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We expound the idea that as a probe of short-range order, low-energy electron diffraction can be
used to study the energy singularity associated with surface phase transitions. We demonstrate its
feasibility by performing Monte Carlo simulations on two triangular lattice gases with second-order
transitions in universality classes distinguished by the critical exponent a: The first has a
(V3XV3)R30° ordered state; the second has a p(2X2) ordered state. As multiple scattering is

short ranged, it is no hindrance to this technique.

I. INTRODUCTION

Systems of atoms adsorbed on single-crystal metal sur-
faces undergo a great variety of phase transitions. The
most natural way of examining these phase transitions,
and the way in which these transitions are usually first
detected, is by using low-energy electron diffraction
(LEED). Real scattering experiments are limited to
measuring correlations over a finite range. In LEED (and
neutron scattering) this problem is particularly severe—
the instrumental resolution in LEED is typically an order
of magnitude smaller than in x-ray diffraction experi-
ments. This fact has hindered the widespread use of
LEED as a probe of critical phenomena. The purpose of
this paper is to point out that the nonanalyticities inherent
in phase transitions are still manifest in LEED measure-
ments. In fact, as emphasized here, finite resolution
LEED experiments provide a natural way of studying the
specific-heat exponent a in second-order transitions. The
basic idea is that as finite-resolution LEED is sensitive
only to short-range correlations, LEED measurements
show the same singularity as the energy.

Our discussion will be in terms of the lattice-gas model
of adsorption. This model assumes that the energy of the
adsorbate can be determined uniquely by specifying a con-
figuration of adsorbed atoms on a discrete set of binding
sites. That is,

E({n(n)})= 3 E(r)n(r)

+3 EX(r,r')n(r)n(r+1')

r,r’
+ 3 EC®r,r " )n(r)n(r+r)n(r+r"),
r,r',r”

(1.1
where n(r) represents the occupancy (0 or 1) of the site at

r. This model, for example, assumes the energy of the ad-
sorbate is independent of the internal degrees of freedom
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of the substrate. While it is convenient to frame our dis-
cussion in terms of this model, our conclusions are in-
dependent of it.

A common objection to the use of LEED to probe
phase transitions is that, due to the large electron-atom
scattering cross sections, multiple scattering is important.
This fact, of course, is what makes the determination of
surface structural information so difficult. However,
multiple scattering is not a fundamental obstacle to the
study of phase transitions. Multiple scattering is short
ranged:! It introduces a length scale into the measure-
ment of the order of the electron mean free path (typically
several atomic spacings). As long as the correlation
length is much larger than this length (that is, sufficiently
close to T,), the inverse width of diffraction features, for
example, will scale the same way as the correlation length.
The electron mean free path is short enough that it should
not obscure critical behavior that might otherwise have
been observed. Moreover, integrated LEED features mea-
sure the exponent a independent of the amount of multi-
ple scattering.

Some of these ideas were sketched in short papers by
us? and have appeared in various forms earlier, particular-
ly regarding resistivity’>~> but also with applications to
scattering,%’ etc.® Our goal here is to present a thorough
treatment from the perspective of someone interested in
critical properties of surfaces and to provide detailed illus-
trations by our Monte Carlo simulations of the structure
factor. In Sec. II we discuss why finite-resolution LEED
measurements allow the exponent a to be measured. In
Sec. III we discuss the crossover of finite-resolution
LEED experiments to infinite-resolution ones, and suggest
how one might determine the exponents 3, ¥, and v by
varying instrumental resolution (in a way analogous to
finite size scaling). In Sec. IV we illustrate our ideas by
applying them to Monte Carlo data from lattice-gas phase
transitions in two different universality classes—a
(V3xV3)R30° and a p(2X2) order-disorder transition.
In Sec. V we present a short summary.
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II. DERIVATION OF ENERGYLIKE
SINGULARITY '

In this section we show that the scattered intensity mea-
sured as a function of temperature in experiments such as
LEED exhibit an energylike singularity near the critical
temperature 7,. We expand on the arguments presented
in earlier shorter papers.> We are interested in the extra
spots induced by ordered overlayers of adsorbed atoms or
by reconstruction of the top layer(s) of atoms of the sub-
strate. These spot intensities are temperature dependent
because they are determined by correlation functions of
these atoms. In the lattice-gas picture and the kinematic
approximation LEED intensities are weighted sums of the
pairwise correlation functions (n(r)n(r’)). Because of
the large scattering cross section that makes LEED sur-
face sensitive, the actual intensities will also generally de-
pend on multisite correlation function via multiple
scattering. While one can minimize their contribution by
various experimental techniques,9 we show below that
their presence does not alter our arguments for the sort of
measurement we propose. An important feature of real
LEED instruments is that they are sensitive to correla-
tions within only a finite (“instrumental”) range,'® for ex-
ample, L;. LEED intensities are thus finite sums of
correlation functions. If we neglect multiple scattering
and assume for simplicity a sharp cutoff, LEED intensi-
ties are proportional to I (k):

Ik)= 3 3 e*(nmn+r)). (21

0<r<o 0<r'<L;

I((n})=

0

|""M

o |0<r<L;

Note the use of T to distinguish from its expectation value
I [cf. Eq. (2.1)], the measured intensity. We can imagine
a term like this in the Hamiltonian of Eq. (1.1). If we ex-

tend Eq. (1.1) by adding a term gf( {n(r)}), then

I= s )
ag g=0

Equation (2.3) gives the temperature dependence of f at
g=0. In general 1 {n(r)}) will not have the same sym-
metry as the physical Hamiltonian. This means that we
must allow for new critical behavior when g=£0. The
dependence of f on g and T is expected to have the gen-
eral crossover form

[(T0)=|T|>"°X+(&|T| 7%,

where ¢ is the leading crossover exponent and X, (z) is a
crossover function. The (nonlinear) scaling fields g and 7
can be expanded about g=0 and =0 as

T=t+cg +O(gtt%g%),
§=g +cyt +O(gt,t%,g%) ,
with
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In what follows we present the argument that the tem-
perature singularities of I(k) and of the more general
sums of correlation functions associated with LEED in-
tensities are the same as that of the energy. The essence
of this argument is that both the energy and I(k) are
derivatives of the free energy with respect to coefficients
of short-range terms in the Hamiltonian which do not
change its symmetry. To show this explicitly, we consider
the scaling form of the (reduced) free energy per site,
f=—F/NkpT. A result of the phenomenological theory
of second-order phase transitions is that f can be decom-
posed into an analytic part and a singular part,

f=fa+fs s

with the leading singularity of f; determined by the
specific-heat exponent a

(2.2)

_ a+|t|2—a’ r>T,

Sfs= ,

P la_ ), T<T,, (2.3)
where t=(T —T,)/T, and a’=a by scaling. The average
(reduced) energy is the partial derivative of f with respect
to T,

=g_8fa
dT = aT

+by|t]1me, 2.4)

The actual LEED intensity, including multiple scattering,
is an average of

(2.5)

O<r'<L; 0<r'<L;

f
T

t ——
T.(g=0)

—1.

An important point is that in the absence of any special
symmetry of I, the thermal scaling field contains a term
linear in g. For example when g is irrelevant, i.e., ¢ <0

2—a

T

fS < - ’

T.(g)
and thus

1 dT,

cl=——— .
Tc dg g=0

Given the above form for f,(7T,g) the leading singularity
in the temperature dependence of I is

Li=%c;(2—a) |t |'72X4(0)+ |2 |2~ ¢X (0)+ - - - .

(2.6)
The | ¢ |2~%¢ term is only of concern when ¢ > 0, that is

- when the field g is relevant. The field g will only be

relevant (excluding exceptional cases) when the term gI
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breaks some symmetry of the physical Hamiltonian. We
will argue that when no information about the phase of
the order parameter can be obtained from I, I can be
found by differentiating with respect to a field g’ conju-
gate to a term 1 '( {n(r)}), which does not break the sym-
metry of the Hamiltonian.

The ideal infinite-system Hamiltonian is invariant with
respect to the space group of coordinateAtransformations
{A;} of the substrate: r'=4A;r. Since I({n(r)}) is au-
tomatically invariant with respect to the lattice transla-
tions, {T;}, [T({n(r)})=I({n(T;r)})], for symmorphic
groups we need only consider the point-group operations
{R;}. (These arguments can be generalized to nonsym-
morphic groups.) The term

~ m ~
gTl'({n(n)})=g" > Ii({n(r)}),
i=1

where T,({n(r)})=I({n(R;r)}) and m is the number of
point-group elements, has the same symmetry as the phys-
ical Hamiltonian. The average I will have the same
singularity as the energy [Eq. (2.3)] because g’ is now gen-
erally irrelevant. Above T, by definition, the symmetry
of the correlation functions giving I;=1I; is unbroken, so
that I =I'/m. Below T, we have assumed that no infor-
mation about the ordered phase can be obtained from I,
so again I;=1I;. (If I;s~I; the diffraction pattern would
depend on the ordered phase.) Lack of phase information
can arise from (at least) two sources. Either the correla-
tion function symmetry which is broken is a translational
symmetry [as in the V'3 X V3 and p(2X2) order-disorder
transitions discussed in Sec. IV], or the LEED instrument
(as is typically the case) averages over all orientations
(domains) of the ordered phase. If phase information can
be obtained from I (which is possible when the number of
components of the order parameter is greater than one),
then the | ¢ |2~%~% term of Eq. (2.6) must be considered.
The origin of this term in field theory is discussed by
Brézin et al.!! This argument for the energy singularity
of I fails in the exceptional cases where a non-symmetry-
breaking term like T’ is relevant (for example the X-Y
model with cubic anisotropy). The virtual interactions
implicit in 7’ must be short ranged to be irrelevant; if one
decays as 1/r? 7+, irrelevancy requires o >2—7.'? As in-
strument response functions are typically Gaussian,!° this
condition is usually satisfied. So, given these conditions,
the temperature dependence of an arbitrary LEED inten-
sity close to 7T, will be of the same form as the tempera-
ture dependence of the energy; that is,

I(D=L(T)+I(T)=Ag— A\t TB, |t |4 - - ,
2.7)

where we have included the first two terms of the analytic
part. Of course as the instrumental resolution becomes
infinite this temperature dependence can cross over to
another type, as discussed below. The ratio B, /B_ is
universal—independent of both instrument and system de-
tails.

On a real surface there are quenched defects in the
form of random steps and impurities which limit the
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range of long-range order. This will limit the range of va-
lidity of Eq. (2.7) to reduced temperatures where the
system’s correlation length is less than some characteristic
size. For example, divergences in the derivative of I with
respect to temperature will be rounded. One problem
which then arises is how to estimate the perfect system
T,. In finite systems a natural estimate of T is the tem-
perature of the peak in the specific heat. The convergence
of this estimate is well understood.!*> The singular struc-
ture of the specific heat is the same as that of I, so the
analogous estimate of T, is the inflection point of the in-
tegrated intensity. This correspondence justifies a com-
mon practice.'*

In first-order transitions with discontinuities in the en-
ergy,'® the short-range order of the two phases are discon-
tinuously different and so any measure of the short-range
order will mirror this discontinuity; fits with Eq. (2.7) will
yield a close to 1.

In summary, the poor resolution of LEED compared to
x-ray experiments, or the sensitivity of LEED to multiple
scattering, does not prohibit its use as a probe of critical
phenomena. Any LEED measurement which shows a
second-order phase transition can be used to study the
critical exponent a and the amplitude ratio B, /B_. For
experiments carried out at fixed coverage rather than at
fixed chemical potential (the usual case in studies of
chemisorbed systems because they are not, typically, in
equilibrium with the gas phase) and away from maxima in
phase boundaries, there is an important caveat: Fisher re-
normalization.'®!7 In these cases exponents are replaced
by their “Fisher-renormalized” values. In particular the a
in Eq. (2.7) is replaced by —a/(1—a).'® As a result the
fitted a can change from positive to negative, making it
more difficult to determine. This problem can be circum-
vented by performing experiments near maxima in
temperature-coverage phase boundaries—where the tem-
perature region where Fisher renormalization is observed
becomes small.!®

III. SCALING FUNCTION FORMULATION

Usually LEED experiments are envisioned as methods
for measuring the structure factor of surfaces. The struc-
ture factor S(k,T), is the Fourier transform of the
surface-atom pair correlation function

S(k,T)=3 3 (n(rn(r+r))e’*™,

r r

3.1

i.e., the form of Eq. (2.1) with L; = . It is what would
be measured by a LEED instrument with infinite spatial
resolution in the kinematic (single scattering) limit. When
there is long-range positional order on the surface, S (k,T)
will contain a series of delta functions at positions k=g,
where the vectors g characterize the long-range order (i.e.,
the locations of the ‘“extra” spots). For convenience we
define a reduced k-dependent susceptibility X(k,T) as the
structure factor without the delta functions,

X(k,T)=S(k,T)— 3 my(T)8(k—g) .
g

(3.2)

The coefficients m, give the amplitudes of the long-range
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order and hence are proportional to the order parameters
of the surface. In an order-disorder phase transition, a
subset of the m’s will vanish as the temperature is raised.
Near a second-order phase transition, m, is expected to
approach zero as t28 and X(k,T) is expected18 in the limit
k—0 and k¢ fixed to have the (scaling) form

X(k, T)=E"""X 4 (k) , (3.3)

where by k we mean |k—g|, E=&|t~"| is the correla-
tion length, and X, are universal functions (of a single
variable). As t—0, the susceptibility X(0,7) diverges like
t~7 and the width of the structure factor vanishes like ¢*.
We begin with systems which scale isotropically,'® com-
menting subsequently on anisotropic effects encountered
in our studies of specific structure factors.  We assume in
this section some familiarity with the idea of scaling func-
tions and their expansions in the various limits; for
readers wanting background material, excellent references
are available.!®20
It is not immediately clear that this interpretation of a
LEED measurement is consistent with what was said in
the previous section—that diffraction intensities show en-
ergylike singularities. In the following we show how they
can be consistent. The essential point is that S(k,T)
comes from an infinite-ranged sum (in r space) of correla-
tion functions, while LEED intensities are finite-ranged
sums. That is, a measured LEED intensity is (in the
kinematic limit) an integral of S(k,T) over k. The ex-
ponents ¥, B, and v and the scaling functions X, must
have properties so that any integral of S(k,T) has an en-
ergylike singularity. The Fisher-Langer® approximate to
X + (y )’
X:(=Cy~"1+C3y 1=+ Cyp =17, (3.4)
|

AoFAy|t|FBy |t | 2=

To obtain a term independent of ¢ on the rlght hand side, -

we must have wy=(2v—y)/v and 4,=D3k*?"". To el-
iminate the | ¢ |2 singularity from the right-hand side we
must further have 28=2v—y (a familiar hyperscalmg re-
sult), ®;=wo=2B/v, DoDT =—m?2, and DT =0. Simi-
larly, @=(1—a)/v, a)3——1/v with By =+D,D¥k;° 2,
and 4,=%D,D3 k, . Thus Y.(x) has the asymptotic
form

Yi‘ (x)NDOxZB/V( 1 _'_D]ix _ZB/V—FD%X —(l—a)/‘V

4+Dyx Vo), (3.10)

If now instead of integrating X we integrate S, we see that
it too will satisfy the scaling relation in the limit of small
k;,

Is(k;, T)= |t |%Z (k&) 3.11)

where Z _(0) is the amplitude of the J |28 term in the or-
der parameter and Z,(0)=&; Y, (0)= When
k; =0 one recovers the 1nf1n1te—sum dlffractlon picture;
when k;£0 the singularity crosses over to the finite-sum,

m% |t | B4 DEk° |1 | TV
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which is valid in the limit y— o0 (k=5£0,—0), ensures
(by construction) that integrals away from the spot center
(with | k| small, however) will have the energy singulari-
ty. This form has been verified in 4—e dimensions, for
example.!! Thus let us consider an mtegral of X(k,T) of
radius k; including a point g,

k
Iky, T)=2m"""(2m) =2 [ "dk kX (kE)

:g(V/V’“ZY (k&) , ' (3.5)

where Y4 (x)= f dy yX+(y). Now we will show
that for this to be cons1stent with integrals of S having an
energylike singularity we must have 28=2v—y and also
that Y. must have a particular asymptotic expansion.
From the definitions of X and §

Ig(ky, T)=Iy(k;, T)+mXT) . (3.6)

In the limit of small k; and ¢ we can rewrite this using
Eq. (3.5):

Istkp, T)=E&7"" 72|t |2V Yo ki&o |t |~ +md |t 1%,
(3.7)

(where m . =0, by definition). We now assume that for

large x, Y. (x) has the form

Y4(x)~Dgx

1+ 3 DEx ] (3.8)

i=1

For small t we have assumed that I¢(¢) must have an en-
ergylike singularity. Expanding both sides of Eq. (3.7)
thus yields

(3.9

14+ 3 Diky et

i=1

|
energy-singularity picture. When the correlation length is
smaller than the resolution of the LEED instrument, the
structure-factor approach is appropriate; when the corre-
lation length becomes larger (something easy to arrange
experlmentally) the energy singularity is seen as described
in Eq. (2.7).

The requirement that the structure tactor have an ener-
gylike singularity at T, when k=40 led to the introduction
of the Fisher-Langer form of the large-y expansion of
X(y). However the structure factor is accurately
represented by || “YX (k&) only in the limit of small k,
whereas the energy singularity, as discussed in the preced-
ing section, occurs at all nonzero k. Thus the corrections
to scaling which occur at finite kX must have similar
large-y expansions. Including the first corrections to scal-
ing, the structure factor is approximated by the form?!

S(k,D=|1| 77 |X(k&)+ Sa; | t]“X,(ké) (3.12)

where we have allowed for the possibility that the correc-
tions to scaling are not isotropic in the scaling limit by
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letting the (universal) scaling functions X; have vector ar-
guments. The exponents A; are the usual gap exponents
associated with various irrelevant fields; the constants a;
are nonuniversal. So, to ensure the energylike singularity
of S(k,T) as T approaches T, the large-|y| limits of
X;(y) must be similar to Eq. (3.4):

; —(y—24;)/ i
X(=Ci|y| T TA+CE @) [y | U
+Ci) |y | =M1, (3.13)
where y =y/|y|.
IV. ILLUSTRATIONS OF FEASIBILITY

To illustrate explicitly how integrals over the structure
factor, and hence LEED, give information about the
singularities in the energy at a phase transition, we have
calculated with Monte Carlo techniques the structure fac-
tor and energy of two different triangular lattice gases.
The ordered states in the two cases, a (V3 X V3)R 30° and
p(2X2) structure, are expected to disorder in two univer-
sality classes which can be distinguished by differences in
the singularity of the temperature dependence of the ener-
gy. They are also common phases of adsorbed atoms on
the close-packed faces of fcc and hcep single crystals.??

On the basis of the ideas of the preceding sections we
expect that sufficiently close to T, the temperature depen-
dence of the integrated intensity I (7T) will be proportional
to the temperature dependence of the energy E(T). That
is,

D =uE(T) 4w, T=T,; k;>>£! 4.1)

where u is negative. The temperature range over which
this proportionality is valid decreases as the k; decreases
(and the resolution of the instrument increases!). In the
limit of very small integration radius and infinite system
size the temperature dependence of the integrated struc-
ture factor, as discussed above, crosses over into very dif-
ferent behavior,

alt|2B7 T<T,
0, T>T,.

lim I(T) =~

Prtaeey (4.2)

Of course Monte Carlo simulations (and experiments) on
finite systems give only approximations to this behavior.
For example for a lattice gas with N sites instead we
have!?

, T<T,, \/N>>§

2 28, € —v
N*||t]|*+ t

lim I(T) <

k;—0 N2 T=T,

Nt~Y, T>T, VN >¢&,

4.3)

where 7 is the anomalous dimension of the critical point.
The amplitude of the structure factor away from positions
of long-range order (in k or T) is proportional to N.
When one integrates the structure factor over any finite
region of k space the result is proportional to N2, regard-
less of whether one includes k=0 or not. So the order of
magnitude of the integrated structure factor is of the same
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order of magnitude above T, as below, and Eq. (4.1) can
be valid. At the critical point of the infinite system the
energy converges to its infinite system values as
N—-(=a)2v

The phase diagram for the triangular lattice gas with
only nearest-neighbor repulsions has been studied by a
variety of methods.”>~2° At low temperatures and at par-
ticle densities greater than (5—v'5)/10 (=0.276.. .),% the
commensurate (V'3XV3)R30° phase appears with the
second-neighbor sites preferentially occupied and a three-
fold degenerate ground state at % monolayer coverage. It
is believed (known at T=0) that this ordered state can
disorder via a second-order transition in the three-state
Potts universality class.?®?” We concentrate here on the
temperature dependence of the structure factor at a
chemical potential of & of the nearest-neighbor energy.
This line of constant chemical potential crosses the phase
boundary near its peak (close to a density of +). A con-
tour plot of logarithm of the structure factor around a
V3 V3 diffraction spot at a temperature approximately
5% above T, is shown in Fig. 1. In Fig. 1 the horizontal
axis points radially away from the zone center; that is, k,
and k, are the azimuthal and radial components of the
wave vector. All the structure-factor information present-
ed here was obtained from Monte Carlo calculations on a
3888-site lattice. The lattice was hexagonally shaped
(with periodic boundary conditions) rather than rhom-
boidal so that more of the infinite system symmetries
were present in the finite system. Typically 2X 10° Monte
Carlo steps/site were used in computing averages. Be-
cause of the periodic boundary conditions the structure
factor is nonzero at only a discrete number of points (387

|
()]
|
»
!
N
(e]
N
»H
»

FIG. 1. Contour plot of the structure factor, the kinematic
LEED intensity, of a (V3xV3)R30° overlayer, about 5%
above T, (0.355E,). Contour increments are in a (common) log-
arithmic scale separated by 0.1, starting with 3.2 at the outer-
most contour. Center of the SBZ is to the left; k, and k,, the
radial and azimuthal components of the wave vector, are in
units of 7/27a.
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points in Figs. 1 and 3). Expressed alternatively, there are
36 intervals of length 7/27a between the origin and a
corner of the surface Brillouin zone (SBZ), i.e., a
(V3%V'3) inner-spot position. Here a is the lattice con-
stant of the triangular lattice.

Figure 2 shows the temperature dependence of the
structure factor summed in an approximately circular re-
gion of radius 57/27a (i.e., 2.3% of the SBZ area). Su-
perimposed on it is the energy scaled according to Eq:
(4.1).. (The parameters u and w were fixed by a least-
squares fit.) Clearly for this temperature range and in-
tegration radius any information about the singularities of
the energy is contained in I(7T). Evidently this integra-
tion radius satisfies the condition k;&>>1 for the tem-
perature range considered. As the integration radius is
decreased the fit becomes progressively worse, as expect-
ed. For integration radii of 67/27a and 77 /27a (i.e.,
4.6% of the SBZ area) the fit is similar, although the am-
plitude of the singularity compared to the temperature-
independent term decreases. For different systems the
size of k; needed to make the energy singularity dominate
in the temperature range considered will vary; it is easily
determined, however, by varying k;.

The second triangular lattice gas we have examined is
the one with first- and second-neighbor repulsions. At
low temperatures and at particle densities greater than
about 0.187 (Ref. 28) the p(2XX2) structure orders, with
third-neighbor sites preferentially occupied and a fourfold
degenerate ground state at % monolayer coverage. For
this study we chose the second-neighbor interaction E, to
be half of the nearest-neighbor repulsion E;, and the
chemical potential to be 1.4 times the nearest-neighbor in-
teraction. The case of E,=FE /10 has been.considered by
Glosli and Plischke® and the case of E,=E, by Saito.°
A continuous disordering transition of the p(2X2) struc-

? O!|2 T | T 1T l TrTT I T 1T 17T ] LB I] T rr ] T 1 1.1
L% - B
o 0I0% -
(O] L &
S Bw
S = . B ]
3 g
T 008} 2 ~
Eel
5] L %@g@& i
Fra ®
£ 008 % g
= i b B
o
8004 B JgP
o
1) L ]
£ 1 I | 1 | !
coo0b e Lo o b b L b e b
0.30 0.32 0.34 0.36
TEMPERATURE

FIG. 2. Structure factor integrated over 2.3% of the SBZ (ra-
dius of 5 mesh lengths in Fig. 1) (circles) vs T, plotted with the
rescaled energy (X’s) for the V3x V3 overlayer. Rescaling in-
volves multiplication by a negative number and shifting by a
constant. The energylike behavior of the integrated structure
factor near T, is evident.
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k
r

FIG. 3. Contour plot of the structure factor of a p(2X2)
overlayer, about 2%% above T, (0.354E;). Contour increments
are as in Fig. 1 starting with 3.0 at the outermost contour; k,

and k, are in units of 7/27a. Center of the SBZ is again to the
left.

ture is expected to be in the four-state Potts universality
class.?”’ Figure 3 shows a contour plot of the structure
factor approximately 2+% above 7T, around a p(2X2)
diffraction condition. (Compare the triaxial symmetry of
Fig. 2 with the biaxial symmetry of Fig. 4.) The tempera-
ture dependence of the structure factor, integrated as be-
fore, is shown in Fig. 4 and compared with the calculation
of the energy. Again I(T) clearly reproduces any infor-
mation about the energy singularity contained in E(T).
Another way of analyzing the integrated structure fac-
tors is on the basis of Eq. (3.11). Plots of ¢~28S(k;,T)
versus k;t~" should be independent of k; if the scaling
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FIG. 4. Same as Fig. 2, for a p(2X2) overlayer.
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function X is isotropic. An experimenter then might vary
his instrumental resolution, and find the exponents 3 and
v for which this occurs. In analogy with the successes of
finite-size scaling this might allow the exponents 3 and v
to be determined when they are unavailable directly from
log-log plots of m, and £. However, the structure factors
for the lattice-gas model considered here were not isotro-
pic (see Figs. 2 and 4). As these anisotropies make signifi-
cant contributions to the integrals of S, Eq. (3.11) is not
valid for k on the order of 7/4a. For the V313 lattice
gas the source of the anisotropy is probably a correction
to scaling as described by Eq. (3.12). This type of correc-
tion to scaling comes from the presence of an irrelevant
field.3! The lowest-order field that couples to the aniso-
tropy of the V'3 X V'3 structure factor is the triaxial chiral
field considered by Huse and Fisher.> We fit our Monte
Carlo data at small & to the form

X(T)[1—k2EXT)—c(T)k2—3Kk2k,)] ,

where k, and k, are the components of k in the radial
and azimuthal directions, respectively. We find that
c(T)/EXT) vanishes as t* with A=1.04+0.2.>* On the
other hand, the scaled structure factor for the p(2x2)
order-disorder transition seems to be anisotropic: Fitting
to X(T)[1—k2EXT)—K2EX(T)] yields &,/&,~1.2 as
T—T,3 The lowest-order term in the Landau-
Ginzburg-Wilson Hamiltonian of this lattice-gas model
which distinguishes it from that of the (isotropic) four-
state Potts model is of the form3*

3

S (V¢

j=1

(4.4)

where the ¢;(r) are the three components of the order-
parameter field, and the g; are the three “primitive”
reciprocal-lattice vectors of the p(2x2) ordered state. If
the scaled p(2X2) structure factor is not isotropic, then
this transition might belong to a different universality
class, as would occur if term (4.4) is relevant (or even if it
is irrelevant but has large enough amplitude). Alterna-
tively, it might be marginal, perhaps in the same manner
that simple lattice anisotropy is marginal in the Ising
model.

Ultimately we arrive at the problem of extracting criti-

cal properties from the integrated spectra. With the many
adjustable parameters of Eq. (2.7), multivariable least-
squares fits can be very delicate. The problems involved
in determining effective exponents are well known from
the nearly identical problem (especially in view of Figs. 2
and 4) of analyzing the specific-heat divergence.’®%’
Nonetheless, Bretz*® and Tejwani et al.>® have studied the
critical properties of the specific heat of a V'3 X V'3 over-
layer using a thermal range comparable to that available
from chemisorbed systems. (Their work provides ample
illustration of the difficulties in obtaining “expected” crit-
ical exponents.*0)

There are more parameters in Eq. (2.7) than the data
justify. To reduce free parameters, we typically fix a’'=a,
in accordance with scaling. The issue of whether to in-
clude the background term in specific-heat analyses be-
comes here whether to allow the linear term. Obviously, a
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fitted value of a will be smaller when the linear term is al-
lowed. The difference is sizable, of order 0.1 (for reason-
able values of other parameters) for the p(2X2) structure
and about 0.2 for the weaker V'3XV'3 anomaly. The
question of thermal fitting range is familiar also. Near
T, data is distorted by finite-size rounding and so should
be excluded. Far from T, corrections to scaling enter. In
the scaling regime the effective exponent will be insensi-
tive to variations in the upper and lower thermal cutoffs.
Unfortunately, for the size system in most surface experi-
ments, the maximal thermal range is not much more than
a decade; hence, scaling is difficult to check. A new pa-
rameter in our case is the integration radius about the ex-
tra spot; in units of the grid spacing of 7/27a, we consid-
er integration radii k;=1—7. For too small k;, Eq. (2.7)
might not be valid in the temperature range of the data.
As suggested by Figs. 2 and 4, the effective a’ for the en-
ergy and for k; =35 are usually nearly identical (i.e., within
0.01), for both layers.

Our effective specific heat exponents for the p(2x2)
and V3 V'3 overlayers (expected to have a’s of  and +,
respectively) are tabulated in Table I. There was generally
little dependence on the upper thermal cutoff when it was
varied between 0.12 and 0.18. The average value is given
with the variation in the final digit indicated in
parentheses. Decreasing the thermal cutoff below 0.12 for
the smaller k; made the effective exponents closer to
those for the larger k;. This is consistent with the idea
that the range of validity of Eq. (2.7) decreases with de-
creasing k;. For small k;, when Eq. (2.7) is less represen-
tative, the variations are largest. The dependence on the
lower cutoff is more significant, but the effective a seems
to stabilize by 0.02 for all k;. To check whether this cut-
off is sensible, we computed energy using a lattice with
half the length scale L and examined the thermal range
over which it differed from the energy of the larger lat-
tice. (The thermal rounding occurs over 8t ~L ~1/%) We
found that rounding is expected for ¢<0.01—0.02.
Without the linear term for the p(2Xx2) overlayer, our
values are comparable to those found by Saito® [a’'=0.65,
a=0.59 (or 0.62 if one point is discarded)] and by
Binder*! (a'=0.66, a=0.57) from log-log plots of energy
of the four-state Potts model (where T, and the energy at
T, are known exactly). If we fixed B, /B_, we could
find the linear term. For three- and four-state Potts
models (as well as Ising), duality predicts that B, =B _.*
Since the (V3xV'3) and p(2X2) overlayers are expected
to belong to these universality classes, respectively, we
used this result and found the effective a decreases some-
what. For the (V'3 V3) overlayer we find rather large
values of a, > 0.50, but still notably less than those of the
p(2X2) case for comparable fitting procedures. The
values of T, obtained from the fits [0.338(1)] are close to
the best transfer matrix estimate of 0.335.4> In his studies
of the energy of the three-state Potts model, Binder*!
found a’'=0.38, ®=0.39. Selke and Yeomans** obtained
a=0.451+0.05 from log-log plots of the specific heat
(without background removal), similar to our results.
With the linear (“background”) term included in the fit,
drops considerably to the neighborhood of +. We finally
remark on the general trend for a to increase as the tem-
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TABLE 1. Values of effective exponent a for p(2%2) and V'3 V'3 overlayers, obtained without or
with linear terms, for the energy (E) and k;=1, 3, 5, and 7, and for three lower thermal cutoffs. See

text for comments.

Without linear terms

With linear terms

0.01 0.02 0.03 0.01 0.02 0.03
p(2X2)
1 0.81(2) 0.83(2) 0.84(2) 0.604)  0.65(6)  0.71(3)
3 0.65(2) 0.67(1) 0.67(1) 045(3)  0.522)  0.53(3)
5 0.59(1) 0.61(0) 0.62(0) 0.452)  053(1)  0.52(2)
7 0.57(1) 0.59(0) 0.59(1) 0.45(1)  053(1)  0.52(2)
E 0.56(1) 0.58(1) 0.59(1) 0.44(1)  050(1)  0.53(1)
(V3xV3)R30°
1 0.77(3) 0.78(3) 0.79(4) 0.498) 05109 . 0.56(8)
3 0.58(2) 0.60(2) 0.62(1) 0.30(5)  0.36(4)  0.394)
5 0.52(1) 0.54(1) 0.55(1) 029(4)  0352)  0.394)
7 0.49(1) 0.51(1) 0.52(1) 027(3) 0295  0.33(6)
E 0.49(1) 0.50(1) 0.51(1) 028(2)  0.34(1)  0.36(2)

perature analyzed gets farther from T.

While our primary orientation was to study lattice-gas
systems of relevance to chemisorption, we also briefly
considered several familiar magnetic models for calibra-
tion purposes. In these cases we only computed the struc-
ture factor along the radial direction and assumed circular
symmetry to get I(k;,T). For the three-state Potts model
on a 36X 36 square lattice, & ~0.43; for a four-state Potts
model on a triangular lattice half the size used for the
lattice-gas studies a~0.70£0.03 with no linear term.
With a linear term the fits in both cases became very, sen-
sitive to k; and the deduced a’s generally much smaller.
Presumably the number of data points is inadequate for
this fit. We also considered two first-order transitions, for
which « is formally 1. For an eight-state Potts model on
a 2424 square lattice, fits yield ¢ ~0.85+0.03 with a
linear term and 0.90+0.01 without; direct fits to the ener-
gy yielded similar results. Of more physical interest was a
p(2X2) overlayer on a honeycomb lattice. In several oth-
er calculations we found evidence that this model,
relevant to O/Ni(111),* was first order, at least for a wide
range of interaction parameters. Here we find, allowing
B_ and B_ to vary independently, a ~0.89; if we arbi-
trarily fix their ratio at unity, we have a ~0.97.

V. SUMMARY AND DISCUSSION

One of the goals of surface science is to understand the
forces responsible for surface order. Unfortunately the
experimental probes available usually only give indirect
information about these forces. By examining the tem-
perature dependence of some experimentally obtained
quantity one could hope to extract information about the
temperature dependence of the various correlation func-
tions of surface atoms, and thus obtain information about
the Hamiltonian [such as Eq. (1.1)] describing the simple
excitations of the surface. Unfortunately the most natural
tool for such studies, LEED, couples in a very complicat-
ed way to surface correlation .functions because of multi-
ple scattering.! At surface phase transitions, however, the

symmetries of the correlation functions change. These
changes manifest themselves in LEED diffraction features
in ways that are quite independent of the detailed depen-
dence of LEED on the correlation functions themselves.
In particular, the main point of this paper is that a LEED
intensity, or any other measurement, that is sensitive to
only short-ranged correlations (and insensitive to the sym-
metry of the correlations), is expected to show the same
singularity at a phase transition as that of the energy.

One (perhaps even practical) application of this idea has
been to the transition of the Si(111) surface from a (7X7)
(reconstructed) low-temperature state to the unrecon-
structed [“(1X1)”] high-temperature state.*® In this ex-
periment the temperature dependence of the fotal diffract-
ed current was monitored. It was found that the abrupt-
ness of the change in this current (that is, the magnitude
of the peak of the specific heat) depended sensitively on
the method by which the surface was cleaned of impuri-
ties, whereas no other method has yet detected a differ-
ence. Presumably the different preparation methods led
to different characteristic length scales. Thus, study of
this transition characterizes the surface without
knowledge of how the measurement depends on the sur-
face order.

We note finally that the variation of effective exponent
values in Table I is a consequence mainly of the relatively
limited range in reduced temperature available for
analysis. This limitation results from the finite size of our
simulations, chosen to be comparable to the length scale
to which various surface imperfections limit real chem-
isorption systems. While we have suggested in this paper
that one can study surface phase transitions with short-
range probes, we are obliged to make the following coun-
terpoint: To improve exponent estimates will require sub-
stantial improvements in sample quality.
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APPENDIX

The scaling function F4(x) for the spin-spin correla-
tion function of the Ising model is defined by

F1(r/E(D)

lim (o 0oy ==/ (A1)
t—>0-' r

r;g-;'&oed

The structure factor of the Ising model is simply

S(k,T)=3 {a(0)o(r))e™T .

In the limit of small ¢, this sum can be replaced by an in-
tegral. For the square lattice case, following Tracy and
McCoy,47 we obtain the leading contribution to the struc-
ture factor per site

Sk, T)~2m€"* [ % du u/*F s(u)Jo(ku) .

Integrating this structure factor on a circular region of ra-
|
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dius k; centered on k=0 yields

k
1, T)=m2 [ ik [ d¢ Sk, T)

g1 fwdu u T (u)kEud  (kiEu) .

The above equation is of the form of Eq. (3.11) with
B=+,v=1,and

Z,(x)=xE 4 fowdu u VAR (u)J (xu) (A2)

The large-x (small-#) behavior of Z.(x) can be obtained
by considering the small-u behavior F. (u):*

Fi(w)=FO){1tsu[lnu+(yz—In8)]+ -} (A3)

[ye is Euler’s constant and F(0)=0.70338016]. Com-
bining Egs. (A2) and (A3) (and replacing x*=° by Inx)
yields

Z.(x)=§ " x"*0Fdyx Mnx Fdyx '+ -+ ),

(A4)

where the d;’s can be evaluated in the manner implicit in
Tracy and McCoy’s derivation of the C;’s of Eq. (3.4).*8
We find

d,=27"'C; =2"*7"1F(0)[I(%)]%cos(37/8)=0.684 366. . . ,

d3=+C,=+[T(4)/T($)]*tan(37/8)=0.535547. . . ,

(AS5)

d4/d3=(C3/C2)+%=-‘3'-—7/E+21n2——1p(171)+%tan(77r/8):1.579099. e

Here (unlike in the text) we have defined d; and d, in Eq.
(A4) such that they are positive; these terms have the op-
posite sign of the corresponding coefficients in the expan-
sion of X. Thus the large argument expansion for the in-
tegrated structure factor has the same form (with k; re-
placing k) as the large argument expansion of the struc-
ture factor (the Fisher-Langer expansion) even though the
singularity at k=0, which the Fisher-Langer expansion
does not describe, has been included in the integral.
Hence the integral displays the energy singularity for non-
vanishing k;.

We can also obtain an explicit expression for the contri-

bution to Z of the squared magnetlzatlon and hence
d,d5, by replacing u3/*F, (u) with 23/%4 in Eq. (A2).Y

Since f Ji(ux)du=x"!, the resulting term d,d; is
23/ 8. the squared magnetization thence is 237865174 where
&1 —4E/k3 =1.762747. .

Finally we cast our results in the form of Sec. III:

I=dk;*+d\d;&5 k|t |In |t |

Fdiki 5 [dy+dsIntk,0)] | 2] (A6)
In closing, we point out that Eq. (A6) demonstrates for
the square Ising model that I decreases monotonically
with 1ncreasmg temperature. Therefore, a previously re-
ported® peak in I near T, in the same model must be
spurious.
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