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Time-dependent Ginzburg-Landau equations for a dirty gapless superconductor
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A complete set of charge-conserving, gauge-invariant, time-dependent Ginzburg-Landau equa-
tions is derived for a gapless, dirty, type-II superconductor using the method of Gor kov and Eliash-
berg. Pair breaking by magnetic impurities and by a static magnetic field is permitted in any ratio,
in contrast to the equations of Hu and Thompson, where the magnetic impurities dominate. Our ex-
tension of the range of validity requires a sizable increase in complexity. The space and time deriva-
tives of the order parameter and the dynamic electromagnetic fields must be included to one higher
order than in previous work. The equations are solved for a plane geometry in perpendicular mag-
netic field to first order in a parallel time-independent electric field, including all screening or back-
flow effects. The nonlinear terms due to normal-state Joule heating found by Larkin and Ovchinni-
kov are also obtained, and a precise connection is made between the vertex functions appearing in
our equations and the electron distribution function appearing in the Boltzmann equation in the nor-
mal state.

I. INTRODUCTION

The first time-dependent Ginzburg-Landau (TDGL)
equations were derived by Schmid' for the case of weak
.pair breaking. This seminal work had two significant
shortcomings: (l) as later emphasized by Gor'kov and
Eliashberg, TDGL equations require slow variations in
space and time and can only be valid in the gapless re-
gime, which is vanishingly small for weak pair breaking,
and (2) space and time derivatives were not carried out to
high enough order to include the anomalous terms. The
first anomalous contribution to the conductivity was
discovered by Maki and shown by Thompson to be of
the same order of magnitude as the regular terms derived
by Schmid. The anomalous terms are caused by the slow
decay of phase coherence of time-reversed electronic tra-
jectories, which also contribute importantly to electron lo-
calization in the normal state.

Schmid's work was generalized to arbitrary pair break-
ing by a static magnetic field by Caroli and Maki. Al-
though the first shortcoming of Schmid's work was re-
moved near the upper critical magnetic field, the second
remained. The anomalous terms were still not included.
Furthermore, as shown by Takayama and Ebisawa, a
new error was introduced because they were not careful
about the correct ordering of the gauge-invariant space
and time derivatives. The derivatives do not commute be-
cause of the space-time dependence of the electromagnetic
potentials.

The first completely correct set of TDGL equations
was obtained by Gor'kov and Eliashberg in the limit of
strong pair breaking due to magnetic impurities. This
treatment was extended by Eliashberg to the case of weak
pair breaking by magnetic impurities and by Hu and
Thompson to arbitrary pair breaking by magnetic impur-
ities. The situation is relatively simple for these cases
where the pair breaking is dominated by magnetic impuri-
ties. The anomalous terms are not important, and the
space and time derivatives are only needed in the lowest

order where the question of their relative ordering does
not arise.

Later Gor'kov and Eliashberg' included the pair-
breaking effect of a static magnetic field within the struc-
ture of their TDGL. However, they also did not carry out
the calculation to high enough order to include the
anomalous terms necessary to calculate correctly flux-
flow conductivity. The necessary calculation is carried
out in the present work. The complete TDGL equations
we obtain are presented in Sec. II.

As an example of an application of our equations we
solve in Sec. III for the complete structure, including all
screening or backflow effects, for a plane superconductor
in a strong perpendicular magnetic field and a weak paral-
lel electric field. Some results for these screening effects
were given earlier by Thompson and Hu for two-
dimensional features" and some of the three-dimensional
features' for the simpler case of strong pair breaking by
magnetic impurities, although not all of the three-
dimensional features were written explicitly even for this
case.

Finally, we consider nonlinear features of our equations
in Sec. IV. As has been emphasized by Larkin and
Ovchinnikov, ' the main effect near the upper critical
field is normal-state Joule heating because of the extreme-
ly long time for the energy absorbed from the electric
field to escape from the electrons at low temperatures.

II. TDGL EQUATIONS

Our purpose is to present TDGL equations of sufficient
accuracy to calculate the rate of change with respect to
the magnetic field 8 of the conductivity of a supercon-
ductor from its normal-state value cr near the upper criti-
cal field 0,2. The lowest-order TDGL equations include
contributions to the current j up to order

~

b,
~

A, where
6 is the order parameter and A is the electromagnetic
vector potential. An implicit contribution to.the change
in the conductivity is induced by the change in b caused
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by the presence of an electric field E. However, a change
in ihe conductivity of order

~
b,

~
could also result from

an explicit term in the current of order
~

b.
~

E, where A
contributes to E through its time derivative BA/dt. It
happens that the explicit contributions are negligible com-
pared with the implicit ones when pair breaking is dom
inated by magnetic impurities, so the extra terms were not
needed in Refs. 2, 8, and 9. However, when the pair
breaking is dominated by the magnetic field both contri-
butions are important. To develop a consistent set of
equations which will satisfy charge conservation
V j+BPIBt =0, where p is the charge density, we must
also calculate the other TDGI. equations for the order pa-

rameter, the charge density, and the vertex functions
along with the current to one higher dynamic order.

Our derivation uses exactly the methods explained by
Gor'kov and Eliashberg. ' ' Employing standard tech-
niques of quantum-field theory, particular attention is
paid to certain vertex functions, called I

&
and 1 2, which

are anomalously large, being inversely proportional to the
diffusion propagator. These vertices arise from diagrams
in which an electronic energy changes from one side of
the Fermi level to the other because of the addition of the
frequency of the external perturbation causing the system
to leave equilibrium. %"e omit the details of the deriva-
tion and directly present our results:

ln +g( —, +p) —P( —, ) b, [—g'( —, +p)h]+ Ub, g"( ——, +po) i 2e— b,
T 1 ~ 1 1 1 „1 BA . B4

T, ' ' 4mT Bt 32~2 T2 2 gt 2

1+ — (U'~)+, , 0"( , +po)+—0"'( +—po) p—o+
DV'

2 at 16m T 4~T

aA +V %+
Bt 2e

gi(po) BA
4' 2T2

U&
+Up

2e ao

4emT „ 4~T at g [(p—po) &*q(p —po)"
m=0

+(p —po)" &q(p —po) b,'] (2)

P= —' P+ —@ + 2)/'( —,
'

+Po)
a~

D - 2e 32e& T Bt Bt 2e

e%'= — J de(l )
—1 2),

U= U] +I.'Up,

U, = jde(I, +12)
4 +EX

(4)

gg CX

U2 = — I de(I )
—1 2)

E +0!

g 1 (po) = 0 ( 2 +Po)+ 2 2J'2 ( 2 +Po)
2p0

In these equations T is temperature, T,o the critical tem-
perature in the absence of pair-breaking effects, P the di-
gamma function, g' and P" its first and second deriva-
tives, 'e the electronic charge, @ the electromagnetic scalar
potential, ~ the normal-state single-electron lifetime, and
D the normal-state diffusion constant. (fi=c =k~ ——1.)
The dirty-limit condition 2m T,o~ &&1 is required. a is an
operator acting on 4 or 6, cx=~, '+ —,'Dq, where z, is
the normal-state single-electron lifetime for spin-flip

scattering, and q is a gauge-invariant derivative defined
by qA=( iV —2eA)b and q—b,*=(iV 2eA)b, '.—ao is
the lowest eigenvalue of a, which is ao ——~, '+ —,

'
eo.

eo ——2eDBo near the upper critical field for the vortex
state. Bo is the average magnetic field. p=cz /2mT and
po ao/2mT. a m——ust be kept as an operator in certain
terms because the dynamic corrections to 6 may have dif-
ferent eigenvalues than ao. Some other terms already
have enough explicit time derivatives so that these correc-
tions are not important to the order we are working. The
operator U becomes a number U when n is replaced by
ao. U is defined as in Ref. 8 so that both U& and U2 are
real, in distinction from Ref. 10 where U2 is imaginary.

The terms linear in b, in Eq. (1) resemble the expansion
of the operator

I ln(TIT, o)+P[ —,
' +p —(BIBt+ieC&)I4mT] —g( —,

' )Ib. .

proposed in Ref. 6, except for the ordering of the opera-
tors and the appearance of more complicated functions re-
placing &P. Equation (2) for the current is again compli-
cated by the appearance of some new functions replacing
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the scalar potential in the first set of large square brack-
ets, which is the normal-state conductivity, and in the
second set of large square brackets, which is the
anomalous term of Ref. 4. The last sum of terms in Eq.
(2) reduces to the usual supercurrent in the static case.

I

The explicit time derivative of the supercurrent does not
contribute to the average conductivity but does affect the
local current distribution. I

~
and I 2 are the vertex func-

tions defined by Gor'kov and Eliashberg. They obey the
following equations:

(I i
—I2)

4ie p(e) g p(e) ()(DV A+4 )+2 ——,'(I )
—I p) 6 b,

+CX

p(e) + —,'(I )
—I 2) b,'

Bt

(e' —~o) a fp(e) „aa as*
+ 2(e +tto) Bt r Bt B)t

2+D, , 2-V fb, f2
( &'+o'p)'

4ie, BA
fo(&) +V(I i

—I 2)at

D (e —~p)2 2

(e +Exp)

4ie, BA
fp(&) -- +V(I i

—I 2)r Bt

7' ( + )=—— f'() -f ()Bt + Bt ()t

lg BA.(DV.A+ C )+2D
Bt at BE' (7)

Here fp(e) is the normal-state electronic distribution function, and fp and fp' are its first and second derivatives with
respect to e,

1
fp(e) =—1 —tanh

2 2T

1fo (e)= — cosh
4T 2T

fo'(&) =
2

tanh cosh
2T 2T

We obtain differential equations for + and Q& by multiplying Eq. (6) by —(i&/2) fdE and Eq (7) by

(ir/4) f ede/(e +ao)

and then integrating
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z

Bt
D—V (2e++

~

b,
~

U2 ) =2e (DV.A+&5)
Bt

+2I

. a &" -+po .a~ as*
at 16~2T2 at at

—iU2 /A]2

+DV. /6 f' —V
2m'T'

U2
+U2

ao

e&"(-'+Po) aA —VU24~'T'8, gi po) B~b, ~'
2T2

e'Dp"( —, +po) gA —e (DV A+0&)+2D V U2 .a BA
Bt Bt

With these equations we can now consider charge conservation. Using Eqs. (1)—(3), (9), and (10), we obtain directly

V 3+ap/at=— 8 2, e „) 8
Bt

DV U, '+— P"( +p, ) (—DV A+4 )4m'T'

Because of the explicit appearance of
~

b.
~

in Eq. (11), we

only need a differential equation for U2 to zeroth order in

b„ i.e., in the normal state. Setting b =0 in Eq. (6) and

then multiplying by

(ir/4) jaode/(e +ao)

and integrating,

DV U2= —— P'( —, +po) (DV A+@—) . (12)
Bt 2mT ' Bt

27TT
(14)

e%' g"( —, +po) .
4m T

Finally, we want to remark that our equations are
gauge invariant. The basic transformations are
A —+A —VX, N —+0&+OX/Bt, and b, ~b, exp( i 2eX—)
Since U&, U2, and U2 are always multiplied by 5, we
only need their transformations in the normal state. Us-
ing Eqs. (10), (12), and (13),

Differentiating Eq. (12) with respect to ao gives
2&T

P'( —, +p),

r

DV U2 = —— Q ( 2+po) (DV'A+@)
Bt 4m T ' Bt

This result shows that the right-hand side of Eq. (11) is
zero to the order we are working,

~
b,

~

In general, we would need a more accurate equation
than (11) to determine Uz in the superconducting state.
However, applying the above integral to the terms of or-
der

~

6
~

in Eq. (6) would generate some functions which
we have not yet defined. To avoid an endless set of cou-
pled equations one really would need to solve Eq. (6) for
I

&

—I z first and then integrate to get Uz. In the special
case we consider in the next section, where the screening
of the electric field is very weak, we need only the
normal-state value of U2. Comparing Eqs. (12) and (13)
with Eq. (9) with b, =0 we find, in the normal state,

P"( —, +po)
e „~ QX

4 2T2 (15)

'P~q'+ 1+, , f"( —, +Po)8~~T~

Although 4 has the same gauge transformation as N in
the normal state, the transformations of + and @ are dif-
ferent to order

~

6
~

. For further calculations it is more
convenient to replace 4 in Eqs. (2) and (3) by a potential
Y, which has simpler gauge properties,

Y=%+
~

b,
~

U2/2e .

'2

+ g"( , +po)—BX e' „ & BX

Bt 8~ T Bt

Finally, we need + not only in the normal state but to or-
der

~

b,
~

for j and p to be accurate to order
~

b,
~

. Using
Eq. (9),
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Then Y has the same gauge transformation as 4, and eY
may be identified as the change in the electrochemical po-
tential from the equilibrium Fermi energy.

With the above transformation relations, Eqs. (1)—(3)
are verified to be invariant. Each of the terms in large
square brackets in Eqs. (2) and (3) is separately gauge in-

variant. The invariance properties of Eq. (1) are most
easily seen in the case of weak screening of the electric
field. Then we can use Eq. (14) and group the terms into
gauge-invariant combinations. Equation (1) linearized in
6 then reads

—[ln(T/T, o)+g( —,
' +p) —g( —,

' )]b,— +i2eY [g'( —,'+P)b]
4mT Bt

)

2 +po +l 28Y +l 2e
BY

at Bt

2

a+ U, — ', , q"(-,'+p, )Y' x=0.
Sm 1" (18)

The contents of the first three sets of square brackets are
easily seen to be invariant, whereas the invariance of the
term in the last set of square brackets, which involves Ui,
is now easy to verify using Eq. (15). Since Ui is of second
order in the potentials, it is important for nonlinear ef-
fects, which are discussed in Sec. IV. The terms of order

appearing on the right-hand sides of Eqs. (6), (7),
(9), and (10) are all grouped into gauge-invariant combina-
tions.

III. DYNAMIC RESPONSE, LINEAR
IN ELECTRIC FIELD

To apply the TDGL equations derived in Sec. II to a
specific example, we consider a plane type-II supercon-
ductor of thickness 2d located in the region —d & z & d.
A uniform magnetic field Bo is applied perpendicular to
the film in the e, direction. The magnetic field is close to
the upper critical field H, 2 determined by

The operator p acting on A2 gives p062 plus a correction
of order E, which involves the first-excited eigenfunction.
To first order in E,

(P Po) ~2=(P) Po) (P Po)~2 (21)

where pi ——3po. Expanding the first term in Eq. (20) in
powers of p —po, we get

P '(Dq eo)+ +i—2eY b2 ——0,
Bt

« i +p) ) «z +po)—

(pi —po)e ( 2 +po)
The function P was introduced by Takayama and
Ebisawa. The solution of b, 2 is just the static solution b,o
translating uniformly with velocity v =Eo XBo/B 0 with
no distortions:

»( &/'r, o)+g( —,
'

+po) —g( —,
'

) =0 . (19) b,2(x, t) =60(x—vt)

A lattice of current vortices is formed in the film. An
electric field with average value Eo is applied in the plane
of the film and causes the vortices to move in a direction
perpendicular to both Eo and Bo. The solution to the
dynamic equations to first order in E is obtained follow-
ing the procedure of Thompson and Hu. "'

First we solve for the order parameter b, . For type-II
superconductors the electric and magnetic fields are weak-

ly screened near H, 2. We can use Eq. (18) with the poten-
tials for the normal-state fields and simplify the equation
to keep only terms linear in E,

P( —, +p) —P( —,+po)

g'( —, +Po) +i 2e Y b. =0 . (20)1 I a
4mT Bt

The solution is obtained in two stages. First we ignore the
magnetic field generated by the transport current j,=o.EO
and obtain a two-dimensional solution 62, which is in-
dependent of z in the metal. Then we find the z-

dependent correction 6b, 3 so 6—62+543.

Ao ——Bo(x v„ t)ey P—EO/2eo, —

Yp= vyBO(x —v~t)
(24)

All time dependence here and throughout our solution ap-
pears in the combination x vt Other ch—oice.s of gauge
may obscure the simplicity of the solution given in Eq.
(23). Although P was called a polarization in Ref. 7, the
order parameter 42 is not polarized.

To find 553 we must replace Ao by Ao+A, in Eq.
(20). In the metal

A, = 2m), (z +fo), —

V &( A, =B,= —4m z ~ j, ,

(25)

where f0 is a constant. (Outside the metal

=exp[ —eBO(x —xo v„t) +i 2eBo—xo(y —v t)] .

(23)

%e have picked our gauge so the normal-state potentials
are
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55,= f—(z)8rrej, qb. ~,

+4eBp f(z)=z +fp .= 2

Bz

(26)

B,= —4@de, Xj,sgn(z) is a constant. ) To linear order in Equation (32) agrees with the result of Ovchinnikov. '"
The value of (

I

5
I ) is found from the static solution

eT
' ~ 2

—&o
(33)

g p'( —,
' +po) 2Pq &q —'rl

where

The boundary condition at the surfaces z =+8 is that
q, b, =O, which means that df/dz=0. Introducing the
coherence length g by 2eBp g——, the solution to Eq. (26)
1s

~22d ~
cosh ( v 2z / g )

2 sinh( v'2d /g)
(27)

8nef(z)(j, Xe ) V
I

b, q I
(28)

which is a translation or bending of the vortex lines to fol-
low the lines of the total field B=Bp+B„except within a
coherence length of the surface, which the vortices inter-
sect perpendicularly. We require 8, «Bp at the surface
for the linearized solution to be valid.

Next we consider the current using Eq. (2). It is con-
venient to introduce a vector field 8' in the metal by

8' = —V&—BA
(29)

t)t

N' differs locally from the Maxwell field E, but the aver-

age of 8' is the applied field Ep. Using the operator prop-
erties of p as above, we get

~e choose fp so that f(+d)=0. This choice simplifies
the expression for the magnetic field in Eq. (44). The
change in the magnitude 6

I
to linear order in F. is

5
I
&

I
'=(b, ;)(M.,)+(&,)(M3)

and K2 is a generalized Ginzburg-Landau parameter

[ 0"(—
~ +po) 0"'(—

~ +po)/6~Tr. ]
K2=

16rroD[g'( —,
'

+po)]
(34)

g is a function calculated by Lasher. ' For thick films
with d ~~/, q=ii„—1=0.16. For thin films g goes
monotonically to zero.

For later economy of notation, we can generalize the
dynamic screening length g defined in Ref. 11:

(35)
equi(po)1+

4rroD 2rrTq~( '
+p )

where A, z
——~zg. The ratio g/g has simple limits at T =0

and T =T,p,

2 12 1— 2eo

3ep+ 2/~,

5.8 1+
so+2/

at T=O,

at T=T,p.
(36)

Overall g has a rather limited range of values,
0.29/&/(0. 50$. In terms of g the normalized slope of
the conductivity may be written

g)(po) 0'(
& +po)g=o@'+~, , + I

~~
I

'Eo
4~2 T2 2~Tap

~c2 da-'

0 88p

2 2
K2

2P~ ~q —g
2 (37)

+j,p+
g"( —,

'
+po)

ti"H+po)
(1 P)2mT-

Ep

1 ~jsp

4mT Bt

+ p'( —,'+pp)Vx[Vxj f(z)
I

~&I�

']
T

(30)

To find the spatial variation of 8' and j we develop a
differential equation for Y. We start with V j=0 because
dp/dt is of order F and use Eq. (30) for j. The time
dependence of A can be rewritten dA/Bt= —(v V)A.
Using a vector identity

V (v. A)=(v V)(V.A) —v (VXB)

j,p= — Q'( —, +pp)Vx(e,
I

&p
I

') .
4e~T

(31)

The spatial variation of 8' is determined below. How-
ever, if one is only interested in the average conductivity
for flux flow, Eq. (30) can now be averaged over space,

where j,p is the current distribution of the equilibrium
vortex lattice translating with velocity v,

and substituting V &B=4~j, we get, to first order in E,

V (Y—v A)=[1—(A,q/g) ]4vrv j,o . (38)

The solution to Eq. (38) is most easily obtained by using
Fourier transforms in the variables x and y. Any func-
tion I' which has the periodicity of the vortex lattice can
be written

F(x,y, z)= g(F)k, exp(ik x),
k

(j)=~'Eo,

g&(pp) 0'(
2 +po)o'=o 1+, , + fb f'

4~zT~ 2n Tep

(32)
where k is the set of two-dimensional reciprocal-lattice
vectors for the vortex lattice in the x-y plane. ' A two-
dimensional solution to Eq. (38) is then obtained immedi-
ately since the two-dimensional part of the operator V is
transformed into a number —k . To the two-dimensional
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solution (Y—v A)2 can be added any three-dimensional
function (5Y)3 which satisfies V (5Y)3—0,

(5Y)3—g [C~exp(kz) +Dk exp( —kz) ]
k

substitute 8' from

5'= —VY+(v V)A

= —V(Y—v A) —vXB . (41)

Xexp[ik (x—vt)], (40)

where the factor k multiplying the z coordinate is the
magnitude of the vector k. The boundary condition
which determines the coefficients Ck and Dk is that j,=0
at the metal surfaces z =+d. To find j from Eq. (30), we

In the last term of Eq. (41), we only need the magnetic
field to zeroth order in E, B,p. B,p is the function ob-
tained previously for the static lattice by Lasher. ' To
8,2, the two-dimensional solution of Eq. (31) and
V X 8 p=477j~p, is added the gradient of a scalar of the
form of Eq. (40) to satisfy the boundary condition that 8
is continuous at z =+I:

2
4av (j,p)kgt'= —v XB,o—V (43)

k (~o)

To obtain an explicit expression, one substitutes 477v'j&p=Ep'V(58&2)/Bo with 58&2 given above.
Substituting Eq. (43) into Eq. (30), the resulting expression for j is divergenceless and can be rewritten 4mj=VXB.

—1+exp( kd )c—osh(kz) exp[ik (x v. t)]—.

(58.2)k
B,p ——Bp+(58,2)e,6(d —z ) — g Vt[exp( —k fz —d

f
) —exp( —k fz+d

f
)]exp[ik (x—vt)]I, (42)

k (~p) 2k

where 58, 2
—— (cr/eT—)g'( —, +pp)5

f

b, 2 f, 5
f
62

f

=
f
b2

f

—(
f

5
f ), and 8 is the step function. Finally, we obtain the

result

The solution for 8 is obtained as above by erasing the curl operator and adding the gradient of a scalar of the form of
Eq. (40):

B=B,p —2~e, X(0'Eo)(
f
z+d —

f

z —d
f

)

4m'(58,2)k(ik v) ~

k (+0)
—exp( —kd)sinh(kd) +

0"(
2 +so)

4mTP'(
2 +po)

1 —I'
2Ep

X e,B(d —z )exp[ik. (x—vt)] — VI[exp( —k fz —d
f

) —exp( —k fz+d
f
)]exp[ik. (x—vt)]J

2k

(58,q)k(ik v) 2 exp( —kd)[cosh(kz) —cosh(kd)]e, B(d —z ) —Sm'eV X [j,f (z)58,2]B(d z) . —
k (&0) k

(44)

The first term on the right-hand side of Eq. (44) is given
in Eq. (42). The second term is the field generated by the
average transport current, which is j,=cr'Ep in the super-
conducting state. The two-dimensional part of the third
term was called the backfiow field in Ref. 11 and illustrat-
ed in Ref. 17. Most of the weight of the Fourier sum is
included in the set of the six shortest k&0. The fourth
term is a new contribution resulting from the three-
dimensional contributions in Eq. (43). The last term,
which includes the bending of the vortex lines, was dis-
cussed and illustrated in Ref. 12.

We can now derive a differential equation for the
charge density p by applying the operator V2 to Eq. (3)
and using V.E=4mp and Eq. (43):

DV
1 —--

4mo.

f"( —, +po)DV
+'jso

8m. TQ'( —,
'

+Po)
(45)

The quantity D/4mo=k. TF, where A,TF is the Thomas-
Fermi screening length. p2, the two-dimensional solution
to Eq. (45), is
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(p2)k=
0"(2+po) "' v (j.o)k

8mTQ. '( —, +po) 1+~TFk

mined by the boundary condition on the electric field E.
Inside the metal, E is found from our previous results

using Eq. (3),

To pq may be added any three-dimensional function (5p)3
which satisfies (1 —kfFV )(5p)3 —0:

(5p) 3
——g [Fkexp(z /A ) +Gk exp( —z /A ) ]

k

Xexp[ik (x—vt)], (47)

(~rF +k') '". Phy»c»iy, ~rF ((4
A = A,~F, so the contributions in Eq. (47) are surface
charges at z =+d. The coefficients Fk and Gk are deter-

E=5'+V(Y—4 )

DVp P"(—, +Po)DV(E V
~

b,, ~

')
=@'+ p + (48)

0 16m T eo

We note that E= —V(N —v A) —vXB and
V (@—v. A) =4m(v j—p). Outside the metal the last
equation equals zero, so @—v A has the form of Eq. (40).
Making E continuous at z =+d determines the coeffi-
cients.

Our final results are

1 cosh(z /A )p= g (pz)k 1+ exp[ik (x—vt)] .
k (&0) A~Fk cosh(d/A)+(kA) 'sinh(d/A)

Inside the metal,

(49)

4m.E= —vXB,o+V g 2
(v 3go —p2)k+(p2)k

k(~O) k'
cosh(z/A)

cosh(d /A) + (kA) 'sinh(d /A)

—v (j,o)kexp( —kd)cosh(kz) exp[ik. (x—vt)] . (50)

Outside the metal,

(p2)k exp(kd)E= —vXB,o+V g 2
v. (j,o)ksinh(kd)— exp[ik (x vt) k—

/

z
/ ] —.

k(~O) k' . 1+k A coth(d /A )
(51)

IV. DYNAMIC RESPONSE, NONLINEAR
IN ELECTRIC FIELD

In the preceding section we present a complete dynamic
solution to first order in the electric field for a supercon-
ducting film in a perpendicular magnetic field. Now we
want to consider stronger electric fields which give rise to
nonlinear effects, including destruction of the supercon-
ductivity. These effects have been considered previously
by Thompson and Hu' and by Larkin and Ovchinni-
kov. ' However, in the work of Thompson and Hu only
pair-breaking effects were considered. Larkin and
Ovchinnikov showed that energy-relaxation effects are
usually more important. We can now show how both
types of nonlinear effects appear in the Gor'kov-
Eliashberg formalism. We also can relate the vertex func-
tions to the electron distribution function in the normal
state by using the Boltzmann equation.

We do not obtain a complete solution for the system as
in Sec. III, but limit ourselves to consideration of the
average conductivity o'(E) =j, /Eo as in Refs. 13 and 18.
The main effect of nonlinearity is a reduction in the mag-
nitude of the order parameter b, . The part of Eq. (1)
which is linear in b, Eq. (6), and the normal-state part of

Fq. (7), are, in fact, accurate to order F- . Equation (2) for
j is not accurate to order E . However, the direct E
corrections to j are not important, since they are to be
compared with unity relative to the corrections to
which are compared with small quantities of order b,

~

or H, 2
—Bo.

We consider sufficiently weak screening so that we can
use the normal-state values of the fields to find the aver-

'age conductivity. For the magnetic field this requires
v2&&0.26'' . The terms linear in 6 in Eq. (1) are sim-
plified as in Eq. (18) and compared with the term of order

in Eq. (1) to determine
~

b.
~

. The contributions of the
first three square-bracketed terms in Eq. (18) are identi-
fied as pair-breaking effects due to the motion of the vor-
tex lattice. The contents of the last set of square brackets
are unusual and are related to the escape from the elec-
tronic system of the energy absorbed from the field by
dissipation.

To understand the quantities U& and Y appearing in
Eq. (18), which are integrals of the vertex functions I

&

and I z, it is useful to compare Eqs. (6) and (7) with the
Boltzmann kinetic equation for the electron distribution
function f(x, t, e, n). e is the electron energy, and n is a
unit vector in the direction of its motion. In the normal
state,
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Bf 1 — 1
+uFn;Vf+euFn E =— f—+ d&f

at ae ~ 4~

j =2K(0)euF f dedQnf,

p=2N(0)e f dade(f fp)—,

(52)

where X(0) is the density of states per spin at the Fermi
energy, and vF is the Fermi velocity. In the dirty limit for
slow variations, where uFrV and rB/Bt are small, a solu-
tion can be constructed as

(58)

The differential equation for this combination is

Y2
DV —Up — =D(e 8')

at ' 2
(59)

The combination appearing in the last pair of square
brackets of Eq. (18) is then proportional to Up —(eY) /2,
which, using Eq. (55), is

(eY) e
Up — = f2c de —(Y—0&)

2 2

f=f ruFn—.(eEdf/r)e+Vf),

where f is isotropic. ' To order E,a, af af 2 ~ a2f
DV —f=eD " V E+.2eDE V". +e DE

at ae ae

Expanding f=fp+f& +f2, where f; is of order E',

DV2 f—, =eDfpV. E,
at

a DV f2 —=eD[(V E)+2E.V]
t ae

+e DE fp',

(53)

(54)

The right-hand side of Eq. (59) is proportional to the rate
of heat dissipation crS', and the second factor on the
left-hand side in large parentheses is apparently growing
linearly in time proportional to the heat input. This situa-
tion arises because we did not provide any mechanism in
our equations for heat to leave the electronic system.
Phenomenologically, we may replace the diffusion opera-
tor on the left-hand side of Eq. (59) by
(8/Bt DV +r, —'), where r, is a time for energy escape
from the electronic system. Since r, is very long at low
temperatures, r, =OD/T for electron-phonon processes,
U& is unusually large with a new scale factor which does
not appear in the other terms. OD is the Debye tempera-
ture.

If the electrons were in thermal equilibrium at a slight-
ly elevated temperature T+5T, one could expect heating
effects to appear by the addition to the first term in
square brackets in Eq. (18) of

5T [ 1nT~Q( —,—+p )]=— [1—p~P'( —, +p )],a 5T
where fp and its derivatives are the same as in Eq. (8).
Noting that f, is even and f2 is odd in e and comparing
Eq. (54) with Eqs. (6) and '(7) in the normal state with
b, =0, we find that the equations are the same if the fol-
lowing identifications are made:

i4
(fi —efpC'»

(60)

with 5T=r~S' /C, where the electronic specific heat
C=(2m /3)Ã(0)T. If we set the last factor in square
brackets in Eq. (18) equal to Eq. (60), but with 5T re-
placed by an effective temperature shift oT*, the ratio is

i4 ~fi (e&p)r+r= f2 eea +
2

f-p'
ae

(55) 0"(
2 +pp)

12[1—Ppl'( 2 +Pp)]
(61)

(57)

These equations give precise physical meaning to I
&

and
I 2 in the normal state. Also, the gauge transformations
presented in Eq. (15) can be reverified, noting that the f;
are gauge invariant.

Integration of the first of Eqs. (55) with respect to e to
form 4=Y gives Eq. (3) in the normal state for the
charge density p=2X(0)e ff~de e+=eY is. therefore
the change in the electrochemical potential from its equi-
librium value.

To interpret U~, it is helpful to introduce a quantity Up
which only depends on normal-state parameters,

U, = —' r, +r, ede. (56)

Integrating Eq. (7) in the normal state with respect to
ed@, the resulting equation for Up is the same as Eq. (10)
for U& in the normal state with

0" 2+pp
4m T

This ratio goes to 1 at T =0 and to 1.4 at T = T,o. The
two temperature shifts are different because we have not
included electron-electron interactions which would allow
the electrons to thermalize with respect to each other.
Our f2 is proportional to fp', whereas a change in tem-
perature gives a correction to f proportional to efp. If the
characteristic time for electron-. electron interactions be-
came shorter than ~„we would expect 5T* to equal 5T
also near T,o.

To calculate the nonlinear pair-breaking terms in Eq.
(18), one may solve the differential equations to order E
as before. Fortunately though, the pair-breaking terms
are only significant relative to the U~ term for small mag-
netic fields Bo. For small magnetic fields we only need to
expand the g function to first order in Dq, so the opera-
tor ordering and higher eigenvalue problems do not arise.
The nonlinear value of the simple operator Dq was found
by Caroli and Maki,

Dq =D[2eBp+(Ep/2DBp) ] .
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The combination of the two terms gives us an equation
for the conductivity of the same form as obtained by
Thompson and Hu:

2
~cZo'= a 1+ —1—

2P~ 0 Bo
(62)

However, the characteristic electric field E, is now given
by

1 1

2eBp 2DBp

0"( 2 +po) e~,

~Tq'( , +po) —Bo
(63)

Only the first term on the right-hand'side of Eq. (63) was
included in Ref. (18). From the ratio of the two contribu-
tions to E„we see that the pair-breaking term dominates
only for weak magnetic fields,

2eDBo ((T~o/w, ) =T T,o leg) .
This condition becomes especially liard to satisfy for very
low temperatures T ~& T,p. Nevertheless, if the corrected
value of E, from Eq. (63) is substituted in the parameter

e=E/E„ the results illustrated in Fig. 1 of Ref. 18
remain qualitatively the same. The j,-versus-Ep curve
can be continuous and single-valued only if

Bo/H, 2
~ (1+g'pg /g')

For smaller values of &o~~c2 the slope ~Jtf ~Ep is neg
tive at 5=0, and a discontinuous jump in the electric
field is predicted at the transition to the normal state from
the superconducting state carrying the maximum current,
which occurs for 5&0. Owing to the range of variation
of g/g, this critical field lies in the range
0.78 Bp/H, z 0.91. The corresponding critical values
of Eo lie in the range 0.27 &Eo/E, &0.47.

Larkin and Ovchinnikov also evaluated an additional
nonlinear term, which corresponds to a contribution to
U& of order

~

b,
~

Eo. If this nonlinear effect were simply
due to heating, one would only need to adjust the heating
rate from oS' to a'8' . However, the contribution they
found, =(o' —o.)$' (T,o/czo), is much larger for weak
pair breaking. They obtained a formula which can be
written

2
H~2~'=o- ~ 1+ — —1

2P~ 0 Bo

2
Ep 1+

EQ (64)

The new characteristic field E* is related to E, by the pa-
rameter y=(E, /E*) . For weak pair breaking near T,o,
they found y=1.46(T,o/ao) The heat. ing model, which

may be applied for strong pair breaking near T =(), gives
y =0'/20'P~.

For strong pair breaking when y 3g /4$2P„our previ-
ous results are only slightly modified. Single-valued j,-

versus-Eo curves are obtained only if

For smaller Bo the curves have a maximum for 6&0 and
a minimum at 5=0. When y=3$ /4g p~, both Bj,/BEo
and 8 j,/BEo vanish at b, =0 for 8/H, 2 (1——
+4/ P~/g ) '. "Shen for weaker pair breaking when

y & 3g /4g p~, a new type of curve is obtained with both
a maximum and a minimum in j, versus Eo occurring for
b.&0 when 8 &8*. Unfortunately, one cannot determine
the new characteristic field 8 using only information
about the conductivity near 6=0.

V. CONCLUSION

We have developed a set of TDGL equations for gap-
less superconductors in the dirty limit, which for the first
time include all dynamic effects to the first order in an
electric field for pair breaking by a magnetic field and by
magnetic impurities in an arbitrary ratio. These equations
are especially useful for deriving a complete description of
all the vortex deformations and field-screening effects
which occur when the vortex lattice in a type-II supercon-
ductor moves.
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