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The static behavior of a single massive atomic impurity in bulk liquid “He is studied variationally,
based on a Jastrow ground-state wave function for the host-impurity complex. Techniques are dev-
ised for efficient Monte Carlo integration of expectation values relating to the impurity, making pos-
sible accurate evaluation of the relevant chemical-potential difference, partial radial-distribution
functions, and partial structure functions. Taking the specific examples of a single Xe or Cs impuri-
ty, we obtain extensive variational Monte Carlo results for these quantities, using approximately op-
timal Jastrow two-body pseudopotentials determined by paired-phonon analysis within a
hypernetted-chain scheme. By virtue of the extremely different impurity-host potentials involved
(essentially attractive versus essentially repulsive, respectively), the Xe and Cs examples are seen to
represent opposite extremes in the nature of the structural disturbance of the host medium produced
by the impurity. Concomitantly, the Monte Carlo simulations are much more strongly dependent on
the particle number in the Cs impurity problem than for Xe. Parallel results for the chemical poten-
tial differences, radial-distribution functions, and structure functions have been obtained via the
leading hypernetted-chain approximation, permitting some conclusions to be drawn regarding the

1 SEPTEMBER 1985

accuracy of this approximation.

I. INTRODUCTION

During the last decade, our microscopic understanding
of homogeneous systems of strongly interacting Bose and
Fermi fluids has progressed rapidly, setting the stage for
attacks on more challenging problems involving surfaces,
interfaces, and finite clusters on the one hand and mix-
tures of different particle types on the other. An arche-
typal system which has some of the essential features of
the broad class of inhomogeneous quantum systems and
offers an intermediate step toward more complex exam-
ples is that of a single atomic or ionic impurity immersed
in bulk liquid “He."? With regard to static properties, the
characteristic spatial structure induced in the perturbed
medium by the impurity is of particular interest® and is
susceptible to description within the existing microscopic
models using associated calculational techniques. The
dynamical properties of the impurity-helium system are
already attracting experimental attention, most notably
through studies of impacts of atomic Xe, Cs, etc. on large
helium clusters.* A microscopic account of such phenom-
ena must await further practical development of many-
particle theory.

In this paper we shall be concerned with the static,
ground-state properties of a system consisting of a heavy
atomic impurity, either Xe or Cs, embedded in liquid “He.
The calculational technique to be employed is the varia-
tional Monte Carlo procedure,’ tailored to the special cir-
cumstances produced by the foreign particle. The under-
lying theoretical superstructure is that of a binary boson
mixture described by a two-component Jastrow wave
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function,>%7 with correlations optimized (approximately)

via paired-phonon analysis.® For an asymptotically large
host system, the impurity problem may be viewed as the
small-concentration limit of such a boson mixture.

Parallel studies in which the impurity atom is either the
mass-3 isotope of helium® or various isotopes of hydro-
gen'® have recently been carried out and are being report-
ed separately. Clearly, this set of investigations il-
luminates or anticipates existing or future variational
treatments of the richer problems of heavy-atom—helium
mixtures, *He-*He mixtures,'!? and mixtures of hydro-
gen isotopes with bulk helium.!3

In Sec. II we specify the problem addressed herein, state
the basic assumptions of our description, and define the
physical quantities—radial distribution functions, struc-
ture functions, and chemical potentials—of immediate
relevance. In Sec. III we adapt the Monte Carlo scheme
to the evaluation of these quantities. The results of exten-
sive numerical calculations are summarized and discussed
in Sec. IV.

II. PROBLEM FORMULATION

We consider a homogeneous system of N —1 identical
background bosons of mass m; and one foreign particle
of mass m,. It is imagined that both components are dis-
tributed uniformly within a cubic box of volume Q, with
overall particle density p=N /Q, this picture being repeat-
ed throughout all space by the imposition of periodic
boundary conditions. The Hamiltonian of the system
takes the form
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into which one must substitute realistic interaction poten-
tials v;; between two background particles and v, be-
tween a background particle and the foreign atom.

We pursue a microscopic variational description in
terms of a spatially correlated trial wave function of the
Jastrow type:

N—1 N-1
¥ =exp —-;—Zu“(r;j)-—%zulz(”m) . @)
i<j k=1

The first exponential factor is a Jastrow wave function for
the background (N —1)-boson system, with two-body
pseudopotential u,,(r); the second exponential accounts
for the dynamical correlations between the background
atoms and the impurity via the pseudopotential u (7).
Such a wave function is suitable whether the impurity
atom is a boson or a fermion, since a single representative
of a given particle species experiences no exchange corre-
lations.

One option for the specification of the pseudopotentials
u11(r) and u5(r) is to assume reasonable analytic forms
and determine their parameters by minimization of the
energy expectation value

(my=SYLH|Y) 3)
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The popular McMillan or Schiff-Verlet choice,
ul,,(r)=(b1,,/r)5, ’}/=1,2 4)

will be considered here.

Alternatively, and preferably, the u,, may be obtained
by functional minimization of the energy expectation
" value,
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For our purposes this minimization is best accomplished
through a paired-phonon analysis®® (PPA).

The next consideration is the calculational scheme for
evaluating the multidimensional integrals involved in (3)
and in the various spatial distribution functions.

(i) Hypernetted-chain methods have been adapted to
this task within the broader setting of a homogeneous,
binary boson mixture.>%’ The resulting formalism refers
to the case of asymptotically large N, where N =N+ N,
is the sum of the populations of the two Bose components,
and ultimately to the thermodynamic limit, where N goes
to infinity at fixed particle density p. Equations and
quantities associated with the single-impurity problem ad-
dressed here are obtained by going to the limiting regime
of low concentration x ~0, where x is the fraction N,/N
of impurity atoms present.

(ii) However, greater accuracy can be achieved, in prac-
tice as well as in principle, by implementing stochastic or
Monte Carlo integrations® of (3) and of the structure func-
tions and generalized structure functions involved in (5).
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For the impurity problem, the most salient physically
measurable quantities are the chemical potentials of im-
purity and background particles (especially their differ-
ence, denoted here by u), the volume coefficient a [ob-
tained via the definition p(p,x)=p(p,0)(14-ax)~! after a
measurement of the density of a dilute mixture relative to
the density of the pure host, at fixed pressure p], and the
partial radial-distribution functions g;,(r) together with
their associated static structure functions S 1K), y=1,2.
The relevant spatial distribution functions are defined by

(W | Yl Y h )Yy (), (1) | ¥)
(¥ |w) ’

vy=12 (6)

plpygly(r12)=

wherein the y¥’s and ¢T’s are the usual destruction and
creation operators for the indicated particle types at the
indicated positions and p;=(N —1)/Q, p,=1/Q. The
relevant static structure functions are defined in terms of
these distribution functions according to’

Sty (R)=81+p [ [g1y(N—1le™d* , y=1,2 (1)

where p=p;+p,.

For an infinite system, the difference between the
chemical potential y; of the impurity and the chemical
potential u, of a host particle may be evaluated as the
zero-concentration limit of the partial derivative of the
energy expectation value per particle with respect to the
concentration x of foreign particles:

d({(H)/N)

i (8)

H=Ui—Up=

x =0

For a finite number of particles one deals instead with the
expression

E,—E,
B==1/n

in which E, is the energy expectation value per particle of
N “background” helium atoms and E; the energy expecta-
tion value per particle of N —1 “He atoms and one impur-
ity atom. Thus, (8) is appropriate for a hypernetted-chain
(HNC) integral-equation treatment, while (9) must be used
in a Monte Carlo calculation.

The HNC approach has recently been applied to several
interesting impurity problems, namely, (a) a single *He
atom in bulk liquid “He (Refs. 3 and 14), (b) a heavy
foreign atom (in particular, Xe and Cs) in liquid “He (Ref.
3), and (c) atomic and molecular hydrogen-isotope impuri-
ties in liquid “He (Ref. 10). We note that in problem (a)
the impurity experiences the same interactions as the
background particles, i.e., v;, =v;;, but has a somewhat
different mass, while in problem (b) the impurity-host in-
teraction is vastly different from the host-host interaction
and the impurity and host atoms differ vastly in mass.
Case (c) is intermediate. Some Monte Carlo results are
also available for these problems.>!>1® To date, Monte
Carlo techniques have not been invoked in the determina-
tion of optimal pseudopotentials through the PPA pro-
cedure, nor in fixing the parameters of the McMillan
choice of the uy,. This limited implementation is justi-
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fied in part by the finding that, for correlations chosen by

‘minimizing the energy within the HNC framework, the
results of Monte Carlo evaluation of the chemical-
potential difference, the partial radial-distribution func-
tions, and other quantities are usually in good accord with
the corresponding integral-equation results.

In this paper we describe in some detail a Monte Carlo
treatment of the heavy-impurity problem (b). The calcu-
. lations are based on the following choices of the potentials
vq; and vy,. For the interaction between background “He
atoms we adopt the well-documented Hartree-Fock-
dispersion helium potential (HFDHE2) of Aziz et al.!®
For the interaction between background atoms and the
impurity we follow the lead of Buck!’ and Gspann18 and
use a Lennard-Jones form v(r)=4e[(a/r)'?—(o/r)%], in
which the well-depth and range parameters are taken as
€=25.18 K, 0=3.697 A and e=1. 34 K, 0=6.896 A for
Xe and Cs impurities, respectively. Monte Carlo results
are reported for both examples. As in previous calcula-
tions, we rely on HNC-optimized pseudopotentials as in-
put. Only one density is considered for the background
medium, namely, the experimental saturation density
p1=0.02185 A3,

In more than one sense, these two examples, Xe and Cs,
represent opposite extremes. The strong attraction of Xe
for He acts to concentrate the density of He atoms in the
vicinity of the Xe foreigner in rather dramatic fashion rel-
ative to the local ordering in the pure host. By contrast,
the repulsive component of the Cs-He interaction is so
overwhelming that a net enhancement of host atoms in
the vicinity of the impurity is strongly discouraged;
indeed, a Cs atom would be rapidly expelled from the in-
terior of a drop of liquid “He. Another distinction ap-
pears on the technical, computational level, where we find
that the Monte Carlo results for Xe display only a very
modest dependence on the number N of particles used in
the simulation, whereas in the case of Cs it is necessary to
go to rather large values of N before convergence is
achieved.

In the next section, the special conditions faced in a
Monte Carlo treatment of the impurity problem are dis-
cussed. Two questions arise: (i) How does one reduce the
statistical errors for quantities related to the impurity
atom? (ii) Is it possible to calculate the chemical-potential
difference p within a reasonable statistical error? We
have found adequate answers for (i), and the calculation
called for in (ii) has been realized with results which are
presented and discussed in Sec. IV.

III. MONTE CARLO PROCEDURE
FOR THE HEAVY-IMPURITY PROBLEM

The standard Monte Carlo algorithm proposed by
Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller!®
(MRRTT) for calculating the properties of classical sta-
tistical systems, provides an extremely powerful tool for
computing ‘the multidimensional integrals involved in
quantum-fluid energy expectation values and distribution
functions such as (3) and (6). The MRRTT algorithm is a
biased random walk in configuration space. In the usual
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implementation of this procedure within quantum many-
body variational theory, each particle is moved, one after
the other, to a new position chosen from a uniform distri-
bution inside a cube of side length s. Any such move is
either accepted or rejected, depending on the magnitude of
the trial wave function ¥, at the new position R’ com-
pared to its magnitude at the old position R. Acceptance
follows automatically if |W¥,(R’')|? is greater than or
equal to | W, (R) | 2, otherwise, acceptance occurs with a
probability |W,(R’)|2/|¥,(R)|% If the move is not ac-
cepted, the configuration is returned to R. We say that a
single pass through the system has been completed if suc-
cessive move attempts have been made individually for all
of the particles, i=1,...,N. It may be shown that
under very general conditions, the points or configura-
tions generated by the random walk have the asymptotic
probability density p(R)= |W¥,(R)|? as the number of
passes increases without limit. In other words, this p(R)
plays the role of an equilibrium distribution, which is
reached if the random walk is allowed to proceed long
enough.

Let {R;, j=1,...,M] be a set of configurations gen-
erated in this fashion, and let f(R) represent the local
value, in the configuration R, of the quantity which is to
be averaged. Then, according to the central limit
theorem, the expectation value of the quantity at hand, in
the glven trial state, may be approximated by

_12 J=1 f(R;) with a statistical error which is propor-
tlonal to 1/ \/_L for large M. In particular, the energy ex-
pectation value for a system with Hamiltonian H is to be
computed from

M HWY,.(R;)

—1 '
(H)=M ng VR, (10)

A judicious formulation of the local energy appearing in
the summand of (10) is provided by
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¥,

N
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i=1

where, specializing to the impurity problem, we would
have
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The partial radial-distribution functions g;;(r) and g,(r)
defined by (6) may be similarly evaluated as expectation
values using the configurations generated by the random
walk.

In general, the MRRTT algorithm is very simple to
program and test and, with a reasonable expenditure of
computer time, leads to accurate results for single-
component quantum systems. However, for the impurity
problem, direct application of this algorithm as described
above would lead to unacceptably large statistical errors in
quantities associated with the impurity atom. The reason
is easy to see: In a given pass, one gathers (N —1)(N —2)
pieces of information about the (identical) “He particles,
compared to only 2(N —1) about the impurity. Thus, we
modify the algorithm as follows. A pass is redefined as a
sequence of (attempted) moves of the background parti-
cles i=1,2,...,N —1, in which each (attempted) move
of a background particle is followed by an (attempted)
move of the foreign atom N. This modification proves to
be quite effective in reducing the statistical errors in-
volved in evaluation of the quantities relating to the im-
purity, as is vividly demonstrated in Figs. 1 and 2 for the
partial radial-distribution function g;,(7) of Xe. (Another
very efficient strategy for improving the statistics of
impurity-quantity computation is to accord preferential
treatment to the host atoms which are assigned positions
near the impurity atom, i.e., make more frequent attempts
to move them.)

An additional technical point should be aired, concern-
ing the evaluation of the chemical-potential difference u
via Eq. (9). A straightforward analysis of the statistical
error Su associated with the Monte Carlo treatment of
this quantity gives

8u=NI[(8E;)*+(8E,)?*]'"?, (14)
2 T T I 1 T T T
Xe Impurity
N=64
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FIG. 1. Monte Carlo results for partial radial-distribution ,

functions g;,(r) and g,(r) and partial structure function S;,(k)
in the case of a Xe impurity in bulk “He. A McMillan pseudo-
potential is assumed. Here and in all our calculations, the densi-
ty of the host medium is taken at p;=0.02185 A-3. The large
scatter in the results for g,(7) is due to the direct application of
the Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller
MRRTT algorithm, in which a move of the impurity atom is at-
tempted once for every N attempted moves of the host particles.
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FIG. 2. Monte Carlo results for partial radial-distribution
functions g,;(r) and g,(r) and partial structure function S,(k)
in the case of a Xe impurity in bulk “He, based on a McMillan
pseudopotential. Comparing with Fig. 1, the improved defini-
tion of the results for g;,(r) is due to the use of a modified ver-
sion of the MRRTT algorithm, in which each attempt to move a
host particle is followed by an attempt to move the impurity.

wherein 8E; and 8E, are the absolute statistical errors in
E; and Ej, respectively. Thus, the relative statistical er-
ror in the difference of chemical potentials is

8,1, . [(SEi)2+(8Eb)2]l/2
[ | E;—E |

Since the energy difference E;—E, appearing in the
denominator goes like 1/N for large N, the statistical er-
ror in g may, in unfavorable cases, assume dangerously
large values and may well be large compared to pu itself.
This is particularly the case when m~m, and vj;~vy,
as for a He atom immersed in liquid “He. There are
several techniques which may be invoked to circumvent
an unduly large statistical error in such cases; for exam-
ple, (a) reweighting methods, (b) parametrization of the
Hamiltonian, and (c) Baym’s approximation. These tech-
niques are detailed in Ref. 15. Baym’s approximation® is
especially simple: it rests on the assumption that the po-
tentials vy, and vy, are identical and (within the present
context) the ansatz that u;, =u ;. The chemical-potential
difference then reduces to

(15)

m
I

m;

pu=T (16)

)

where T is the kinetic energy per particle of the pure
background system.

Our primary concern in this paper is, however, the
complementary situation in which the impurity atom has
a considerably larger mass than the host particles and, im-
portantly, the interactions v,, and v,; are substantially
different. In this case, the denominator | E; —E, | in (15)
will ordinarily be large enough to allow us to realize a
comfortably small statistical error in the evaluation of u.

We may remark that although Baym’s formula (16)
may be generalized to the heavy-impurity problem by
adding a term
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such an approximation is expected to be a rather poor one,
since the pseudopotentials u#;, and u;; must necessarily
be allowed to differ significantly (resulting in significant
differences between g, and gy;), if the departure of v,
from vy; is to be realistically accounted for. Another
relevant observation is that since a Xe or Cs impurity is
some 30 times more massive than a “He background
atom, the impurity is expected to behave essentially like a
classical particle. (Of course, quantum mechanics must
still be used to calculate the host-impurity radial distribu-
tion, since the “He host particles are definitely quantal in
nature.) Thus, the physics of the problem addressed here
will be different in important ways from that of the more
extensively studied example of a *He atom in bulk “He.

IV. NUMERICAL RESULTS AND DISCUSSION

A. Results for Xe

The numerical findings for the chemical-potential
difference p in the case of the Xe impurity are listed in
Table I. Two choices of the pair of pseudopotentials
411,41, have been investigated, namely, (i) the McMillan
choice with parameters b;; and b,, fixed through a
HNC/0 treatment,® and (ii) “optimal” correlations deter-
mined via PPA, again within the framework of the
HNC/0 approximation. The Monte Carlo version (9) of
appearing in the table was calculated for N =64, i.e., 63
“He atoms and one Xe impurity. To complete the techni-
cal picture we include values of the infinite-system version
(8) of u, obtained using the HNC/0 approximation. As in
the Monte Carlo treatment of the pure *He system,?! the
size dependence of the Monte Carlo estimate is rather
weak: no substantial differences were observed between
impurity systems with N =32 and N =108 particles.

In Fig. 3 we have a comparison of variational Monte
Carlo and HNC/O0 results for the radial-distribution func-
tion g,(r) and associated structure function S,(k), based
on a McMillan choice of pseudopotentials. [Evidently
some smoothing of the Monte Carlo S;,(k) has been per-
formed.] With the Monte Carlo calculation taken as a

TABLE 1. Estimates of chemical-potential difference u for
the Xe impurity problem, based on McMillan (McM) and
paired-phonon analysis—hypernetted-chain (PPA-HNC/0) —op-
timized correlations. Units are K. The statistical error accom-
panying the Monte Carlo value is computed from Eq. (14).

2 —T T T T T o
5|2(k)+1 Xe Impurity in "He
1.5 9, 2(r) -
u,
’ = = v aas~~Y
0.5+ .
McMillan
Pseudopotential
| 1
0] 5 6 7

o
r (A)

FIG. 3. Comparison of Monte Carlo (dashed or jagged
curves) and HNC/0 (solid curves) results for the problem of a
single Xe atom embedded in liquid *He. The partial distribution
function g;,(r) and the partial structure function S,(k) are
plotted against radial distance » and wave number k, respective-
ly. A McMillan pseudopotential is assumed. The modified
MRRTT algorithm was implemented in the Monte Carlo calcu-
lation, which refers to N =64 particles.

standard. of accuracy, the HNC/0 evaluation is found to
be significantly, though not grossly, in error. Figure 4
presents the same comparison for the PPA choice; in this
case the HNC/0 procedure yields results in noticeably
better agreement with Monte Carlo. Superimposing Figs.
3 and 4, we ascertain that the two choices of correlations
lead to strikingly different results. In particular, the
peaks of g,(7) and S,(k) are considerably higher in the
PPA case. In truth, the Xe-*He impurity system is only
crudely described by the McMillan ansatz, which is sim-
ply not flexible enough to take care of both the core and
the large well depth which distinguish the Xe-*He interac-
tion. For the McMillan pseudopotentials, the partial dis-

3 T T T T T T
g,,(r)  Xe Impurity
- Slz(k)+1 12 in 4He -
ol
(0]
AN PPA i}
\ Pseudopotential
_l 1 l 1 1 1 i
0} | 2 3 R 4 5 6 7
r (A)

Estimate: N(E; —E,) A({H)/N)/3x | x=0o
Method: Monte Carlo HNC/0
McM —230.0 (£5.5) —212.5
PPA —290.0 (£7.0) —287.0

FIG. 4. Same as Fig. 3, except that a pseudopotential deter-
mined optimally within the PPA-HNC/0 scheme is assumed.
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FIG. 5. Pseudopotential u,(r) for a Xe impurity in liquid
“He. The PPA. curve is obtained by a paired-phonon analysis in
the HNC/0 framework; a McMillan (McM) form is included for
comparison.

tribution function g;,(#) manifests no more structure than
does the well-known distribution function g;;(r) of the
“He background, reflecting the fact that the parametrized
form (4) is better suited to a potential with a dominant
repulsive core than to the rapidly fluctuating v, potential
of the problem at hand. The inadequacy of the McMillan
choice is also apparent from Table I: in the optimal
PPA-HNC/O0 case the energy is lower by about 25%.

These judgments regarding deficiency of the McMillan
form are tempered by the fact that a rigorous optimiza-
tion with respect to the parameters b;; and b, was not
attempted, in view of the obvious superiority of the PPA
scheme. Rather, these parameters were determined by a
minimization procedure based on Egs. (24) and (25) of
Ref. 3. However, Eq. (25) is predicated on fully optimal
Jastrow correlations; there is otherwise an extra term in
this formula which involves the derivative of g;; with
respect to the density p. On the other hand, this term
might well be small, since the term it corrects is not very
large in the Xe case at hand (see Ref. 3). But even if it
were large (which we suspect it to be in the Cs case con-
sidered below), that fact in itself would suggest that
McMillan correlations depart in important ways from the
optimal pseudopotentials.

2957

The point has already been made in Ref. 3 that the
strong oscillatory behavior of the “optimal” radial distri-
bution function g;,(r) (based on the PPA-HNC/0
pseudopotentials)—a behavior attributable to the immense
attraction felt by the *He atoms outside the Xe-‘He
core—produces large-scale cancellations within and
among the elementary diagrams neglected in the HNC/0
scheme. It is this feature which is responsible for the fact
that the HNC/0 approximation suffers remarkably small
errors, relative to the Monte Carlo evaluation, in the case
of optimally determined Jastrow correlations. Referring
to Table I, we observe that the HNC/O0 result for u misses
the Monte Carlo result by only about 1%. As remarked
above, the results for the mixed structure function S,(k)
also agree quite well, except at smaller wave numbers
where the disagreement may be ascribed (at least in part)
to the finite box size of 15 A for the 64 particles of the
Monte Carlo treatment.

Physically, the prominent oscillations of the distribu-
tion function g;,(#) in the optimal case correspond to a
pronounced shell structure of the “He medium in the vi-
cinity of the impurity. This accentuated shell structure,
together with an associated strong initial peaking and sub-
sequent modulation of the optimal pseudopotential u,(7)
(displayed in Fig. 5), suggest that the simple Jastrow form
does not faithfully imitate the correct ground-state wave
function of the Xe-*He impurity system. It is estimated
that there are some 14 He atoms in the first shell sur-
rounding the Xe atom and hence there should exist signi-
ficant angular correlations among the “He atoms near the
impurity. However, one must look to a Green’s-function
Monte Carlo treatment to establish the nature and the im-
portance of such angular correlations in the exact ground
state.

B. Results for Cs

Our numerical results in the case of a Cs impurity
stand in marked contrast to those just reported for Xe. In
the present case the host-impurity interaction has a very
large repulsive core, surrounded by a very shallow attrac-
tive well. Consequently, the host particles tend to be oust-
ed from the region of the impurity, rather than
concentrated—as in the Xe case—toward the foreign par-

TABLE II. Estimates of chemical-potential difference u for the Cs impurity problem (last two
columns) and of the energy expectation value per particle E; of one impurity atom and (N —1) *He
atoms, based on PPA-HNC/0—ocptimized correlations. Units are K. In the Monte Carlo case the value
—5.95+0.03 K is adopted for the energy expectation value per particle E, of a system of N *He atoms.
Over the range N =84—160, this quantity shows little size dependence.

Estimate: E;(N)+8E; N(E;—E,)+N[(8E;)*+(8E,)?*]'/2 A({H)/N)/3x | x—o
Method: Monte Carlo Monte Carlo HNC/0

N =84 —2.007+0.056 331.2+5.4

N =120 —3.8741+0.045 269.9+7.0

N =140 —4.070+0.047 263.2+7.8

N =150 —4.286+0.053 249.7+9.1

N =160 —4.384+0.052 250.6+9.6

N=w 277




2958

|.8} Cs Impurity in “He
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FIG. 6. Monte Carlo results for partial radial-distribution
functions g;(7) and g,(#) in the case of a Cs impurity in liquid
“He, based on PPA-HNC/0 optimal pseudopotentials. The sub-
stantial size dependence in this problem is illustrated by the
difference between results at N =120 and at N =160, essential
convergence having been reached by the latter value. The modi-
fied MRRTT algorithm was used. The HNC/0 version of
g12(7) (dot-dashed curve) is plotted for comparison. ‘

ticle. In the present discussion we shall focus on results
for the PPA-HNC/0—optimized pseudopotentials. (Cal-
culations were also performed for McMillan correlations,
optimized in an approximate fashion as described in Sec.
IV A; however, the results are to be considered of techni-
cal value only.)

On examining Table II, which collects our principal re-
sults for the chemical-potential difference p, two features
are most conspicuous. First, the size dependence of the
Monte Carlo estimate of u is considerable; indeed, satis-
factory convergence is not achieved until N reaches about
150. This contrasts with the very weak size dependence
found in the Xe case. Secondly, the quantity u takes on
positive values, whereas it is negative in the case of a Xe
impurity. A positive u simply means that it costs more
energy to remove a “He atom than to remove the Cs im-
purity; in reality the Cs-atom would be propelled to the
surface of a finite drop. Both features have their roots in
the far more repulsive nature of the Cs-He interaction.
We note that the size dependence is amplified because the
extremely fat core of this interaction extends its influence
further out than in, say, the Xe impurity problem and in
other quantum-fluid problems studied previously. A
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FIG. 7. Same as Fig. 5, but for a Cs impurity in the liquid-
“He background. ‘
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third, more technical, conclusion to be drawn from Table
II is that the HNC procedure for evaluation of energy ex-
pectation values is considerably less accurate than in the
Xe case. Presumably this is due to the fact that the
aforementioned large cancellations within and among the
elementary diagrams; ascribable to strong oscillations of
the distribution functions, especially g,(7), do not occur
here. In comparison with the converged Monte Carlo re-
sult, the HNC/0 approximation for u is in error by about
10%. It should be mentioned that each Monte Carlo en-
try in Table II (as well as in Table I) represents an average
of the results of 5—6 individual Monte Carlo runs of sub-
stantial length.

The absolute ratio |uy/uy | of the kinetic and poten-
tial portions of the chemical-potential difference u is a
quantity of special physical interest. For the Cs problem
we find a value 1.97 for this quantity, which may be
somewhat of a surprise in view of our statement that Cs
and Xe are essentially classical particles. However, it
must be remembered that u reflects the perturbation
(modification in structure) of the background medium
surrounding the impurity, and this disturbance (described,
for instance, in terms of g,) is certainly quantal, not clas-
sical. The much smaller value of |pr/py | found in the
case of Xe, namely, 0.25, is in accord with our under-
standing of the difference in behavior of Cs and Xe im-
purities due to the different character of the relevant
host-impurity interactions.

Figure 6 presents some Monte Carlo results for the par-
tial radial-distribution functions. There are appreciable
changes seen as we go from N =120 to N =160; however,
at the latter particle number, the bulk-matter limit has
been attained (except of course at large distances 7). The
converged g;,(r) shows milder oscillations than are found
in the Xe-impurity problem, as expected; moreover, we
note the important property, alluded to above, that the
peak of this distribution function lies much farther out in
r than does the peak of the Xe-He distribution function.

Finally, the host-impurity pseudopotential for the Cs
problem, as determined by the PPA-HNC/0 prescription,
is plotted in Fig. 7, with a McMillan form included for
comparison. The bland behavior of the PPA result is in
harmony with the relatively mild oscillations of the corre-
sponding partial radial distribution g,(r). Again we find
significant differences between the McMillan and PPA
versions of u,(r), although (in contradistinction to the
Xe case) their shapes are qualitatively similar.
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