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Finite-size scaling study of the two-dimensional Ising spin glass
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We have calculated finite-size correlation lengths for strips of the square-lattice Ising spin glass
using the transfer-matrix method. In order to minimize sampling errors we study strip lengths up to
5 & 10 lattice spacings. A phenomenological renormalization-group analysis indicates that theze are
strong corrections to simple power-law. scaling near the zero-temperature critical point, as is to be
expected near a lower critical dimension. We examine models with Gaussian, exp( —J /2), and ex-
ponential, exp( —

~

J
~

), distributions of couplings; the Gaussian distribution shows stronger finite-
size corrections. The correlation-length exponent is estimated to be v=4. 2+0.5, although we do not
want to rule out the possibility that v'is significantly larger than this.

The question of the lower critical dimensions (LCD) of
spin glasses has been strongly debated recently. ' For Ising
spin glasses a LCD of 4 has been suggested by various au-
thors. However, recent massive Monte Carlo simula-
tions on a special-purpose computer and finite-size scal-
ing studies ' indicate that spin-glass ordering occurs at a
finite temperature in the three-dimensional Ising spin
glass. Thus it appears that the LCD is less than or equal
to 3.

In the two-dimensional Ising spin glass, ordering ap-
parently does not occur at any finite temperature, T.
Many studies have looked only at binary (+J) distribu-
tions of bond strengths which result in a large ground-
state degeneracy. As this degeneracy is peculiar to that
particular distribution of bond strengths and strongly
alters the low-temperature behavior, we will here look at
continuous distributions of bond strengths that are
presumably more "generic" and do not exhibit ground-
state degeneracy in finite systems. Initial studies on
small systems were interpreted as indicating that the
correlation length diverges as g- T with v=2. Cheung
and McMillan' then looked at the system with bond
strengths distributed uniformly between —J and +J us-

ing the transfer-matrix method. They obtained finite-size
correlation lengths for 0.15J!kz & T & 0.75J/kz and
strips of widths and lengths up to 7 by 10 and 11 by 10 .
They fitted their data to a finite-size scaling ansatz with a
bulk correlation length of g(T)=aT "+go, with
&=2 96+0 22 and g'O=2. 97. If we define an effective ex-
ponent by

8 In(( T)
a lnT

then Cheung and McMillan' have a fairly strong varia-
tion of v, ff with T due to the large value of go they found.
The parameter $0 they have allowed is a correction to the
pure g- T "scaling; we argue below that stronger correc-
tions to scaling are present near the T =0 critical point.

Bray and Moore" and McMillan' have estimated v us-
ing finite-size scaling for "domain-wall" energies' at
T =0, obtaining v=3.4+O. I from systems of sizes up to

12&&12 and v=3.27+0. 16 for sizes up to 8X8, respective-
ly. There is a tendency in the results we have quoted for
the estimate of v to increase as one looks at either lower
temperatures or larger systems, as should occur near or at
the LCD of a system. In view of this, we felt it was
worth doing a more careful transfer matrix study of the
two-dimensional Ising spin glass, going to low tempera-
tures, and using very long strips in order to reduce statisti-
cal errors. Allowing for the strong corrections to the
g-T "scaling that are present near a lower critical di-
mension, and can be seen in a phenom enological
renormalization-group' (RG) analysis of our data, we
find evidence that the' exponent v is significantly larger
than estimated by previous authors. ' We estimate
v=4. 2+0.5 on the basis of our data for strip widths 2, 4,
and 8 and, since we are limited to such narrow strips, do
not wish to rule out the possibility that v is actually signi-
ficantly larger than this estimate.

We consider the Edwards-Anderson model on a square
lattice with only nearest-neighbor interactions. The Ham-
iltonian is

H —Q J~~s;s.
|'«'j &

(2)

where the s;=+1 are Ising spins and the J;1 for each
bond are independently distributed according to a proba-
bility distribution P (J). The distributions we have used
are the Gaussian, P(J) ~exp( —J /2), and the exponen-
tial, P(J) ~ exp( —

~

J
~

). Monte Carlo simulation studies
of this model at very low temperatures are prevented by
huge equilibrium times. The transfer-matrix method
avoids this difficulty by actually summing over all states
of the system. We consider long strips of width 8'lattice
spacings and periodic boundary conditions across the
strips. We obtain the finite-size correlation length g~(T)
for correlations along the length of the strip using transfer
matrices. How this is done for spin glasses has been
described by Cheung and McMillan. ' In the present
study we found it necessary to run very long strips (up to
5&& 10 lattice spacings) in order to get very accurate esti-
mates of g~(T). For a strip of width 8' = 8 our program
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FIG. 1. The finite-size correlation length g~(T) for 8'=6
and 8'=12. The dashed lines on this log-log plot indicate the
low-temperature one-dimensional behavior gz(T)-T '. The
crossover to two-dimensional behavior occurs in the vicinity of
g~(T)=8'. The sampling errors are estimated to be less. than
or equal to the size of the data points.

will go a length of 1.8X10 per minute of Cray Research
Cray-1 computer CPU (central processing unit) time.

Our results for g~( T) for widths W =6 and W = 12
and the Gaussian distribution are shown in Fig. 1. At low
temperatures, where g~(T) && W, the systems behave like
a one-dimensional spin glass with g~(T)-T '. This
asymptotic low-temperature behavior is indicated by the
dashed lines in Fig. 1. As temperature is increased and
g~(T) becomes of order W, the behavior crosses over to
that of a two-dimensional spin glass which has g changing
more rapidly with T.

As T~O each finite strip of spin glass goes into one of
its two ground states that are related by a global spin re-
versal. The low-energy excitations that cause a finite
correlation length at low temperatures where g~(T) && W
are domain walls ("kinks") passing across the strip. These
domain walls separate domains of the two ground states
and may have arbitrarily low energies, depending on the
local bond strengths I JJ). The correlation length mea-
sures the average spacing along the strip between such ex-
cited domain walls in this low-temperature one-
dimensional regime.

We have calculated phenomenological renormalization-
group' (RG) recursion relations based on our results for
g~( T). The renormalized temperature T~( T) under a re-
scaling by a factor of b =2 obtained from comparing
strips of width Wand 2Wis defined by

42m(T) kw(Tw(T»
2W 8' (3)

g=/IT " 1+ BT'—+8
(5)

where A is a constant of integration. If we then rescale by
a factor of b =2, as in our phenomenological RG, a con-
venient way of presenting the result is

T'( Tl B21/v+ (22/v 21/v)T8+. . .
T 0

Of course, keeping terms at higher order in T in (4) will
yield the higher-order terms in (6).

The phenomenological recursion relations obtained
from (3) with W'=2 and W=4 are shown in Fig. 2,
where the data are presented as T~( T) /T versus T as in
(6) and the results for both Gaussian and exponential dis-
tributions are shown. We have also obtained recursion re-
lations for W'=6, but because of the limited length strips
sampled for W=12 the statistical uncertainties in the
data are too large to make them useful when compared to
the data in Fig. 2. The results in Fig. 2 differ from the
bulk recursion relations (6) due to finite-size effects,
which are quite noticeable when comparing the data for
W=2 and W'=4. Finite-size estimates, v~, for the ex-

ponent v may be obtained from the intercepts in Fig. 2 via

lim [Tg (T)/Tj =2 (7)
T~o

Extrapolation of our data yields vz
' ——3.3+0.2 and

v4
' ——3.7+0.2 for the Gaussian distribution and

v2 '=4.5+0.3 and v4
' ——4.4+0.3 for the exponential dis-

tribution. By universality, we expect v~~v for W~ac
for any continuous distribution, P(J). Taking our finite-
size estimates together and noting that the variation of v~
is stronger for the Gaussian case we estimate the bulk ex-
ponent as v=4.2+0.5.

One noteworthy feature of Fig. 2 is that the difference
between the results for W =2 and W =4 are significantly
larger with the Gaussian distribution than they are with
the exponential distribution. This suggests that the latter
may be a closer approximation to the zero-tefnperature
fixed-point Hamiltonian distribution. The fixed-point dis-
tribution for the one-dimensional chain random exchange
Ising model is precisely the exponential distribution, " so
it might be expected to still be a good approximation for
two dimensions. Also, Bray and Moore" have obtained a
renormalized distribution P&(J,rf) from the effective cou-
plings J,ff across blocks of linear dimension 8'=5. They
start with a Gaussian distribution of nearest-neighbor

Let us first consider what sort of recursion relations we
should expect near a lower critical dimension. Since we
are dealing with a spin glass, we do not really have much
guidance on what to expect, so we make the simplest an-
satz, namely that the RG equation for continuous rescal-
ing can be expanded about T=0 as

BT 1 T(l—+BT + ),8

Bing v

with 0 ~ 0. The solution to this equation is
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these excitations are not available and it is presumably
other, much more extended "domain-wall" excitations
that determine the true bulk correlation lengths at these
low temperatures. Therefore it is not impossible that the
bulk recursion at low T is actually rather different from
the finite-size estimates shown in Fig. 2. However, since
the estimate of v has systematically increased as more
careful studies have been done, we suspect that if our esti-
mate is wrong, it is because the correct bulk v is actually
still larger.

It is worth noting how Bray and Moore" and McMil-
lan' obtained estimates of v with such small error bars.
Our recursion relations indicate corrections to simple
power-law scaling that are already substantial by T =0.5
where the bulk correlation length is more than 10 lattice
spacings. Allowing for such corrections the finite-size
"domain-wall" energies calculated in Refs. 11 and 12
should scale as

J(W) =F(W ")-
I
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FIG. 2. Phenomenological RG recursion relations T~( T) ob-
tained by comparing data from strips of widths 2, 4, and 8 for
Gaussian and exponentially distributed nearest-neighbor cou-
plings. The intercept in this plot for T—+0 is T'/T=2' for
8'~ oo, and so finite-size estimates of v are obtained from ex-
trapolating these data to T =0.

couplings and end up with a renormalized distribution
looking more like the exponential, with a sharp change in
dP(J)ldJ near J=0, as is shown in Fig. 2 of Ref. 11.
Thus we feel that the exponential distribution probably
gives better estimates of the critical exponent v than the
Gaussian distribution.

We would like to point out a possible reason why our
estimate of v may still be incorrect. It is obtained from
data at low temperatures where the excitations that deter-
mine the finite-size correlations lengths and therefore the
recursion relations T~(T) are short domain walls passing
across the strips, as discussed above. In the bulk system

where the scaling function F(x) is smooth and behaves as
F(x)=Fox for x~O, but shows significant corrections to
this linear form for x= W '~" of order unity. In Refs.
11 and 12 they forced the data into the form F(x)=Fox
without allowing for such corrections, which was possible
because of the very limited range of W '~' accessible nu-
merically.

In conclusion, we have performed a careful finite-size
scaling study of the two-dimensional Ising spin glass.
Phenomenological RG recursion relations show that there
are strong corrections to the g- T "scaling expected for
a system below its lower critical dimension (I.CD). Al-
lowi. ng for these corrections we estimate v=4.2+0.5. We
also find evidence that the exponential distribution of cou-
plings is a better approximation to the zero-temperature
fixed-point distribution than the Gaussian.
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