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Macroscopic anisotropy in Dzyaloshinsky-Moriya spin glasses
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We present a model of the macroscopic anisotropy in spin glasses, based on current ideas distin-

guishing the "frozen-in" and "adjustment" parts of the energy due to anisotropic interactions. Pre-
dictions of the model are tested by computer simulations of Ruderman-Kittel-Kasuya-Yosida spin
glasses with Dzyaloshinsky-Moriya (DM) anisotropy. Results from the computer simulations are
consistent with the identification of the macroscopic anisotropy measured from ESR or transverse
susceptibility with a frozen-in "first-order" anisotropy. The model quantitatively predicts the mea-
sured "adjustment energy" due to the anisotropic interactions, using most of the assumptions used
to calculate the "frozen-in" anisotropy which would be measured in a macroscopic sample. Calcula-
tions of the macroscopic anisotropy for experimental samples using two alternate forms of the mi-

croscopic DM interaction, which give anisotropies 20 to 150 times greater than the value derived
from hysteresis experiments for CuMnPt depending on the parameters used, are presented in detail.

I. INTRODUCTION

Anisotropy in spin glasses, already observed in 1960 by
Kouvel, ' has been studied extensively in hysteresis loop,
transverse susceptibility, ESR,"' NMR, magnetotrans-
port, and torque experiments. Initial efforts to charac-
terize the anisotropy as unidirectional or uniaxial have led
to work using a specific form for the anisotropy in a mac-
roscopic Hamiltonian, " and an anisotropy constant
L, to predict the behavior expected for these experiments.
For torque experiments and ESR measurements in which
the remanent magnetization is kept within a small enough
angle of the direction in which it was cooled ( & ~/2, and
depending on the size of the anisotropy), the triad model"
has had great success in explaining the results. Irreversi-
bilities appear in hysteresis loop and other experiments in
which the magnetization is reversed or greatly removed
from the orientation in which it was cooled, indicating
that relaxation over barriers has become important, and
the models necessary for these situations become more
complex.

The strong enhancement of anisotropy in dilute metal-
lic spin glasses such as CuMn resulting from a low con-
centration of impurities with strong spin-orbit coupling
has been explained by Dzyaloshinsky-Moriya (DM) in-
teractions. ' This anisotropy mechanism would result in a
unidirectional macroscopic anisotropy if the spin configu-
ration is rotated rigidly, and it is reasonable to assume
that relaxation does not change the form of the anisotro-

py, but only reduces its magnitude. The first theoretical
work done to relate this microscopic pair anisotropy to an
observed, macroscopic anisotropy constant was the Fert-
Levy estimate of an upper bound for E, KDM, which was
the value of E expected for rigid rotation with no relaxa-
tion, assuming that the anisotropy energy is due entirely
to the spins adjusting to random isotropic and anisotropic
fields, by rotating through a small angle toward the aniso-
tropic fields, and away from being exactly parallel to the

isotropic fields. The estimated EDM for CuMn with a
low concentration of Pt, a very strong spin-orbit scatterer,
was about a factor of 30 greater than measured values of
L, and an unknown proportion of this error was attribut-
ed to relaxation effects, i.e., the nonrigid character of the
macroscopic rotation.

Further work' ' has clarified the origin of two dif-
ferent contributions, to lowest order in the DM interac-
tion constant, to E„the macroscopic anisotropy expected
Under rigid rotation. These contributions are the anisotro-

py due to the second order adjustment energy EDM and
an anisotropy Eo due to the freezing in of a "first-order"
anisotropy —i.e., the preferential trapping of the spin glass
at T~ in configurations with favorable anisotropy ener-
gies. (The adjustment and frozen-in contributions to the
anisotropy seen under rigid rotation will be derived and
defined in Sec. II). By analogy with other systems, the
frozen-in anisotropy might be expected to be of the same
order of magnitude as the adjustment anisotropy, thus jus-
tifying the use of KDM as an estimate of the macroscopic
anisotropy, but this must be justified by a calculation with
explicit assumptions, and these assumptions should be
verified by experiment or numerical simulations. This pa-
per will present a discussion of the assumptions and ap-
proximations needed to estimate macroscopic anisotropies
from microscopic parameters, and some numerical evi-
dence for their validity.

In Sec. II, the macroscopic anisotropy is calculated
from an expression for the frozen in first-order anisotropy
(which is actually second order in the DM interaction
constant, and comparable in magnitude to KDM), and it is
shown that the adjustment energy, which was used in the
original Fert-Levy derivation, does not contribute to the
macroscopic anisotropy, to lowest order in the anisotropy.
However, both the frozen-in anisotropy and the adjust-
ment energy contribute to the 1owest order term in E„. In
Sec. III, these ideas are tested by investigating the effects
of relaxation on realistic Ruderman-Kittel-Kasuya- Yosida
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(RKKY) spin glasses with DM interactions by computer
simulations, following the methods of Walker and Wal-
stedt. ' Analytic estimates of Ko are calculated for two
forms of the microscopic DM interaction, the validity of
several approximations involved in these estimates are dis-
cussed, and comparisons with experiment are made in Sec.
IV.

EE. THEORY

For RKKY spin glasses with DM anisotropy, at tem-
peratures well below the glass temperature TG, any spin i
is frozen (for short timescales) along the direction given
by the sum of a large isotropic exchange field H,' and a
small anisotropic field H'„given by

J

J~ = Vocos(2kFR, J )/R;J,

z
H,'= g JJSJ,

j=1
(la)

(lb)

(2a)

z
H', = —g D,, &&S, ,

j=l
where the spins Sj are the Z interacting neighbors of spin
i. For simplicity, we will assume the spins are classical
spins of unit length in the following discussion. J;J and
D,z are the RKKY and DM interaction constants, given
in terms of the interaction parameters Vo, V1, and I the
Fermi wave vector kF, the radii between spins i and j and
between each spin j and each spin-orbit scatterer t, R,J
and RJ„and the phase angle P, which depends on the
number of electrons in the d shell of the spins Zd. '

V& si n[(1 +y)P] si n[ kr(R J+R;, +RJ, )+P](R;, 'R/~)(R;, XR/t)
(1+y)R JR;,R/, sing

y =1 (R,J +R;, +RJ,),
(h =vrZd/10 .

(2b)

(2c)

Unit vectors are written as v, where v =v/v, and

At temperatures well below TG, and for anisotropies
which are considerably weaker than the isotropic cou-
pling, rotation of the spin system by a small angle in-
volves only small deviations from a rigid rotation. ' In
this case, we may assume that each spin i is parallel to
H', +H', . Since

~

H',
~

&&
~
H,' ~, the local-spin configura-

tion does not differ strongly from what it would be in the
absence of anisotropy. Let us define the fields which
would exist in the limit as the anisotropy goes to zero as

h', = lim H', =g J;Jhj,
Ih, I 0

h,'= —gD~) Xh, .
J

(lb')

The part of h,' which is perpendicular to h,' causes spin
i to rotate slightly away from the direction of h,' by an
amount AS' ——hg J /h, ', for unit spins, to lowest order in

h„ /h, . The direction of S; is then determined by
h', z and h', . Since h,' rotates rigidly along with the spin
system, any deviations from a rigid rotation result only
from the Ih', z j, which do not rotate rigidly to follow the
spin system, but are determined by the orientation of the
lattice as well as that of the spin system.

During zero-field cooling, a spin glass freezing in a con-
figuration a, specified by the Ih, j, will choose the orien-

tation that minimizes the total energy, which is ( ——,
'

)

times the sum of the spins,

S;= I 1 —[(hS; ) /2] j h ', + b,S;h, q,
dotted into their fields, h,'+h,'. We let this minimum en-
ergy orientation correspond to 0=0, where 8 is the angle
of rotation of the spin system away from the minimum
energy orientation. Both AS; and the fields h', and h,'
will vary as the spin system is rotated to a different orien-
tation, 8. We assume that the th, j are rotated rigidly-
i.e., that the configuration a is rotated but the spin system
does not hop into another low-energy configuration speci-
fied by a different set of isotropic fields Ih, j. This as-
sumption should be accurate for low-temperature experi-
ments involving rotations by a small angle. This gives
rise to a rigid rotation of the isotropic fields,
h, (O,a)~h, (O, a). Note that this is not a rigid rotation
of the whole spin system, but only a semirigid rotation.
The new anisotropy fields Ih, (O, a) j are not obtained by
rigid rotation of the [h, (O, a) j, as they depend on the
orientation of both the lattice and the spin system. We as-
sume that the individual spins in the rotated configuration
are free to adjust individually to the new anisotropy fields:
b,S;(O,a) =h,'(O, a)/h, '(O,a).

Using the expression for the energy as ( ——,
'

) times the
sum of the dot products of the (unit-length) .spins with
their fields, we may express the energy to O(h, /h, ) for a
particular configuration e and an orientation 8 with
respect to the zero-field cooled orientation as

E(O,a)= ——,g [Jjhj(O, a) —DJXhj(O, a)] h', (O, a) 1—
l,J

i
bS~(O, a)

i1—
2

—D J Xh~(O, a) AS;(O,a) —D~; Xh', (O,a).ASJ(O, a)
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= ——, g [[J;,h', (8,~)—D;, Xh', (O,a)] h,'(8,~)[i—
~
as, (8,&)

~

']

—2DJ Xh~(O, a) AS;(O, a) j (3b)

(3c)

E,(8)= (E, (O, a) )

E.'"(8,~)= ——,
' g h.' „(8,~),

E.'"(8)= & E.'"(8,~)). ;

E,' '(O, a)= ——,' g [h,'j(O, a)] /[h, '(O, a)],

E,' '(8)=(E,' '(O, a))
so that

E(8)=E,(8)+E,"'(8)+E,"'(8) .

(Sa)

(5b)

(5c)

We will call E, the isotropic exchange energy, E,'" the
first-order anisotropy energy, and E,' ', which is due to re-
laxation of the spins toward h, z and away from h„ the
second-order adjustment energy. The original Fert-Levy
energy, which is related to the adjustment anisotropy by
EDM ——3KDM/2, was taken to be proportional to E,' '(0);
the derivation of EDM outlined below gives EDM
=2E (0).

For long-range interactions, such as RKKY and DM
interactions, it is a reasonable first approximation to as-
sume that the distribution of angles between interacting
spins in the low-temperature state is random for the ma-
jority of spin pairs, and also that for small anisotropy the

where h,
~~

——(h, h, )h, and h, j =h, —h, ~~. Note that
there are four contributions which enter the last term in
Eq. (3c). The first two are due to the rotation of spin i to-
ward h', ! and away from h'„and the last two are due to
changes in h,' and h,', resulting from all the other spins j
rotating toward h, z and away from h, . The energy ob-
served for a macroscopic sample rotated by an angle 8
from the zero-field cooled orientation will be an average
over configurations a, E(8)= (E(O,a))~, where we write
( ) for the average over all possible configurations,
weighted with a Boltzmann probability distribution

P(a) -exp[ —E(0,a)/(k~ TG )] . (4)

Here we have assumed that the trapping in different con-
figurations occurs close to TG, and that the sample was
cooled in zero field, so that the energy of each configura-
tion during cooling would have been given by E(0,a).

We may define

E, (O, a) = ——, g h,'(O, a),

directions of spins i and j are uncorrelated with D,J, since
the spin directions are predominantly determined by the
random [JJj. These assumptions were previously used in
calculating EDM." There will be corrections to this pic-
ture due to the small correlation which develops between
the spin pairs [S;,SJ j and the [D;~ j during the initial
cooling. This frozen-in correlation leads to a nonzero
value of E"'. There will also be corrections to the esti-
mate of E, ' due to correlations between the spin pairs
[S;,SJ j and the [D;~ j, or equivalently, between the [h, j
and the [h, j. However, Sec. III will include evidence
from computer simulations that the corrections to E,' '

are small, and may be neglected.
We would expect corrections to E,' ' due to preferential

occupation of configurations with energetically favorable
anisotropies to be higher order in h, than the uncorrected
value, by an extra factor of [h, /(k~ TG)]-(h, /h, ). The
nonzero expectation value of E,"', due to preferential oc-
cupation of energetically favorable configurations, will
also have an extra factor of (h, /h, ), raising E,"' to be of
O(h, /h, ). Let us keep terms of O(h, /h, ) and neglect
terms of O(h, /h, ), such as the corrections to E,' '. We
note that if we neglect corrections to E,' ', then E,' '(8)
becomes independent of 8; in other words, E does not
contribute to the lowest order term in (h, /h, ) of the mac-
roscopic anisotropy. If we assume that the [JJ j and the
[D,J j are uncorrelated, which is a reasonable assumption
for the DM interaction, which depends on the random
placement of spin-orbit scatterers, E,(8) becomes in-
dependent of 8 to O(h, /h, ), and does not contribute to
the macroscopic anisotropy. This occurs because the
reduction of the isotropic interactions due to the spins
twisting away from the [h', j and toward the [h,'!j is the
same to this order for different configurations: the same
reason that E,' ' does not contribute to the anisotropy in
lowest order. The effect of E, is then only to constrain
the spins to freeze into a low-energy configuration which
is locally similar to an isotropic equilibrium configura-
tion, determined only by the isotropic interactions.

The lowest-order term in the macroscopic anisotropy is
then given by

Since the distribution of [h, j is uncorrelated with
h,' ~~(O, a) to O(h,' ~~(O, a)), to lowest order
exp[ E, (0)/(k~TG)] factors out—of the average and we
are left with
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E,'"(8)=
gh, II

8~a expI —[E,'"(O,a)+E,' '(O, a)]/(k~T~)}

2 g exp[ —[E,' '(O, a)+E,' '(O, a)]/(kz TG ) }
a

Let us note here that when we factor out the dependence on E„we must convert the sum from a sum over all configura-
tions to a sum over configurations which are locally similar to a low-energy isotropic equilibrium configuration.

Let us expand the exponential, keeping only terms up to O(h, /(kz TG )), and so dropping E,' '(O, n), to get

E,"'(8)=
gh,', ll(8 a) 1+ gh, , ll

0 a) /(kgTG)
a i 2

I

2g exp[ —[E,'"(O,a)+E,' '(O, a)]/(k~TG) }
a

(7)

Assuming the distributions of t J;1} and t D;~ } are uncorrelated, we have for the sum over all configurations a which
are locally similar to isotropic equilibrium configurations

g g h,' „(8,&) =O,
a i

to O(h, /h, ), which leaves only one term in the numerator of Eq. (7). At this point, we may also expand the exponen-
tials in the denominator, taking the lowest-order term, which is 1, for each of the N configurations under consideration.
This gives

g h,' (((8,a) g h,' (((O,a) (2N~k~ TG )

[h,' ~~(8,a)h,' )~(O, a)]
a i

(2N kgTG)

g g [(D;1X SJ ) w'][(D;, XSJ ) w]
a i j

(2N~k~ TG ),

where w=h', (O, a)=(w. 8)8+[1—(w 8) ]' x and w'=(w 8)8+[1—(w 8) ]'~ [xcos8+ysin8], where x is chosen to
be parallel to w —(w 8)8 and y=OXx. Assuming a random distribution of angles [to lowest order in (h, /h, )] between
the IDJ }, IS& },and Ih', },and using random averages ((v u) ) = —, and (

~

vXu
~

) = —', in three dimensions, we have

E,' '(8)= —g QQ I(D~XSJ)„[1—(8 w) ]cos8+(DJ.XSJ)s(8 w) } (2N k&TG)
a i j

/(kg TG) [(—,', )cos8+( —,', )],
(ij )

where v„and v~ are the x and 6 components of any vec-
tor v, and (ij) means the sum over pairs. [Note that one
factor of —, has disappeared when we converted from the
double sum over spins i and j to the sum over spin pairs
( ~'j).]

Writing the energy in terms of an anisotropy constant,
we have E(8)= —Kocos8 + const, where

&o =X [ I Dtj I
/(27ka TG ) ] . (1O)

If the spin system were to be rotated completely rigidly,
then each spin would not be allowed to readjust under the
influence of the new anisotropy fields h, (8,a), but would
be forced to remain rotated slightly away from the rotated
h, (8,a) and toward the anisotropy field corresponding to
a rigid rotation of the anisotropy fields of the unrotated

system h, (O, a). Such a completely rigid rotation, which
does not allow for any readjustment of individual spins to
their new fields, will give rise to an energy E„(8,a), which
may be derived in the same way as the energy E(8,a) for
a semirigid rotation was derived in Eqs. (3a)—(3c). In the
derivation of E(8,a), individual spins were allowed to ad-
just to the anisotropic fields in the rotated position, but
the spin system was not allowed to jump to a different
low-energy equilibrium configuration characterized by a
different set of isotropic fields I h, }.

In deriving the energy as a function of configuration o.
and rotation angle 0 for a completely rigid rotation, it is
easiest to treat the rotation as a rotation of the ID,J },
which are fixed to the lattice, while keeping the spin sys-
tem fixed. So we will write the energy in terms- of the
DM interaction constants obtained by rotating the lattice
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through an angle —8, [D,J( —8)},rather than the interac-
tion constants [D,J }= [D,z (0)} for the unrotated lattice,
used in Eqs. (3a)—(3c).

Writing the energy as ( ——,
'

) times the sum of the dot
products of the (unit-length) spins with their fields, we
have, for a completely rigid rotation,

E„(8,a) = ——,
' g [J,~h Je(O, a) —D J( —8)Xh J(O,a)] h,'(O, a) 1—

lJ

f
AS;(O, a)

f f
AS~(O, a)

f1—
2 2

—D~( —8) Xh J (O,a).bS;(O,a) —DJ;( —8) Xh,'(O, a) bSJ(O, a)

= ——,'g [[Jzhj(O, a) —DJ( —8)Xh~(O, a)] h,'(O, a)[1—fbS;(O, a)
f ]—2DJ( —8)Xhj(O, a) ES;(O,a)} . (11)

Analysis similar to that above for the energy of a semirigid rotation, averaged over configurations a, E(8), shows that
the energy of a completely rigid rotation averaged over configurations may be expressed as

E„(8)=E...(8)+E.",,'(8)+E.",,'(8) .

The first term of Eq. (11) leads to similar results for completely rigid rotation as for semirigid rotation: E, ,(8)=E,(8)
and E,''„'(8)=E,"'(8). The second-order adjustment energy under rigid rotation E~ „'(8) has two parts. The first part is
due to the first term in Eq. (11). It is the constant contribution to the energy during the initial freezing due to the initial
adjustment causing the spins to rotate slightly away from the isotropic fields. The second part is due to the second term
in Eq. (11). This contribution to E, „'(8) depends on the correlation between the [h, ] (8,a) },after rotation of the [DJ },
and the original [h, z(O, a)k, toward which the spins have rotated slightly. We may write the adjustment energy as the
sum of these two parts: E,' „'(8)=X+Y, where

X= g f
h,'q(O, a)

f
/[2h, '(O, a)]

l a
(1 la)

DJ —8 Xb, Oo'. Dk 0 X&e OQ —4 Oa Dk 0 Xh, Oe he Oa he OQ
l J k

(1 lb)

The first contribution to E,' „'(8), x, may be calculated in the same way as was done above, in the calculation of the
second order adjustment energy for a semirigid rotation, E,' '(8).

Let us define unit vectors a,J and b,J so that

D~ ( —8)=D J (sinyj cos8a J
—sin(pj sin81~ +cosy J8),

where (I(],z is the angle between D,J and 8. In calculating the second contribution to E, „(8), Y; we note that to lowest or-
~ - ~ ~ (2)

der in (l], /h, ), where the [D;~ } and the [h, } are uncorrelated, averaging Eq. (11b) over a random distribution of [D;J I
leaves only the term proportional to D;J, since the average of D;J D;k over a random distribution is zero. This gives

—g g [ f
D J f

(sing, jcos8a~ —sing~jsin8b; +cosy; 8)j j
l J

Xh J(O,a) [(sin()()ja J+cosyj8) Xh~(O, a) —h,'(O, a)(sin(pea J+cosyj8) Xh J(O,a) h,'(O, a)]/I],'(O, a) }
a

(1 lc)

If 8=0 is the preferred orientation for the spin configuration to freeze into, as we have specified above, then the term
proportional to sin8 in Eq. (1lc) must vanish, leaving only a constant term plus a term proportional to cos8. Since
X= —E,' '(0), we see that X is a constant independent of 8. So the configuration average of this second-order adjust-
ment energy for rigid rotation may be written in terms of the Pert-Levy adjustment anisotropy as E,' „'(8)
= —KDMcoso+ const, where

DlJ singlJaij x~e 0 cx ' sinylJalJ+cosgij 0 xhe 0
l J

—h,'(0 a)[sinpjQJ %cosy j())Xb, (0 al] 4,'(0 a)] lb,'(0 a))), . (12a)
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Since 8 and the ID,J } are uncorrelated, and the [D;i }
and Ih, } are uncorrelated to lowest order in (h, /h, ),
the term proportional to sing;J- cosy;~ cancels out.
(sin y,z ) = —, , and we use the same relation as above for
the average cross product of uncorrelated unit vectors:
( ~u&&v~ )=—', . Thisgives

where the sum has been converted into a sum over spin
pairs (ij), instead of a double sum over spin i and spin j.
This conversion gives rise to an additional factor of 2, as
before. The total anisotropy constant for rigid rotation is
K —KQ +KDM . We note that in calculating E,' „'(9 ),
(I/h, ) should be taken over a random distribution of
spins, and not over an actual distribution, including corre-
lations, since h, is used here as a measure of the resistance
of the spin to rotating in the direction of h, ~. One
should not include any effect that the spin has in polariz-
ing its environment, since the spin should be equally effec-
tive in polarizing its environment in the rotated position.
For this reason, any contribution to the exchange field de-
fined by Eq. (la') due to correlations should not be in-
cluded in the energy required to turn the spin. However,
TG may be estimated by taking an average of the fields
over an actual equilibrium configuration, (h, ),.
= ( 3k' TG /s ) =3k~ TG, for three-dimensional spins of
unit length, since the glass temperature should occur
when thermal fluctuations become comparable to the total
energy, including correlations, of an equilibrium configu-
ration. Here, we will use ( ) for averages over a random
distribution of spins, and ( ), for averages over an actual
equilibrium configuration, including correlations. Ac-
cording to Walker and Walstedt, ( 1/h, ),
=2( 1/h, ) /3. ' Using ( I/h, ) = —, ( 1/h, ), =3/(2h, ),
=1/(2k' TG), we get K„=KDM+KQ 3KQ

KQ ——0.33K„. In Ref. 16, I/(3k&TG) was estimated as

( 1/h, ), not ( 1/h, )„giving KQ ——3KDM/4, and
KQ =0.43K„, which was rounded up to KQ ——K„/2 by the
argument that the temperature at which the freezing takes
place is probably slightly lower than TG, which would in-
crease the magnitude of the frozen-in anisotropy. (Recent
work by Sompolinsky, Kotliar, and Zippelius, ' which as-
sumed highly correlated isotropic and anisotropic interac-
tions, suggests that the spin system is not as stiff as it
seems to be from these arguments based on single spins in
effective fields. Their calculation gives Ko ——0.2K„ for
three dimensional spins. ) In order to calculate KQ, we will
estimate TG using the distribution of correlated fields
seen by Walker and Walstedt, '

1/(3k' TG ) = ( 1/h, ),= 2U, /(vr x VQS) = —, ( 1!h,), (13)

where U, is the volume per atom, and x is the fraction of
atomic sites occupied by spins.

III. COMPUTER SIMULATIONS

Computer simulations of realistic RKKY spin glasses
with IBM anisotropy, following the methods of Walker
and Walstedt, ' have been used to investigate the total en-
ergy due to anisotropic interactions, which is related to

K„, and the effects of relaxation on the actual macroscop-
ic anisotropy constant as measured by transverse suscepti-
bility E, or by ESR, K', for low temperature equilibrium
configurations. Samples of 96 and 204 spins, randomly
substituted with a concentration of about 0.9' in an fcc
lattice with the lattice constant of Cu, were used to simu-
late dilute CuMn. Spin-orbit scatterers were randomly
substituted with concentrations of about 0.006—0.008%.
The parameters used for the RKKY interaction, Vz and
the Fermi wave vector kF, were held fixed at values ap-
propriate for CuMn. The parameters used for the DM in-
teraction, V&, I, and P, were varied, and the extra oscil-
lating factor in the DM interactions, sin[(1+y)P]/sing,
was set to 1 in some cases, in order to vary the size of the
anisotropy. Due to the periodic boundary conditions, to
avoid multiple interactions, the range for the interactions
had to be cut off for distances R;J., R;„or Ri, greater than
half of the sample length. The magnitude, or effective
range, of the anisotropy was also varied by sometimes al-
lowing each spin pair to interact with only one spin-orbit
scatterer, chosen randomly. The ratio of the anisotropic
to the isotropic energy of the equilibrium configurations
ranged from 0.0%%uo to 1.25%. The equilibrium configura-
tions were initially obtained in zero external field, but
nevertheless have nonzero magnetization M before appli-
cation of any measuring field, due to finite-size fluctua-
tions.

We should remark here that small samples of 100 and
even 200 spins have only a small number of isotropic
equilibrium configurations, ' and for small anisotropy,
they freeze into a low-energy configuration closely corre-
sponding to one or another of these isotropic configura-
tions, depending on the initial configuration and the con-
vergence algorithm. In order to see the true macroscopic
frozen-in anisotropy, it would be necessary to take a suffi-
ciently large sample to divide into many macroscopic re-
gions, each with very many isotropic equilibrium configu-
rations, and then cool the sample slowly enough through
the glass temperature to allow time for preferential freez-
ing into the configurations with the most favorable aniso-
tropy energy. When small samples such as those studied
here have frozen into one of their few available equilibri-
um configurations, which we may call configuration a,
the frozen-in anisotropy KQ(a), which arises from the
Ih, ~~}, and the adjustment anisotropy KDM(a), which
arises from the Ih, q },are simply due to the properties of
configuration o., and may fluctuate strongly. Here we de-
fine KQ(a)= ', E,"'(O,a), analo—gous to the macroscopic
frozen-in anisotropy constant which is an average over all
the macroscopic configurations: KQ ——(KQ(a)) . In these
small samples, to lowest order in (h, /h, ), the Ih, ~~}

are
the same for a and its corresponding isotropic configura-
tion, so KQ(a) was calculated from the Ih ~~}

of the iso-
tropic configuration.

Diagonalizing the matrix for the linearized equations of
motion about the equilibrium configuration a, for each
case studied, gave the frequencies and eigenvectors of the
dynamic excitation modes, and diagonalizing the matrix
of the quadratic form for the change in energy due to
small displacements from equilibrium gave the static po-
larization modes needed to calculate the transverse and
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longitudinal susceptibilities. As reported previously, '

three dynamic resonance modes which are well described
by the triad model" were observed for spin glasses with
small-to-moderate anisotropy. The change in mode fre-
quency as a function of measuring field was correctly
predicted by the triad model, and a comparison of the
magnetization and anisotropy constants obtained from a
fit to the three identified ESR modes, M'(a) and K'(a),
with the remanent magnetization calculated directly,
M(a), and the anisotropy constant calculated from the
transverse and longitudinal susceptibilities, K(a), showed
good agreement.

The projection of these modes on uniform rotation
modes, which is 1 for isotropic spin glasses, decreased as
the anisotropy increased and relaxation became more im-
portant. However, when the ratio of anisotropic to isotro-
pic energy was sufficiently increased so that these modes
were less than 80% pure rotation, K'(a) and K(a) began
to agree more and more poorly. In these cases, the part of
the DM energy due to adjustment, E,d, (a)
=(HDM) —(HDM);„(a), was 60—85%%uo of the total DM
energy (HDM)a, where (HDM) is the expectation value of
the DM Hamiltonian with a nonzero anisotropic interac-
tion constant in the anisotropic equilibrium configuration
a, or the corresponding isotropic equilibrium configura-
tion iso(a), obtained by setting the DM interaction con-
stant equal to zero and letting the configuration a relax,
and then rotating the isotropic configuration to minimize
(HDM )iso(a)

For these large anisotropies, higher-order terms and sta-
tistical fluctuations in the adjustment energy begin to
make K'(a) and K(a) deviate, independently, from being
equal to the value expected for the configuration e due to
the first-order anisotropy,

Kp(a) = —, g h,' (((O,a) . (14)

In this case, there is a nonzero contribution to the macro-
scopic anisotropy due to the relaxation effects which
cause the sample to break up into domains instead of ro-
tating as a whole. Therefore, calculations based on
phenomenological models which assume an average, mac-
roscopic angle of rotation (such as the triad model) no
longer lead to an unambiguous determination of one an-
isotropy parameter, independent of whether it was deter-
mined from dynamic mode frequencies or static suscepti-
bilities. In a macroscopic sample, the expectation value
for these fluctuations in the adjustment energy should be
zero to lowest order in h, /h„while the expectatjon value
for the frozen-in "first-order" anisotropy constant, Kp
=(Kp(a)), should be nonzero to the same order. [In
Ref. 16, the distinction between quantities referring to one
specific equilibrium configuration of a small sample, such
as Kp(a), and quantities referring to the average over con-
figurations of a macroscopic sample, such as
Kp = (Kp(cx) )a, was not made as clear as would have been
desirable. Here an attempt has been made to write all pa-
rameters which refer to a single configuration rather than
the average over configurations of a macroscopic sample
as explicit functions of the configuration a: Kp(a),
M(a), etc.]

x 09—
E

0.8-

0.002 5
I

0.005
I

0.0075

Egd) (a) / E;so(a)
FIG. 1. Plot of the projection of the three identified modes

onto rigid rotations A(a)/2 „(a), against the ratio of the an-
isotropic adjustment energy to the isotropic energy
E,d;(o, )/E;„(a), for one sample, varying the anisotropy constant
V].

where dS;(a, e) is the deviation from equilibrium of spin i
for eigenvector e, and S;(a) is the equilibrium position of
spin i in the configuration a. Choosing z~ ~M, we may de-
fi»e a longitudinal rotation angle 58L (a, e) =58,(a, e), and
a transverse rotation angle

58 (lx, E)=[ 50 (a,&)
~

+ 5& (&,E) ]

In all samples with small to moderate anisotropy, the
mode with the largest 50L had a frequency in zero field
between the frequencies of the two modes with largest
60T, and these three modes were identified with the longi-
tudinal and transverse modes of the triad model: eL, e+,
and e ." Adding up the average angles of rotation for
the three identified modes, we define

A(a) =581 (a, eL )+59T(a,e+)+MT(a, e ) .

We may normalize A(a) by dividing by A „(a), the
value we would expect for a sample of the same size, as-
suming a uniform distribution of spins, if the three modes
were composed of pure rotations about the different axes.
A(a)/A, „(a), which measures the projections of the
ESR modes on uniform rotations, is plotted in Fig. 1

against the ratio of the adjustment part of the DM energy
to the isotropic energy,

dj( )/Eiso(+) [(HDM)a (HDM)iso(a)]/(HRKKY)iso(a)

for one particular configuration of one particular sample,

Figure 1 shows the decrease in the projections of the
three triad modes on uniform rotations as ))i, /h, in-
creases, increasing the fraction of the DM energy due to
adjustment. The average angle of rotation for the eigen-
vector e of configuration a, about axis b, b=x, y, or z, is
defined as

N

Mb(a, e)= g S,-(a) XdS;(a, e) b/N,
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where only V~ was varied to vary the magnitude of the
anisotropy.

A(a)/A, „(a) decreases monotonically as relaxation
becomes more important, and the adjustment part of the
DM energy increases. But there is some variation in the
slope of the curves for differ'ent samples, because of sta-
tistical fluctuations- in the amount of second order relaxa-
tion from the isotropic equilibrium configuration seen in
the unrotated position and the amount of relaxation seen
in rotated positions. There is some variation in curvature,
because of statistical fluctuations in higher-order terms.
Deviations from a uniform distribution of spins, due to
statistical fluctuations, have reduced the value of
A(a)/A, „(a) extrapolated to the isotropic case to be less
than 1. [This does not mean that the isotropic sample has
a projection on uniform rotation modes of less than 1,
only that the A(a) for the isotropic configuration, which
has a slightly nonuniform distribution of spins due to sta-
tistical fluctuations, is a little less than the A,„(tz).]

The average of the measured anisotropy constants,
K(a)=[E(a)+K'(n)]/2, is plotted for 12 96-spin sam-
ples and 2 204-spin samples in Fig. 2, against Ep(a),
where Kp(a) is taken to be the anisotropy corresponding
to a rigid rotation of the isotropic configuration, iso(a).
A line of unit slope is included for comparison. The
points for small and moderate anisotropies show reason-
ably good agreement between K(a) and Kp(a). The two
points for 204-spin samples are beginning to show a larger
K(a) than the Ep(a) calculated from the [h, ~~]

of the
isotropic configuration obtained by setting the anisotropy
equal to zero and letting configuration a relax. This may
be because-these larger samples have isotropic equilibrium
configurations spaced as closely as 0.0003 (reduced units)

96 spin samples
x 204 spin samples

in energy, while (IIDM) =0.03 (reduced units). There-
fore, the anisotropy may already be mixing in enough of
the other isotropic equilibrium configurations to increase
the Ih ~~I

in the anisotropic configuration a over those
seen in iso(tz). This effect is not as large as would be ex-
pected in a truly macroscopic sample, since the projection
of a onto iso(a) is still —98%, and the projections of a
onto the other isotropic configurations are not greatly
changed from the projections of iso(a) onto these configu-
rations. The points for the small samples with large an-
isotropies are beginning to deviate markedly from the line.
As discussed above, this is because fluctuations in the re-
laxation and higher-order terms begin to dominate, for
single configurations in finite samples with large anisotro-
pies, over the frozen-in anisotropy which would be the
only contribution to the anisotropy constant observed in
macroscopic samples, to lowest order in the ratio of aniso-
tropic to isotropic interaction strength.

Dasgupta and Yao have recently published a study' of
the macroscopic anisotropy observed for large-angle devi-
ations from the orientation of cooling. They also see uni-
directional anisotropy well parametrized by one value of
K(a) for samples with small anisotropies. For stronger
anisotropies, where relaxation becomes more important
and higher-order terms and statistical fluctuations in the
adjustment energy should begin to dominate over Ep(a),
they find complicated behavior which reproduces qualita-
tively some of the features of torque and hysteresis experi-
ments. As observed experimentally, they find larger devi-
ations from a simple unidirectional model when the devia-
tion from the orientation of cooling is increased.

In our simulations, Kp(a) and KDM(a) scale as

(g,".
~
D;1

~

)'~ and g," ~D;~ ~, respectively; i.e., Kp(a)
is dominated in these samples by X'~ fluctuations, and
KDM(a) goes as predicted for macroscopic samples in
Sec. II. This behavior for Kp(a) occurs because Kp(a)
arises from the sum of the (parallel) anisotropic fields for
the isotronic configuration [denoted iso (a) in subscripts]:
Kp(tz)= (gh, ~I);„( ). For a small sample of X spins,

(gh,'
~~
);„( )-X', due purely to statistical fluctuations.

This is analogous to the freezing in of magnetic moments
M -X' for small samples, even in the absence of an ap-
plied field H, which would cause preferential freezing
into configurations with a nonzero moment M~~H. As
h, /h, is increased, and for larger samples which have
more low-energy equilibrium configurations, preferential
freezing of the spin glass into configurations with favor-
able anisotropy energies becomes more important relative
to the Kp(a) N'~ seen -for a single low-energy configu-
ration, due to statistical fluctuations. For the larger sam-
ples in this study,

Ep(a)/K„(a ) =Kp(a)/[Ep(a )+EDM(a)] 0.2—0.3

0
0

0 (a)
FIG. 2. Plot of the measured anisotropy constant K{a) vs

the calculated "frozen-in" anisotropy constant Kp(a) [reduced
units (r.u.)]. Line with unit slope is included for comparison.

If we assume that due to the mixing in of different isotro-
pic equilibrium configurations to configuration o., the true
value of Kp(a) is not equal to the value which we have
used, taken from the isotropic configuration iso(a), but
rather equal to K(a), then we would have

Kp(a)/K„(a) =Kp(a)/[Kp(n)+KDM(a)] =0.4—0.6
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KDM(a) = 16(1/h, ) g ~
D;~

~

(.ij )

(27K) . (16)

KDM(a) is plotted against measured anisotropy constant

for the 204-spin samples. For the 96-spin samples with
small anisotropies, the contributions to K„(a) due to ad-
justment and to preferential freezing into favorable con-
figurations were considerably less important than the
Ko(a)-X'~ due to statistical fluctuations, so that ratios
of Ko(a)/K„(a) were seen up to 0.9. Even if we were to
assume that the 204-spin samples are large enough to
show macroscopic behavior, there is still sufficient fluc-
tuation in these results that it is not possible to say wheth-
er Ko is more nearly 0.33K„, as is given by Eqs. (4)—(6),
or 0.2K„, as is given in Ref. 17.

Since the Ko(a)'s we observe are dominated by
fluctuations, we cannot predict the macroscopic value of
Ko directly from the simulations. In addition, the values
of KDM(a) and K()(a) derived from the simulations must
be corrected to remove the cutoff introduced for
g," ~

D,J ~

because of the finite size of the samples. We
defer to Sec. IV the discussion of the full estimate of
g," ~

D,J ~

with no cutoff, and the resulting estimate of
Ko, using Eqs. (10) and (13), for a macroscopic sample of
CuMnpt.

Before proceeding to the estimate of Ko for a macro-
scopic sample, let us consider the results of the simula-
tions for KDM(a). As we have used the assumption that
the probability distributions for S;, Si, and D;J are only
weakly correlated in deriving Eq. (10), which we will use
to estimate Ko, it would be a good idea to check the valid-
ity of this assumption in our estimate of the anisotropy
due to adjustment, KDM. Figure 3 shows the Fert-Levy
anisotropy constant per spin, KDM(a)=KDM(a)/X, cal-
culated from Eq. (12b), which assumes uncorrelated prob-
ability distributions, to lowest order, for S;, SJ, and D,J.
This gives

10-4
C3

lM

10
10-5 1O-4 ]O-~

K,q;(a)
FIG. 3. Calculated anisotropy constant per spin due to ad-

justment, for a completely rigid rotation KDM(a), plotted
against the measured anisotropy constant per spin due to adjust-
ment, for a completely rigid rotation K,q, (a) (r.u. ). Line with.
unit slope is included for comparison.

per spin under rigid rotation due to adjustment,

K,q;(a) =2E,&, (a)/3

=2[(HDM ) —(HDM ) .o(a) l/(3iV)

where X is the total number of spins. A line with unit
slope is included for comparison. T'he agreement between
KDM(a) and K,z, (a) is very good.

IV. CALCULATION OF Kp

In order to estimate Ko for a macroscopic sample, us-
ing Eq. (10) we will need an estimate of g," ~

D,t ~

. Us-
ing Equation (2b) we have, for each spin orbit scatterer t,

2 I V (is[n(1 +y)P]sin[ ~k( R& +R;, +RE)+P](R;, Rjt)(R;, XRz;)I
[(1+y )R,zR;,Rt, sin())]

(17a)

Since kFao is large, for ao the lattice constant and kF the Fermi wave vector of copper, we may approximate
sin [kF(R 1 +R;, +Ri, )+P]= —,, assuming that the argument fluctuates rapidly enough to be uncorrelated with the other
factors.

For the analytic estimate, we may replace each sum over Mn sites by the concentration of Mn, cM„, times an integral
over volume, and the sum over spin-orbit scatterers (in this case, Pt) by cp, times another integral over volume. Doing
first the sum over ( ij), let us take R as the position of the more distant Mn relative to scatterer t, and r as the position of
the closer Mn. In this case, 2R & (R;J+R;,+R/, ) &4R, so let us approximate (R,J+R;, +R~;) by aR, where a is a pa-
rameter between 2 and 4, so that y = I aA. The integrals over all the angular variables except x=cos|9, where 0 is the an-
gle between R and r, may be done immediately, leaving us with

4 2~2 2
y ~R I ~ I' ~ sin [(1+IaR)p]x (1—x )

( 1+I aR ) sin P(R + r 2Rrx)— (17b)

Let us change to the dimensionless variables s =r/R, so that this becomes

4~ I )cMn ~ sin [(1+I"aR)p] ) ( x (1—x )8$ 8x
sin P R(1+I aR ) 0 —' (1+s —2sx)
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The integral over s gives

]. 1
ds

1+s —2s cosO

1
~ arctan

sinO

1
arctan

sinO

m —O

2 sinO

s —cosO

sinO

sin(8/2)
cos(8/2)

0

sin [(1+I'aR )P]
R(1+I aR )'

Writing this out in partial fractions, we get

I(a,v) =I+(a,v) I a—I, (a, v) —I aI2(a, v),
sin [(1+I"aR)P]IRav= dR

7

sin [(1+IaR)P]
(1+IaR)

sin [(1+I aR )P]
(1+I aR )

(20)

(21)

(21a)

(21b)

(21c)

Substituting this into the integral over O, we have

d8 sin 8 cos 8(~—8)/2
0

=(~/4) I d8sin 8cos 8=~ /32 . (19)
0

This leaves us with an integral over R. We notice at
this point that the sum will tend to diverge if we let
R~O, and that physically, R must not be less than the
nearest-neighbor distance on the lattice, ~=2.55 A for a
Cu lattice. In order to check the approximation of replac-
ing the sum over near neighbors by an integral over the
continuum, we let the upper limit on R be a variable cut-
off v. (The result we will want to use to calculate Ko will

be the limit of g," ~
D;J, as v~ oo.) So we need to cal-

culate

These may be expressed in terms of sine and cosine in-
teg rais:

IR(a, v) =
t [ln(gl aR )/2] —[cos(2$)/2]ci(2/1 aR )

+ [sin(2$/2]si(2/1"aR I,", (22a)

I~(a, v) =([ln(1+I aR )/(2I a)]
—

t Ci[2$(1+I aR )]/(2I a ) ] ),",
sin [(1+.I"aR )P]

I a(1+I'aR )

(22b)

Iq(a, v) =

+ [P/(I a )]si[2tI)(1+I aR )] (22c)

Putting these together, we have
I

I(a,v) = [ln(R)/2] —[cos(2$)/2]ci(2/1 aR )+ [sin(2$)/2]si(2/1 aR ) —[ln(1+ 1 aR )/2]

+ I Ci[2$(1+I aR )]/2) + '—P si[2$(1+I aR )](1+I aR)
(23)

Substituting these results into Eq. (18), we get

8sin P
(24)

where the limit v~ ~ is taken for the full sum out to all
spins. Finite sums of g ~

D;J', ~, out to all neighbors
within seven unit cells or less, calculated in this way and
using P =2.9531, the value appropriate for Pt scatterers, '

are strongly dependent on the value of a used, but a sum
out to 9999= oo unit cells gives the same value to within
0.2%%uo over the whole range, 2 & a & 4. Figure 4 shows fin-
ite sums of g ~

D,J, , out to all neighbors within n unit
cells, calculated from Eqs. (23) and (24) and using

/ =2.9531, plotted as a function of n for a =2, 3, and 4,
and n (7, together with the results of exact summations
of

~
D;J,

~

over lattice sites out to n unit cells, using
/=2. 9531. Values for the finite sums calculated from
Eqs. (23) and (24), which were derived assuming a contin-
uum of possible spin sites, would be equal to the values
for an exact summation of g ~

D,z, ~

over lattice sites
for a value of a somewhere between 2 and 3. This is tak-
en as evidence that the continuum approximation is
reasonable, and can be used for the total sum out to infin-
ite distance, where the results do not depend on the value

I

used for a, and an exact summation is not possible.
Because Eq. (18) has a fluctuating factor

sin [(1+I aR )P] in the numerator and a constant factor
sin P in the denominator, g ~

D,J, ~

peaks strongly when

P =sr, i.e., when Zd = 10, and is very dependent on Zd in
this region. Figure 5 shows a plot of g, ~

D;~,
~

as a
function of P, including all spins i,j out to 9999 unit cells,
using a =3, in arbitrary units. The point marked by an x
is the value assumed for Pt spin-orbit scatterers; other
points are marked by dots.

In order to get the full sum of
~
DJ

~

over all spin
pairs and spin-orbit scatterers, we simply multiply the
sum per spin orbit scatterer t by the concentration of Pt
spin-orbit scatterers, cp„and the total volume of the sam-
ple V. The macroscopic anisotropy will be given by Eq.
(10), and the anisotropy per spin will be this value divided

by (cM„V). Using Eqs. (10) and (13), the value of
~
D;~

~

obtained for P =2.9531 and V& /Vo ——0.2,
U„=(3.61X10 cm) /4, S=2.5, and SVO ——1.02X10
erg cm, ' we estimate the macroscopic anisotropy per
spin for Pt in CuMn with about 1% Mn as
Ko Ko/N=y(1. 5X10——' erg), where y is the atomic
concentration of Pt. ' This may be compared with the ex-
perimental value, Ko =y(9.5 X 10 ' erg).

There is currently some question whether the oscillating
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FIG. 5. Sum over spins i and j of the DM interaction
strength due to spin-orbit scatterer t, g~,"I

~
D;J, ~, as a function

of the DM phase factor P, using Eqs. (23) and (24).

factor sin [(1 + I aR )P) is spurious, arising from an arti-
ficial cutoff in the microscopic calculation. Since this
factor strongly affects the results, as shown in Fig. 5, let
us look at the magnitude of the anisotropy expected if the
factor Isin [(1+IaR)gj/sin PI is replaced by l. In this
case, the factor of (1/sin P) is removed from Eq. (24), and
Eqs. (21a)—(21c) are replaced by Eqs. (25a)—(25c):

I(a, v) =IIt (a,v) —I aIt(a, v) —I aI2(a, v), (25)

v
Ijt(a, v)= f dR —, (25a)

V 1I, (a,v)= f dR 1+I aR
(25b)

V. 1
Iz(a, v) = f dR (1+IaR)

(25c)

Solving the integrals gives

FIG. 4. Finite sums of the DM interaction strength over
spins i and j, for spin orbit scatterer t, g~, ~ ~

D;~, ~, including
spins out to n unit cells, plotted as a function of n, for the DM
phase factor /=2. 9531 [value for Pt (Ref. 12)].

Clearly, estimates of the macroscopic anisotropy per
spin vary strongly with the microscopic form of the in-
teraction used to estimate g ~ D;~

~

. Both the latest pub-
lished expression and that expression with a questionable
oscillating factor removed yield macroscopic anisotropies
much larger than the experimental value.

V. CONCLUSION

Current ideas distinguishing the "frozen-in" and the
"adjustment" parts of the energy due to anisotropic in-
teractions' ' are summarized, and the results of comput-
er simulations of spin glasses with DM anisotropy are re-
ported. These results are consistent with the identifica-
tion of the macroscopic anisotropy measured from ESR
or transverse susceptibility with a frozen-in first-order an-
isotropy. The measured adjustment energy due to aniso-
tropic interactions is quantitatively predicted, using most
of the assumptions used to estimate the frozen-in aniso-
tropy which would be measured in a macroscopic sample.
An expression for the macroscopic anisotropy for experi-
mental samples is ev'aluated using two alternate forms of
the microscopic DM interaction. This results in an esti-
rnate which ranges from 20 to 150 times greater than the
experimental value for CuMnPt, depending on the param-
eters used.

I(a, v) = lnR —[ln(1+ I"aR )]+ 1

(1+I aR )
(26)
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