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Impurity effect on the singularity of the local magnetization in the spin- —,
' XF chain
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A Green s-function method is used to obtain the exact expression for the local susceptibility of the
impure spin- 2 XF chain at zero temperature. The presence of the impurity (or boundary) affects

the singularity of the magnetic field dependence of the local susceptibility. The corresponding criti-
cal exponent changes from —

2 to + 2 at an arbitrary distance from the impurity site. In contrast

with the transverse Ising model, the critical exponent is independent of the perturbation strength.
This phenomenon is related to the spatia1 oscillations of the local density of states in the nonideal
XP chain. It is also shown that experimental investigation of the field dependence of the finite-
temperature macroscopic susceptibility of the one-dimensional XI-like system (such as Cs2CoC14)
may reveal the formation of the localized states associated with impurities.

I. INTRODUCTION

The first part of this work deals with the hypothetical
"zero-temperature magnetic phase transition" in a spin- —,

XF chain containing a single impurity. It is shown that
Green's-function theory in the pseudofermion representa-
tion leads to the exact expression for the critical exponent
which describes the singularity of the local susceptibility
at the arbitrary distance from the impurity. A compar-
ison of this result with similar calculations for the classi-
cal and transverse Ising model (TIM) demonstrates the
sensitivity of the local critical behavior to the details of
the spin-spin interaction in the model Hamiltonian. The
experimentally observable effects are discussed in Sec. III.
It is shown that formation of the localized states in the di-
luted XY chain can be (at least in principal) detected by
measuring its macroscopic magnetization in the strong-
field region at sufficiently low temperature.

II. LOCAL CRITICAL EXPONENT

It is well known that the ground-state magnetization
curves of the anisotropic Heisenberg chains have a singu-
lar point which corresponds to a certain critical field h, .
Corresponding susceptibilities also exhibit a singular
behavior with the critical exponents depending on the de-
tails of the exchange interaction. '" Since the local mag-
netization of the quasi-one-dimensional magnets is strong-
ly affected by the presence of the boundary ' or impuri-
ty, it is of interest to investigate the details of the criti-
cal behavior at the local level (a single impurity does not
affect the macroscopic magnetization curve).

Uselac, Jullien, and Pfeuty' investigated the impurity-
site magnetization within the TIM, ' using the real-space
renormalization-group technique as well as the exact re-
sults of Bariev" and McCoy and Perk' for the two-
dimensional Ising model applied to the TIM via Suzuki
mapping theorem. ' They have found that the presence of
the impurity changes the local critical exponent which be-
comes dependent on the relative strength of the perturba-
tion. '

where J denotes the exchange coupling constant in the
bulk of the chain, AJ describes its change in the immedi-
ate vicinity of the impurity, and h is the normalized mag-
netic field.

To facilitate the exact calculation of the local suscepti-
bility ~J(h) = —d(SJ') /dh we make use of the pseudofer-
mion representation of the impure XY chain. 5 9 After
Jordan-Wigner transformation one finds

Ho ——h g CJ CJ +—g ( CJ CJ + ~+ H. c.),
J

V= g (Clcq+H. c.),AJ
2 j=I+1

where the operators

j—1

c,'=( —2)J-'(s,"+is&) ~ s„',
n=1
j —1

c,=(—2) -'(s,"—isJ) / s„'
n=1

(3)

(4)

satisfy Pauli anticommutation rules and can be considered
as creation-annihilation operators for the pseudofer-
mions. '4

Sensitivity of the singularities of the local magnetiza-
tion to the type of the model Hamiltonian of the ideal
chain' suggests that the same should be true for the local
magnetization of the nonideal chain. Indeed, the exact re-
sults of the present work show that for the linear isotropic
spin- —, XY model' the presence of the boundary or im-

purity removes the discontinuity of the local susceptibility
at an arbitrary distance from the impurity site for h =h, .

Consider Hamiltonian H =Ho+ V, where Ho describes
the ideal infinite (c-cyclic' ) XY chain and V introduces
the impurity located at site I.

~p =Jg (SJ Sj~+ ) +S& SJ + ) )+h g. Sj~ '
j J

V =bI g (SIS"+SOS~),
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Since in the pseudofermion representation
Sj Cj Cj, z the ground-state local susceptibility can be
written as aJ. = —d ( Ci CJ ) /dh, or

xJ(h) = — J pJ(h, E)dE, (7)

6(t)exp(iEt /iri)

X ([C,(t), C, (0)]+)dt, (8)

where 6(t) denotes the unit step ("inclusion" ) function,
one can present the LDS in the standard form

where the chemical potential of the pseudofermions
@=0,' ' and pJ(h, E) denotes the local density of states
(LDS) as a function of the external magnetic field h and
energy E.

Introducing double-time Green's function

GJ(E)= i —I

in Ref. 6 (H=HH
~ z 0). The solution of the last equa-

tion can be presented in the form

Gij =Rij+ ~Gij

where g,J is the Crreen's function of the uniform chain and
EG,J. denotes the perturbation caused by the presence of
the impurity. Expressions for gJJ (Ref. 16) and b.GJJ.
(Refs. 8 and 9) can be written in the following form.

2
~ ~ (12J(1—Q )

(o 1 )(1+5~, )[( I 5I. )g &
I

J' —I
I +1+g& I J —I

I +3]

J(1—Q )(1—og )

(13)

where

pJ(h, E)= ——ImGJ(E) .1

7T

Since the Hamiltonian given by expressions (3) and (4) de-
scribes essentially a one-particle problem, the equation of
motion for G;J(E) can be brought into the form

o =2(1+&JIJ)'—1,
f—sgn(f)(f' —I)'~',

~ f ~
& I,

f i(1 —f~)1~~
I f ~

&1

(14)

[H (E+i0)I]6—=I, (10)

where I denotes the unit matrix and the Hamiltonian ma-
trix H is a particular case of the matrix HH" introduced

I

and f=(E—h)/J.
After defimng p' '= —m. 'Img" RIll—1

bpJ ———m Imb, GJ& so that pi
——pJ +b,pz, one finds from

expressions (12)—(15)

p' '=(n JsinK) ', K =cos '[(E h)/J], —
( o 1)cos—K I cos [(2r + 1)K] o.cos [(2—rJ —1)K]]b,pJ =6(J—

i
E —h

i
)

m JsinK [1+o —2o cos(2K)]
2 —1+6(~—1)

' [5(E E, )+5(E —E )],r +1

(16)

(17)

where rJ ——
/ j I

/
&0 and—

J(o+1)
+ 1/22o" or

aJ(h) = — f pJ(O, E')dE'

denote the energy levels of the localized states that exists
only for o & 1. ' For j =I expression (17) is not valid
and should be replaced by

6(J iE h i)
m.J sinK [1+o 2o cos(2—K)]

aJ(h)=pJ(0, —h) .

In the absence of impurity the Hamiltonian (3) corre-
sponds to a single energy band with the energy dispersion
law

+6( —1) [5(E E)+5(E E)] . — —
20

ek =h +JcosK, —m &K & ir . (22)

(19)

The last terins in Eqs. (17) and (19) give the LDS associat-
ed with the localized states.

An examination of expressions (16)—(19) shows that the
LDS of the impure spin- —,

' XI'chain posesses the property

p&(h, E) =p~(0, E —h) .

kz ——cos '( —h/J) . (23)

Using this notation and substituting Eqs. (16)—(19) into
Eq. (21) one finds that for

~

h
~

&J

Then Fermi wave number of the quasiparticles is defined
by the condition ek ——p =0, or

Then by putting p=0 and using the variable E'=E —h,
expression (7) for the local susceptibility can be rewritten
as

2(1—Ii /J~)1 (o.+ 1)~, (h) =
mJ[(1+o) 4crh /J ]—(24)
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Icj(h)=(l —h /J )'

, sin(2r~kF ).+4o —h (1—cr)
JsinkF

m J[(1+cr) —4oh /J ]

2'
sin(r. kp)

(1—o ) 1+2h
JslnkF

(25)

where in the last equation rj =
~ j—I

~
&0, and kF is

given by expression (23).
III. MACROSCOPIC SUSCEPTIBILITY

OF THE IMPURE XYCHAIN
IN THE PRESENCE OF LOCALIZED STATES

(o —1)[1+(1 5cl )o—]
~J(h) =e(o —1)

2(2 —5 I )cr '+'

x [5(h —h; )+5(h +h,' )], (26)

where

h,
' =J(o+1)/2o'~ (27)

Expressions (24)—(27) show that unlike the local suscepti-
bility of the ideal chain' given by expression (4),

In the remaining part of this work we examine the role
of the localized states which are formed if o & 1. At zero
temperature they are responsible for the 5-type singularity
on the microscopic level. In order to deal with experi-
mentally observable effects, consider temperature
T =1/k+P&0 (kz is the Boltzmann constant) and small
but finite concentration of the impurity no per unit site of
the chain. As a first approximation for no « 1 one can
neglect the interference effects on the oscillations of the
local magnetization in the impure antiferromagnetic
chain. Then the perturbation of the macroscopic magnet-
ization (per unit site) becomes

' '(h)=(J —h )
'i 6(J—ih i ), (28) AS=no g bSJ, (29)

the ground-state local susceptibility of the perturbed chain
icj(h) remains continuous as a function of h for

~

h
~

=J
(sink+ ——0) at an arbitrary distance from the impurity.
(For a uniform chain the macroscopic susceptibility icM

per unit spin coincides with the local susceptibility. ) The
second critical point

~

h
~

=h,' & J on the icj(h) depen-
dence exists only for o. &1. Physically, condition o. &1
corresponds to formation of two localized states with the
energy levels E+ ——h+h, '

lying outside the pseudofermion
energy band. Then the second critical point on the ~J(h)
dependence appears when the Fermi level of the quasipar-
ticles coincides with the eriergy level of the localized state.

Qualitatively, the strong change of the critical exponent
(from ——,

' to —,
'

) at an arbitrary distance from the impuri-

ty can be understood in terms of the Friedel-type oscilla-
tions of the local magnetization in the nonideal antifer-
romagnetic chains. The localized perturbation (4) re-
sults in the oscillation of the pseudofermion density as a
function of a distance from the impurity. This oscillation
decays with the amplitude ~r, where d is the dimen-
sionality of the system. Corresponding perturbation of
the LDS decays as r ' "and for d = 1 does not vanish for
r~ ao, which is a specific feature of the one-dimensional
problem. One notices also that since lcJ (h ) =0 for

~

h
~

=J, the differentiation with respect to h and transi-
tion to the thermodynamic limit are not interchangeable
operations for

~

h
j
=J. Indeed, the macroscopic suscep-

tibility

b, Si =b, (CJ CJ. ) = I dE .1+exp(13E)
(30)

Consider next the part of the magnetization curve near
the point h =h,' & h, =J. As has been shown previously
at zero temperature the in-band pseudofermions do not
contribute to ESJ for

~

h
~

&h, . For T&0 their contribu-
tion decreases exponentially with

~

h
~

—h, . Then assum-
ing that the perturbation is sufficiently strong (or the tem-
perature is low enough) so that T«h, ' —h„one can
neglect the contribution of. the in-band pseudofermions
for

~
h

~

=h,'. Then

where only the contribution from the localized states is
accounted for. Substituting Eqs. (17) and (19) for hp~ one
finds

b, S=e(cr 1)no I [1—+exp(PE )]

+[1+exp(/3E+ )] (32)

The corresponding equation for the macroscopic suscepti-
bility icM near

~

h
~

=+h, can be written as

where ESJ is a perturbation of the local magnetization at
site j caused by a single impurity. Since the quasiparticles
are described by Fermi statistics with zero chemical po-
tential, one can write

d
IcM = — lim —g (S,'. )

dh x
e(o —1)Pn, /2

1+cosh[P(h,' —
i
h

i
)]

(33)

which is unaffected by the presence of a single impurity,
for

~

h
~

=J cannot be written as
limz [(1/N) g.

&
Ic~ ]=0.

The last equation predicts an experimentally observable
peak on the icM(h) dependence of the impure magnetic
chain. For a diluted chain its amplitude is proportional to
the impurity concentration and is inversely proportional
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to the temperature, which may be useful for the experi-
mental investigation of the effect.

In its present form, this analysis is limited to the case
of the spin- —,

' XY' chain (experimentally represented by
Cs2CoC14). ' However, qualitatively it is clear that in
the more general case of the impure Heisenberg antifer-
romagnet the formation of the localized states corre-
sponds to the peaks of susceptibility for h & h, .

These peaks are well resolved only at sufficiently low
temperatures ( T « J) so that the best conditions for their
observation are expected just above the temperature of the
three-dimensional ordering T,' {orjust above the tempera-
ture of the spin-Peierls phase transition). ' Since for the
spin chains T,' «J, there is a sufficient temperature
range T,' & T «J where the effect is expected to exist.

Corresponding magnetic field can be estimated by put-
ting h =gp&B, where g denotes the Lande factor, pz is
the Bohr magneton and 8 is the external magnetic field
(in usual units). Then 8,= 1.488(J/k~ )g

' T and
8,' =8,(o+1)/2o'~ . Here 8, and 8,' are the values of
8 corresponding to h, and h,'. For Cs2CoC14 susceptibili-
ty measurements give J/k~ ——1.54 K in a reasonable
agreement with the heat-capacity data showing
J/k~ ——1.47 K. Accordingly 8, =2.2g ' T, while the
new critical field 8,' has the same order of magnitude but
is a function of o (i.e., of b J/J) and thus depends on the
particular type of the impurity introduced into the mag-

netic chain.
%e note in conclusion that macroscopic magnetization

of the spin- —, XF chain with randomly distributed non-
magnetic impurities was calculated numerically in Ref.
23. In the notations of the present work the nonmagnetic
impurity corresponds to a particular value of b,J= —J.
In this case o. & 1 and the localized states with the energy
levels outside the pseudofermion energy band do not exist.
The "conspicuous" steplike features of the macroscopic
magnetization curve described in Ref. 23 appear only for

~

h
~

&h, =J and sufficiently large impurity concentra-
tion. This manifestation of the one-dimensional nature of
the problem does not affect the results of the present work
dealing with the case of a single impurity or with a slight-
ly diluted chain (no «1) and

~

h
~

& h, . In fact numeri-
cal calculations based on the procedure described in Ref.
6 show that for

~

h
~

&h, and regularly distributed im-
purities there are only two steps on the macroscopic mag-
netization curve located precisely at

~

h
~

=h, as predict-
ed by the approximate theory developed in the present
work.
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