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Impurity effects on domain-growth kinetics. I. Ising model
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The development of order for the Ising model in the presence of static, random impurities is stud-
ied following a quench from high temperature (T» T, ) to T & T, . We find that for quenches to
T=O, the system becomes pinned for long times for any value of c &0 and never reaches its final
equilibrium ferromagnetic ground state. The average linear pinned domain size scales as the inverse

square root of the concentration c. For quenches to a final T&0, the long-time behavior of the
correlation length R and the energy E are slower than a power law, suggesting a logarithmic growth
law for long times. The time that is required to reach this asymptotic logarithmic behavior in-

creases as the impurity concentration decreases and/or the temperature increases.

I. INTRODUCTION

The kinetics of a nonconserved Ising model without im-
purities which has been quenched from high temperature,
T»T„ to a final temperature less than T, has been well
studied. ' 'We know that the correlation length R grows
algebraically as t' in both two and three dimensions,
where t is the time. This result has been well documented
by both analytical and computer studies ' ' as well
as experimental studies on ordering alloys (e.g., FeA1 and
Cu-Au). However, the effect of quenched impurities, or
nonmagnetic ions, on the kinetics of domain growth have
not received similar attention. In this paper, we present
the first Monte Carlo simulations of domain growth for
the nonconserved Ising model in the presence of impuri-
ties.

It is well known that diluting a magnetic system with
nonmagnetic atoms reduces the critical temperature T, .
Monte Carlo estimate of the phase diagram have been
made for both two-" and three-' dimensional lattices. In
addition, we know by Harris's criterion' that if the
specific-heat exponent n&0, the critical properties are
unaffected by the impurities. However, if a&0, a new
random fixed point becomes stable, leading to new critical
exponents.

The effect of dilution on the kinetics of growth are less
well understood. It is expected that kinetics should be
slower in the presense of nonmagnetic atoms, since the di-
lution of the magnetic spins would reduce the driving
force responsible for domain growth. Near the percola-
tion threshold, ' this effect should be quite large. Since
the percolating clusters, just above the percolation thresh-
old, are ramified, ' then opposite spin orientation would
meet two adjacent domains at only a few points as in Fig.
1, instead of along a line as in the nondilute case. This
greatly reduces or eliminates the driving force for growth
(see Fig. 1). We found that quenches from T» T, direct-
ly to T=O always become pinned very quickly for all
values of c studied. As-the concentration of nonmagnetic

impurities is reduced, the final domain area increases, but
pinning still occurs at long times. For quenches to a final
temperature TF (T, & TF & 0), impurities continue to play
an important role. %"e find that the asymptotic growth
for long times is slower than a power law. This supports
the recent results of Huse and Henley, ' who suggested
that in two dimensions the long-time growth would be
(lnt) . Though we are unable to distinguish a lnt from a
power of lnt, we do find that the growth becomes very
slow and is not a power law in t.

The outline of the paper is as follows. In Sec. II we dis-
cuss the' Monte Carlo procedure and the methods of
analysis. In Sec. III we present our results for quenches to
a final temperature T~ ——0, while the Tz&0 results are
presented in Sec. IV. Finally, in Sec. V both our con-
clusions and comments on possible experimental verifica-
tion of our results are presented. In the following paper
we present our Monte Carlo results for the Q-state Potts
model' for Q & 2 in the presence of impurities. '
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FIG. 1. Example of a pinned domain configuration for
, c =0.40 in which most spins cannot flip for T=O. Solid and

open circles correspond to up and down spins, and impurity sites
are vacant.
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II. PROCEDURE

Since we will address the evolution of the Q-state Potts
model for Q&2 in the following paper, ' we write the
Hamiltonian for the Ising model in terms of the Q=2
Potts model,

H= —J+5S.S. ,
NN

where S;=+1. The sum is over all nearest-neighbor (NN)
pairs, the exchange constant J& 0, and 5zz is the
Kronecker delta. To convert this Hamiltonian to the usu-
al Ising convention we write

N~exp( bE/—ktr T), bE & 0
Pg ——

AE &0 (4)

flip attempt, in this method a spin is flipped at each trial
and the time which elapsed since the previous flip is
determined. The procedure we adopt is a slight generali-
zation of the original procedure, since the presence of irn-
purities gives rise to n =13 possible values of b,E or
classes of spin environments on the triangular lattice.
With no impurities, this number is reduced to seven. The
probability of flipping any spin in a class is identical and
equal to

Hg ———(J/2) Q S;SJ—J/2 .
NN

(2) where X; is the number of spins in class i and the total
probability is

exp( b,E/kg T), b,E &0-K= ~

1, DE&0 (3)

where b, F. is the change in energy resulting from the spin
flip and k~ is the Boltzmann factor. We define a unit of
time as 1 Monte Carlo step (MCS) per spin, corresponding
to S microtrials or spin-flip attempts. While this stan-
dard MC technique was used for the early stages of the
simulation, after a few hundred MCS's the probability of
flipping a spin becomes very small. The computer time
necessary to study the system for long times would then
become prohibitive. In order to overcome this problem,
we applied the continuous-time method (the n fol"d -way"
developed by Bortz, Kalos, and I.ebowitz' ). Though this
method has not been widely used, ' ' it turns out to be
very important in the present simulations. Rather than
choosing a spin at random and then carrying out a spin-

Since the effective coupling is reduced by a factor of 2 in
Eq. (2), the transition temperature is T, =1.82Jlk~ for
the nondilute triangular lattice instead of 3.64J for the
usual Ising model. The conversion of the energy E
presented in later figures to that for the usual Ising model
convention is straightforward. In all simulations we start
by randomly placing Xc immobile, nonmagnetic impuri-
ties (S;=0) on the lattice, where N is the number of lat-
tice sites and c is the impurity concentration. We then
randomly assign a spin orientation, S;= + 1, to the
remaining sites and rapidly quench to T & T, . All of our
simulations are performed on a triangular lattice of size
200&200 or 500& 500 with periodic boundary conditions.
Most of our results are for a 500&(500 lattice, in which
we have averaged over at least ten runs for quenches to
Tz Oand at le——ast two runs for Tz & 0. We have chosen
to make fewer runs on very large systems, instead of
many runs on smaller systems, because the domains in the
Ising model' quickly become very large for small values
of c. We found that the energy E varied insignificantly
(less than 0.1%%uo) from run to run, suggesting that these
runs provide more than adequate statistics. We found this
also to be true for quenches to TF &0, except for TF near
T, where fluctuations were stronger. This will be dis-
cussed in more detail in Sec. IV.

Glauber spin dynamics were employed in these sirnula-
tions. A trial spin, chosen at random, is flipped with
probability

13
(5)

A random number between zero and P is used to deter-
mine which class of spin shall be chosen and then a
second random number is used to determine which spin in
that class is flipped. The clock is advanced after each flip
by

b, t = —(1/P)lnR, (6)

where R is a random number (0 &R & 1). Because of the
extra record keeping necessary to apply this method, it is
not efficient for the first few hundred steps after a quench
from an initially random state. Standard MC techniques
are employed in this early time regime. However, after
this initial time, the n-fold way becomes more efficient
since P [Eq. (5)] decreases with time.

In simulations for the Ising model, the question of an
accurate, computationally efficient measure of the order
always arises. A convenient method which we employ in
our Q-state Potts model study is simply determination of
the average cluster area 3 using a cluster-enumeration
routine. This works very well for Q & 2, since the
domains are relatively compact and do not percolate for
d=2. However, for the nonconserved Ising model, there
are always two very large domains' (one of up spins and
the other down) which span the sample. Thus measuring
the average area (except possibly for very large values of
c) is not a good measure of ordering for Q =2. A second
measure of the average domain size is the inverse perime-
ter density, ' R{t). R(t) = Eo/[E(t) —Eo], w—here E(t)
is the average energy of the system at time t and Eo is the
energy of the equilibrium, ferromagnetic system for
T=TF. This function simply counts the number of bro-
ken bonds. In Secs. III and IV the time dependence of
E(t) will be employed as a measure of the growth of or-
der. A third efficient measure of the average domain size
is the mean chord length L(t). L(t) measures the linear
one-dimensional distance between domain boundaries.
R(t) and L(t) were found to have the same time depen-
dence.

In addition to these three order parameters, two other
measures of the domain size are possible, but both are
computationally more time consuming. One is the second
moment, k2(t), of the structure factor'
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t =200 t=400 t =800

FIG. 2. Evolution of the domain boundary for. the nonconserved Ising model quenched from T « T, to T=0 on a triangular lat-
tice of size 500)& 500 with no impurities.

I

where r,J is the distance between spins and ( ) is the
thermal average. Thus k2(t) is given by

k'S(k, t )
0&k&k

Thus, of the five possible measures of the order, we
found that R(t), L(t), and kz '(t) were the most practical
and meaningful, as they do not flucurate greatly between
different runs for the large system sizes studied here.
While keeping track of R (t) and L(t) took little computer
time, the evaluation of kz(t) was quite slow, thus limiting
how often it could be calculated.

k, (t)= S(k, t) III. Tp ——0 KINETICS

0&k&k

The sum is over all allowed k vectors with magnitude be-
tween 0 and km, „. The second is

L ( t) = [S(0,t )/N]'i'/g( r),
where P(T) denotes the equilibrium value of the order pa-
rameter. Since S(O, t) is simply the average of

~ g,. S;
~

L(t) for one sample measures the amount by which the
symmetry between the two orientations is broken for that
particular sample. Mazenko and Valls have pointed out
that one must average over many samples to determine
L(t) correctly, as there are large fluctuations from sample
to sample. Since they also found that the number of sam-
ples needed to obtain proper averages of L(t) did not de-
crease significantly with increases in sample size, we did
not measure L(t). The quantity k2(t) turns out to be
more suitable than L(t) since it does not fluctuate signifi-
cantly between different runs. This should not be surpris-
ing since kq(t) weights all k's and not just the k =0 com-
ponent of the structure factor.

In Fig. 2 we show the evolution of the spin configura-
tion for the nonconserved Ising model quenched from
T= oo to T=0, with no impurities present. We see that
the growth is very rapid. The two largest spanning clus-
ters quickly consume the smaller clusters. This should be
constrasted with the evolution in the presence of static im-
purities, shown in Fig. 3 for c=0.01. Though the two
largest domains still consume many of the smaller clus-
ters, the growth becomes much slower, as seen by compar-
ing the t=400 and 2000 MCS configurations in Fig. 3.
In fact, for quenches directly to T=O the growth essen-
tially stops for long times. In Fig. 4 we show a 200&&200
section of the pinned configurations for three values of
the impurity concentration with the up-spin clusters shad-
ed. As seen from Fig. 4, even for c=0.10, most of the
spins are in one of the two spanning clusters and therefore
the average area of a cluster, as discussed in Sec. II, is not
a good measure of the order,

In Figs. 5(a) and 5(b) we show the change in energy
E(t) or, equivalently, R(t)= —Eo/[E(t) —Eoj as a func-
tion of time. Since E(t) decays as t '~ for c=O, we

t=200 t=400 t =2000

FIG. 3. Evolution of the domain boundary for the nonconserved Ising model quenched from T» T, to T=0 on a triangular lat-
tice of size 500)& 500 with c =0.005.
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FIG. 4. Pinned microstructure for the Ising model quenched from T» T, to T=0 for three values of the impurity concentration
c. A 200&200 subsection of each 500& 500 lattice is shown. The up-spin domains have been shaded as a guide to the eye.
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show E(t) versus t '~ in Fig. 5(a) for five values of c.
For c &0 the systems pin quickly. In Fig. 5(b) we show
the same data plotted in double-logarithmic form:
ln(E Ee) ver—sus lnt. Note that an attempt to fit t "for
the early-time data would give values of n which are less
than the known result n = —,

' for c =0. However, as c de-

creases and the crossover time for the system to become
pinned increases, the early-time region approaches a t
behavior. Thus it is likely that for c «1, when the
domain size is small compared to the spacing between im-
purities, the early-time regime can be well described by
the power law t . This is important experimentally,
since all real samples will have some concentration of im-
purities. As we will see in the next section, this crossover
time also increases with increasing Tz.

In Fig. 6 the logarithm of Rf, the size of the pinned
configurations after quenching directly to Tz ——0, versus
the inverse concentration c ', is plotted. The results are
obtained for long times, after growth has become very
slow or ceased. We used three measures of Rf. The first
is the mean perimeter R(t), obtained from E(t), and the
second is the mean chord length L(t). These two quanti-
ties were measured using data from both the 200 and
500 lattices and averaged over at least 25 configurations
for c &0.01 and 10 runs on the 500 .lattice for c &0.01,
where Rf is too large to use the 200 lattices. The third
measure that we used for Rf was 2nk2 ', obtained from
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FIG. 5. (a) Energy vs t ' for the Ising model quenched
from T »T, to T=O for five values of the impurity concentra-
tion c. (b) Same data plotted on a log-log scale, where Eo is the
equilibrium, ferromagnetic ground-state energy. The data are
averaged over 10 runs for each value of e on a 500&(500 lattice.

FIG. 6. Log-log plot of Rf vs the inverse concentration c
Here Rf measures the size of the pinned configurations after
quenches directly to Tz ——0. The three measures of Rf used are
the mean perimeter R(t) = Eo/fE(t) Eo], whic—h counts th—e
number of broken bonds, the mean chord length L(t), and the
inverse square root of the second moment of the structure fac-
tor, 2mk2 '
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averaging at least 10 runs on the 200 lattice. Since the
number of runs and lattice size were smaller, the uncer-
tainty in k2 ' (t) is larger than for R and L. From these
results, we see that the three measures give slightly dif-
ferent results for the size of the domain, but all three
show a power-law dependence on c. Over the range of
concentration available, we find that R -c ', L -c
and k2

' -c ', where a j
——0.48+0.03, a2 ——0.54

+0.02, and ai ——0.45+0.05. This difference in the value
of these exponents indicates that c is not sufficiently small
to obtain the true asymptotic behavior. However, from
these results and our results for the Q & 3 Potts model, '

we expect that this exponent should equal 0.5 as c—+0.
Since the average domain size R(t) depends on t'~ for

c =0 and scales approximately as c ' for t —+ ao for
c & 0, R(t) should have the scaling form

(10)

The scaling functions f(x) must equal a constant for
x~O and x ' as x~oo. In Fig. 7 we replot the data
for the four values of c &0 from Fig. 5 in the scaling
form 1n[R (t)/t '~ ] versus ln(ct). Except for very small t,
where one expects initial transients in the data, the results
fall on one smooth curve. For small x ( =ct), f(x) is only
approximately constant, since even for c=0.0025, the
smallest impurity concentration studied, there is no ob-
servable early-time t'~ region as seen from Fig. 5. Only
for much smaller values of c would f(x) become constant
as x~0.

IV. TF & 0 KINETICS

Since the quenches directly to TF ——0 were pinned by
the presence of impurities, it is important to determine if
this behavior also occurs for T„&0. For TF &0 we ex-
pect that the system can never be truly pinned, as thermal
fluctuations will eventually drive the system over the bar-
riers that caused the pinning and, asymptotically, the true
ferromagnetic ground state must be reached. The ques-
tion to ask is, however, whether the growth law will be a
power law or logarithmic in time. From our simulation
results we will show that the long-time growth is probably
logarithmic for all c & 0 and TF & T, .

2.0

0 yoQ~~
0 X

—1.0—

—2.0
—4.0

C '

0.0025
0.005
0.01 x

0.025

—2.0 —0.0

In ct

2.0 4.0

FIG. 7. Logarithm of R(t)/t' vs logarithm of ct for a
quench from T» T, to T=0 for the four nonzero values of the
impurity concentration c shown in Fig. 5.

In Fig. 8 we show the evolution of domain configura-
tion for the nonconserved Ising model quenched from
T=~ to T=1.3J for c=0.01. This corresponds to a
temperature of approximately 0.7T, . From studies of the
time dependence of the energy for this value of T and c,
the power law E(t) Eo-t ' —is established. However,
this is expected since c is small and T is large and the
crossover to logarithmic growth occurs at very long times.
We did observe this crossover at c =0.01 for very low T,
but the crossover time quickly moved beyond the time-
scales for our simulations as T increased.

To study the dependence of the crossover from the
power-law regime to the logarithmic regime over a wider
temperature range, we looked in detail at two concentra-
tions: c =0.10 and 0.40. For these cases, we followed the
kinetics for up to 25 000 MCS's on a 500&& 500 lattice. In
Fig. 9(a) we plot the average energy versus t '~2, for three
values of TF for c=0.10. In Fig. 9(b) we show the same
data as well as data for two additional values of TF plot-
ted on a log-log plot. In Fig. 10 we show similar results

~0

I

t =200 t =400 t =800

FIG. 8. Evolution of the domain boundary for the nonconserved Ising model quenched from T» T, to T= 1.3J/k~ on a triangu-
lar lattice of size 500)& 500 with c =0.01. Note that static impurities and reversed spins are not distinguished in plotting.
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FIG. 9. (a) Energy vs t ' for the Ising model with c =0.10
quenched from T=oo to T~~ T, for three values of k~T~/J.
(b) Same data as well as data for two lower values of T~ plotted
on a log-log scale, where Eo is the equilibrium energy for the
long-range-ordered ferromagnet at T=TF.

for c =0.40 on a log-log plot. T, for these concentrations
are roughly 1.55J and 0.9J, respectively.

From Fig. 9(b) we see that for c=0.10 the crossover
time (to a regime which is slower than power law) is clear-
ly observable, only for T~=O, while for the other tem-
peratures it is not. However, if one attempts to fit a
power law to the TF & 0 data, it does not fit the
T~ ——0.25J data over the entire measured regime and gives
only an adequate fit to the TF 0.45J data with——a slope of
approximately 0.3. Larger slopes are obtained for
Tz 0.9J and 1.3J. ——Only the data for the highest T mea-
sured, 1.3J, is consistent with a power law -t ' over
the entire range measured. The results for c=0.40 are
very different, in that for all temperatures studied, there is
a clear crossover to a logarithmic growth regime. Collec-
tively, we interpret these latter as suggesting, quite strong-
ly, that the asymptotic growth law for any concentration
c is logarithmic, but that the crossover time is a sensitive
function of the impurity concentration and final quench
temperature TF. Depending on how large this crossover

FIG. 10. ln(E —Eo) vs lnt for an Ising model with c=0.40
quenched from T ~~T, to TF ——0.73J/ka, where T, =0.9J/k&.
Since c =0.40 is near the percolation threshold, only the largest
spanning cluster was included in the simulations.

time is, a fit to the early-time data may or may not fit a
power law of the form t '~ . Lower values of n indicate
the strong influence on the growth law of the eventual
crossover at late times.

V. CONCLUSION

We have studied domain growth in the two-dimensional
nonconserved Ising model with quenched impurities. For
quenches from T& T, to TF ——0 the mean linear domain
size R increases as t'~ at early times. However, for all
impurity concentrations c & 0 the spin configurations
eventually become pinned and 8 tends to a constant. This
constant is a function of impurity concentration and
scales as c ' . The time and concentration dependence
of the mean linear domain size of Ising models with
quenched impurities may collectively be described as
R(t) =t'~ f(ct), where f(ct) is a scaling function plotted
in Fig. 7. Results for quenches from T & T, to TF
(T, & TF &0) are similar to the results for quenches to
TF =0. The major difference is that instead of becoming
pinned at long times, like the quenches to TI; ——0, the spin
configurations in the TF & 0 simulations continue to
evolve, albeit at a slowing rate. ' Analysis of these kinet-
ics show that while the mean linear domain size continues
to increase with time, the growth is slower than power law
and is possibly logarithmic. The transition from the ini-
tial power-law kinetics (R-t'~ ) to the "slower-than-
power-law" kinetics occurs at longer times with increasing
temperatures and decreasing impurity concentration.

ACKNOWLEDGMENT

The authors gratefully acknowledge the hospitality of
the Institute for Theoretical Physics, University of Cali-
fornia, Santa Barbara, where part of this paper was writ-
ten.

J. D. Gunton, M. San Miguel, and P. S. Sahni, in Phase Transi-
tions and Critical Phenomena, edited by C. Domb and J. L.
Lebowitz (Academic, New York, 1983), Vol. 8, p. 267.

2I. M. Lifschitz, Zh. Eksp. Teor. Fiz. 42, 1354 (1962) [Sov.

Phys. —JETP 15, 939 (1962)].
S. M. Allen and J. W. Cahn, Acta Metall. 27, 1085 (1979).

4K. Kawasaki, M. C. Yalabik, and J. D. Gunton, Phys. Rev. A
17, 455 (1978); T. Ohta, D. Jasnow, and K. Kawasaki, Phys.



3020 GARY S. GREST AND DAVID J. SROLOVITZ 32

Rev. Lett. 49, 1223 (1982).
5P. S. Sahni, G. S. Grest, and S. A. Safran, Phys. Rev. Lett. 50,

60 (1983); S. A. Safran, P. S. Sahni, and G. S. Grest, Phys.
Rev. B 28, 2693 (1983).

M. Grant and J. D. Gunton, Phys. Rev. B 28, 5496 (1983).
7G. F. Mazenko and O. T. Valls, Phys. Rev. 8 27, 6811 (1983);

30, 6732 (1983); G. F. Mazenko, O. T. Valls, and F. C.
Zhang, Phys. Rev. B 31, 1579 (1985).

M. K. Phani, J. L. Lebowitz, M. H. Kalos, and O. Penrose,
Phys. Rev. Lett. 45, 366 (1980); P. S. Sahni, G. Dee, J. D.
Gunton, M. K. Phani, J. L. Lebowitz, and M. H. Kalos, Phys.
Rev. B 24, 410 (1981).

E. T. Gawlinski, M. Grant, J. D. Gunton, and K. Kaski, Phys.
Rev. B 31, 281 (1985).
J. Vinals, M. Grant, M. San Miguel, J. D. Gunton, and E. T.
Gawlinski, Phys. Rev. Lett. 54, 1264 (1985).
W. Y. Ching aad D. L. Huber, Phys. Rev. B 13, 2962 (1976);
E. Stoll and T. Schneider, J. Phys. A 9, L67 (1976); R. Fisch
and A. B. Harris, in Magnetism and Magnetic Materials—
1975 (Philadelphia), proceedings of the 21st Annual Confer-
ence on Magnetism and Magnetic Materials, edited by J. J.
Seeker, G. H. Lander, and J. J. Rhyne (AIP, New York,
1976), p. 488; D. Zobin, Phys. Rev. B 18, 2387 (1978).

D. P. Landau, Physica 36-388, 731 (1977); I. Ono and Y.

Matsuoka, J. Phys. Soc. Jpn. 41, 1425 (1976).
A. B. Harris, J. Phys. C 7, 1671 (1974).
For a review, see D. Stauffer, Phys. Rep. 54, 1 (1979); J. Es-
sam, Rep. Prog. Phys. 43, 833 (1980).

~5D. A. Huse and C. L. Henley, Phys. Rev. Lett. 54, 2708
(1985).

6P. S. Sahni, G. S. Grest, M. P. Anderson, and D. J. Srolovitz,
Phys. Rev. Lett. 50, 263 (1983); P. S. Sahni, D. J. Srolovitz,
G. S. Grest, M. P. Anderson, and S. A. Safran, Phys. Rev. B
28, 2705 (1983).

~7D. J. Srolovitz and G. S. Crrest, following paper [Phys. Rev. B
32, 3021 {1985)].
G. S. Grest and D. J. Srolovitz, Phys. Rev. B 30, 5150 (1984).
A. B. Bortz, M. H. Kalos, and J. L. Lebowtiz, J. Comput.
Phys. 17, 10 (1975).

oT. Graim and D. P. Landau, Phys. Rev. B 24, 5156 (1981).
A. Sadiq and K. Binder, Phys. Rev. Lett. 51, 674 (1983).
The summation in Eq. (8) for k2 was truncated at
k,„=50k;„=1.81 on a 200&(200 triangular lattice for
c &0.05 and k,„=60k;„=2.18 for c=0.10. Because it
was necessary to go to very large values of k to obtain conver-
gence for k2(t), all of the results for k2(t) are from the
200 && 200 lattice.


