function of the correlation-driving
property itself (viz. H,„). Other distributions involving
these same correlated spins [in particular, the hyperfine
distribution of Fig. (8)] are only weakly perturbed from
their random forms.
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