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Symmetry properties of triplet superconductors
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I give a rigorous discussion of the group theory applicable to triplet superconductors and a list of
possible symmetries and order parameters. It is "vanishingly improbable" to have curves of vanish-

ing gap on the Fermi surface.

The unusual properties of the so-called "heavy-
fermion" superconductors CeCu2Si2 (Ref. 1), UBe~3 (Ref.
2), and UPt3 (Ref. 3) led Varma, Ott et aI. , and Ander-
son to suggest the possibility that the pairing could be
triplet or "p-wave. " ' Anderson" emphasized the need
to take into account both spin-orbit coupling and the crys-
talline potential and listed the possible irreducible repre-
sentations of the "p-wave" states, basically assuming that
the order parameter could be treated as a spin field in k
space. Volovik and Gor'kov' have listed a few of the
possible symmetries. [See note (i) of Notes added in
proof. ]

In this paper, I give a rigorous treatment of the group
theory of pairing in a crystal with strong crystalline po-
tential and spin-orbit coupling. It will be seen that the as-
sumption that the order parameter can be treated as an
axial vector is justified, but for somewhat unexpected
reasons. I shall also show all the symmetries that can be
reached from the normal state by a second-order transi-
tion.

The problem of defining an order parameter is signifi-

cantly more complicated in a crystal with spin-orbit cou-

pling than in an isotropic liquid like He. In the latter,
there are two readily apparent approaches to state label-

ing. In the first, one uses the same axis of quantization
for spin whatever the momentum is. In the second, possi-

bly more appealing aesthetically, the spin is quantized
along the direction of the momentum —the spin quantum
number is helicity. In this case, all proper rotations
preserve helicity, while all improper operations reverse it.
The trouble with this method is that the double-valued na-
ture of the spin-rotation group intrudes —a rotation of 2m.

about any axis changes the sign of the wave function. It
is then necessary to introduce a branch cut on the Fermi
surface, across which the sign of the wave function
changes. This introduces discontinuities in the matrices
representing rotations, destroys the manifestness of spher-
ical symmetry, and generally is more complicated and less
appealing. The first method does not encounter these dif-
ficulties and is, so far as I know, always used for He.

Unfortunately, that method is not available in our prob-
lem, because we do not have independent spin and space
rotations. Additional problems may arise from singulari-
ties in band structure which can occur at points or lines of
additional (more than Kramers) degeneracy. Such lines
are particularly apt to appear in nonsymmorphic
crystals —and all known heavy-fermion superconductors

are nonsymrriorphic. It will be seen below that the
transformation behavior of the pair wave functions de-
pends on the transformation properties of the wave func-
tion at —k as well as at k. The relation between the two
can become messy when there are screw axes or symmetry
elements which do not pass through the inversion centers.
It is undoubtedly possible to take all these problems into
account, but it is much easier to sidestep them with the
method we introduce in Eq. (17). This involves introduc-
ing a new notation where the old one is firmly established,
but it is very easy, if desired, to return to the standard no-
tation at the end. We shall be able to express the order
parameter in ways independent of the choice of basis
vectors —which is very desirable considering that the
latter are defined only to within arbitrary 2)&2 unitary
transformations' at each point of k space.

We start by establishing notation and writing elementa-
ry results. For most purposes, we are interested in using
the Bloch functions I gk I as a basis; almost everywhere a
is a two-valued index distinguishing, according to some
convention, the two wave functions degenerate at k. (We
need not use an additional band inde~, because we are in-
terested in what goes on near the Fermi surface. Adding
it would only create a writing problem. ) It is easier for
the writer to use a single index p, and the results so writ-
ten will be valid for an arbitrary basis of one-electron
functions. When desirable the form with ka will also be
used.

Under an operation A of the space group, g& is
transformed according to

AP„=P„D„"„(A')=D„„(A)f„. (2)

The f& are also transformed by time reversal A ac-
cording to the rule

E is a unitary matrix, but a typical vector in the Hilbert
space is transformed as

A (/pa„)=(,9"g„)a„*=ggKgqa„* .

A g„=fp Dq „(A'),

where the matrices D(A') constitute a representation of
the space group and we use the summation convention.
Furthermore,
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This characteristic of A is called antiunitarity. In partic-
ular,

For fermions A f&
——g&—, so that

KK*=—1, K= —K . (6) to

linear combinations of them. It is similarly difficult to
assure that there is a simple relation between
D ka k a (A) and Dka k a (A). Actually dealing With
these problems is, in any case, much more difficult than
what we shall now do.

The one-electron density matrix p transforms according

Furthermore,

M P„=K„A gk, Mg„=K„„P„. (7)

p„.=(q„y.& = &~q„",~q. & =D„„p„(~)D,,

pq, (A ——/pe P )~=K' pq, A
(15)

Since M commutes with all space-group operations W,

(MP——„)D,"p(R)=D„,Mg, , (8)

(9)

In summary, ~fz and g& behave identically under M
and all W. It is also convenient to define the operator
which I shall call conjugation

(10)

where / is inversion. Ã is also antiunitary and has the
property 4' = —1; it operates on basis vectors by

and, as with A, CC'= —1, CC =1. C= —C. If the
basis states are Bloch functions gka, C connects only the
two Bloch functions degenerate at k and takes the form
e ~ioz, where o.z is of course the antisymmetric Pauli ma-
trix.

Now the pair "wave function" 4 is the expectation
value of an operator product (g&g, & in an ensemble
characterized by some density matrix I'. If we subject the
P's and P to some symmetry operation, we find a new ob-

ject equal to (P~g„&:

(12)

When the f's are Bloch functions, we write

p p(k)=Dk k p p(k, &)Dkp kp,

PaP«)=Kka, kaSaP-(k~)K ky, kP.-
(16)

Thus, p and 4 do not transform identically, and 4 in-
volves matrices connecting —k to k, which involve the
more global properties of the representation, and which
lead to unpleasant complications as mentioned earlier.

If on the other hand, we define new objects

(17)

we find, Eqs. (8) and (9),

Xq, D„„rq —(—A)Dp„Xq, Kq„rq (——M)K „(18)
and in the Bloch function case,

Xap(k) =Dka k a Xa p(k', %)Dk p kp,
(19)

Xap(k) =Kka ka Xa p( —k;M)K kp kp .

Although g also involves wave functions at —k, they now
have been so defined that they transform according to the
way tbk transforms

Thus, the X's transform in a manner entirely familiar to
us, which is also the way the matrix elements of an opera-
tor in this basis set transform:

when the subscript A and %(A) remind us that P must
also be transformed. If we transform with A, we get

(13) (@„(6 ( g, &'=K„"„(P„"
(
W(A )

( @„&K,,
(20)

In the case where the t/rz are Bloch functions, these equa-
tions take the form

( P ka PkP& D —ka, ——k'a'(~)(4 —k' '~ at tPk'&R kD'P', k (~P) ~

(14)
( 0 ka0kp & K kak—a (0—ka0, k'p' &.g K —kp'kp-
The problems mentioned in the introduction to this paper
appears here in two ways: If we start at some ko with a
pair of Bloch function (gk, , fk p), we can in the first

place take arbitrary linear combinations of these. These
combinations constitute a four-parameter family. In gen-
eral, they have no direction that we can attribute to spin.
If we calculate similar wave functions at a nearby point,
we have no prescription to define uniquely the particular
pair we use there. It is not obvious that there is a work-
able way to guarantee that after following the wave func-
tions along a closed contour in k space, we will come back
to precisely the same pair we started with, as opposed to

"4='4 ~i +'4 ~v'~ . (21)

This 6 transforms like 4, and we can rewrite the equation
in the form

where P(A) [c7(A )] is the operator obtained from 6 by
the transformation W(A ).

We have now eliminated some of the unpleasantness I
mentioned above, but we are still left with the fact that
the Bloch functions at a single k are subject to a large
indeterminancy —a four-parameter family of unitary
transformations. This means that the 7's and particularly
their k dependence are highly undetermined. Making
sense out of their k dependence would be very difficult.
We shall start dealing with this problem after introducing
the gap function.

Precisely the same reasoning can be applied to the self-
consistent Hamiltonian including the gap function 6:
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If the 6t transform as a representation DJ of the point
group, we have

'6=&~H~~+(~6'~~~ (22)

where &z„K&——»b,»„now transforms like X&„, like H&,
and like 6 in Eq. (20). Here, I must emphasize that A P
is to be interpreted as the Heisenberg operator
e iM—t(~y )eiP"t not as ~(e i3—tq eight)

Now if we suppose that for some operator
W&„——(gz ~

0
~ P, ), the two sides are, respectively, equal

to

&~p(W, A'k) = g a;(k)D J @~p(&k) .

Gn the other hand, &(A) is a gap function in its own
right:

& p(A, Wk)= ga;(A, A'k)@' p(A'k)
l

(31)

D„p &q „(W)Dp, D„„——(P~ ~

W(A')
~ g )D „,

&q (W)=W(W)p
(23) and finally

a;(A', Wk)= gaj(k)D J'(A') . (32)
If, to be more specific, we can write M&„——g,. a;0„'„,
where the 0' transform as a representation D (not neces-
sarily irreducible) of the symmetry group, we have

&,„(m)= g a, (u)W„'„,

but also

The transformation properties of & are expressed
through the a;(k), which are independent of the represen-
tation. %'e have buried the arbitrariness of the A 's and
&'s in matrix elements of the 6"s, where, for many pur=
poses they will not concern us. Also, under A,

&„,(A')= ga;D JWJ„ (24)

or

a;(A) = g ajD J' .
J

Similarly,

&„(M)= [W(M)]„„,

W(A ) =a;*6'(A ) = ga;*( —1) '0 (25)

and & p(k)=&i, ~p connects g~p only with the time-
reversed adjoints A Pj~. Suppose now that

& p(k) = g a;(k) 6' p(k) .
l

(27)

Then, as before Eq. (24), the two sides are, respectively,
equal to

D~~, i a (~)~~p(~tk'»» p, i p(~)
= pa;(k)Ditt qt„(W)C&' p(Wk')D'it pqp(W), (28)

where k'=Wk. Multiplying on the left and right by D
and D, respectively, and removing primes, we are left
with

&~p(A', Ak) = g a;(k)P~p(W;Rk) .
l

(29)

a;(M) =( —1) 'a;*,

where t; characterizes the behavior of 6' under time re-
versal. Thus, the symmetry properties of the & are ex-
pressed through the coefficients a; which are independent
of the representation IQ„I.

More useful for most purposes is a related argument,
appropriate to the case where the basis set consists of the
Bloch functions, and the pairing is only between states at
some k and its negative:

(26)

a;(A, —k) =a;*(k)(—1) ', (33)

(1) m, a multiple of 5~p which is a scalar and invariant
under A .

(2) The magnetic moment operators m '. ' These
transform among themselves like an axial vector and
change sign under A .

These operators are given in the 2 &2 subspaces by com-
binations of the Pauli matrixes

m' p(k) =g'"(k)o p, (34)

but only G'~(k)=g'"g "1 will appear in physical expres-
sions. G'~(k) is the tensor which determines the splitting
of the band energies at k when a magnetic field is present.
The splitting is given by (8;G'JB~ )'

Making this choice, we call the coefficients of these
operators d;: (1) do is a scalar, invariant under A, and
(2) d' (i =1,2,3) constitute an axial vector which changes
sign under time reversal:

do(A', Ak) =do(k), d;(A, Ak) =dJ(k)D J'(A'),
(35)

do(A, —k) =do (k), d;(~, —k) = —d;*(k) .

We now consider the consequences of the fact that the

where t; =(0,1) characterizes the time-reversal behavior of

To express a 2X2 matrix in terms of matrix elements
of operators W', we need four 6's. Faced with this prob-
lem, one usually uses the Pauli matrices, but in the present
case they have no representation-free meaning. That is, if
we subject the Bloch states at k to a 2&2 unitary
transformation, the o; becomes a linear combination of
o's. Put another way, the matrix represented by g,. ato;
in one representation has different a; after such a
transformation. The a;, especially their k dependence,
cannot be interpreted in a simple way. Their apparent
symmetry properties may be misleading.

We do, however, have a convenient set of W's available,
consisting of the following:
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P's are fermion operators. This implies immediately that
4= —'Il, 6= —5, and we find

do(k) =do( —k), d;(k) = —d;( —k) . (37)

Thus, do can be expressed as an even function of k, while
d; will be odd.

Let us now take the time-reversed adjoint of Eq. (22),
obtaining

iA Pq i——Q„K—p„
~ f )fc

= —(MP)&*K* gtH*K—*

(38)

where we use Eq. (36) and the fundamental property of
time reversal

H* =K'H (~)K, (39)

and II(A ) is the matrix of the time reverse of the self-
consistent Hamiltonian.

Considering now the actual application of A, we find
from Eq. (36)

If the state is time-reversal symmetric, then

X=Xt, H"=K HK . (41)

The first of these means that all d's are real.
A related idea is that of "unitarity. "' A "unitary" Q'

is one for which W & is a multiple of the identity. If
do ——0, a unitary & is equal to a phase factor times a
Hermitian &, but if both do and d; differ from 0, this is
not the case. (For a unitary M, d;/do is imaginary. ) Ei-
ther property simplifies the diagonalization of &, but
that is so easy anyway that it hardly matters. A more sig-
nificant property of "unitary" &'s is that the eigenvalues
of & & are equal so that the quasiparticle bands are
twofold degenerate as in the absence of pairing' (provided,
of course, that time reversal and inversion have not been
otherwise violated).

If we had a Hermitian W and X, and then multiplied
& by e'&, we should get a new g'=pe'~, which would
then self-consistently yield We'~. Thus, it is not really
important that D' =&. It is enough that it is possible
through such a transformation to Inake it so. This is in
keeping with the fact that if a wave function of some sys-
tem obeys A g=g, then g'=e'~P obeys
~P'=e '~A g=e '~P=e '~P'. We shall consider in-
variance under time reversal to apply in either case.

It is a matter of elementary algebra to show that the
eigenvalues of & & are given by do +d; O'Jdj +L,

(36)

and likewise for g.
These relations do not depend on the presence of A

symmetry, but follow directly from the definition of &
and X. If the g's are Bloch functions, this equation relates
&(k) to &(—k), since K connects k to —k. In terms of
the d's this translates to

do(g, —k) =do(k), d;(g, —k) =d;(k) .

Combining this with Eq. (37),

do(g, k)=do(k), d;(g, k)= —d;(k) .

(43)

(44)

Thus, the singlet pairing has positive parity and the trip-
let, negative. All these relations Eqs. (35), (37), and (44),
are the same as in the isotropic ease.

So far we have considered the nature of the order pa-
rameter and found a representation-independent form for
it. This can be done more simply and directly if we con-
sider only symmorphic space groups —that is, if the ap-
parent point-group symmetry is present in a true group,
rather than involving screw axes and glide planes. The
present procedure, however, greatly simplifies the discus-
sion for nonsymmorphic groups. Indeed, it has not been
necessary to make any special provision for them in the
preceding discussion. I also find the present approach
aesthetically pleasing.

We have also found an explicit form for the order pa-
rameter which clearly reduces, in the absence of spin-orbit
coupling to the standard form used for He—the
magnetic-moment operator goes continuously to the spin.

We can now address a question which has assumed
some importance in the discussion of heavy-fermion su-
perconductivity. It is the possibility of surfaces in k
space (curves on the Fermi surface) where the gap van-
ishes. The condition for a zero gap is

do —d G d=O. (45)

(If
~

do
~

+d* G d=O, both gaps vanish. ) Specializing
to the pure triplet state do ——0, we have two real equations
in three variables, which can normally be satisfied only on
curves in k space. It is "vanishingly improbable, " in the
sense of Herring, ' for them to be satisfied on a surface.
On the other hand, symmetry may force an increase in the
size of the region of vanishing gap.

The symmetry in question is the subgroup (of the origi-
nal space group) which characterizes the condensed state.
We take this to consist of all elements of the original
group that change the order parameter by a phase factor.
Thus, a mirror plane which changes the sign of & would
be included and only components of W that are reversed
by the mirror could be nonvanishing. An alternative ap-
proach is to enlarge the space group to include the
"gauge" group e'~ (where P is a constant) and consider
the subgroup to include all products of space-group ele-
ments and phase factors which leave & invariant.

We are then led to consider whether a mirror plane
could result in such a region. Now a mirror plane affects
the parallel and perpendicular components of an axial vec-
tor differently, leaving one invariant and changing the
sign of the other. There are then two possibilities:

(1) The parallel components vanish on the plane. There

L'=(do d+d*do) G (.do d+d*do)

+d*Xd G '(dXd*) .

An important special case of Eq. (31) concerns A =+.
We find
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f~p'=d; m' . (46)

Multiplying both sides by m~ and taking the trace we get

d; = —,
'

G;~ 'Tr(p "mj)fk . (47)

As long as G is not singular, we can solve for d in

terms of f. The possibility that G be singular is remote.
There can be no symmetry requiring it, since G becomes
the identity tensor at vanishing spin-orbit coupling. Of
the four three-dimensional irreducible representations of
the cubic group only the axial vector has matrix elements
within each of the irreducible double-group representa-
tions at k=0. This gives it some degree of preference.
Even assuming that we decide to choose a set of axial-
vector operators, there are many options. The principal
reasons for preferring the magnetic moments are familiar-

can then be a curve on the plane where the perpendicular
component vanishes, along with the gap for both
branches.

(2) The perpendicular component vanishes on the plane.
There may then be a point in the plane where Eq. (45) is
satisfied and the gap vanishes for one branch.

Any larger region of zero gap is vanishingly improbable.
Now, in He, ' it is known that there is such a solution,

called the "polar" solution, in which the vector d is in the
z direction and vanishes on the equator. This solution,
however, has much higher symmetry due to the indepen-
dent spin and momentum symmetries. The group of this
state consists of (1) the group C„„in real space contain-
ing the full two-dimensional rotation group and all verti-
cal mirror planes, and (2) the two-dimensional rotation
group in spin space plus all vertical mirrors, each com-
bined with time reversal. This group is more than enough
to make the vector d point in the z direction and vary
only in that direction. Specifically, the two-dimensional
rotation group in spin space kills both horizontal com-
ponents of d. [See note (ii) of Notes added in proof]

In the preceding discussion, we quietly chose a repre-
sentation in terms of magnetic-moment operators, and
found a simple story which connected seamlessly with the
isotropic case. There was, however, no compelling reason
to choose those operators or even others of the same sym-
metry.

Many other possibilities exist. The only absolute re-
quirement is that for triplet pairing, the operators change
sign under conjugation. ' It is necessary in order to get
the full range of possibilities that the operators constitute
a faithful representation of the proper rotation group.
For, if we consider Eq. (31) with DJ, ——5;J for some A,
Map(A, Ak)=& ~(Ak); the pairing is left unchanged.
Such pairing is possible (see below), but we could not
make valid proofs of general properties from such cases.

Let us consider an example, taking the 6' to be the
components of a polar vector p', even under time reversal.
An example would be the perturbation produced by a po-
lar optic mode. (The displacement x itself is not very
convenient. '

) With this choice, we would have gone
through the same procedure, with the order parameter
represented by f;, a polar vector even in k and under time
reversal. The existence of two such representations re-
quires that the same & be expressible in both ways:

ity and the fact that they go smoothly to the spin opera-
tors when the spin-orbit coupling vanishes. Of course we
do not need to make such a choice; we do what is con-
venient.

The possibility of such different representations does
underscore the fact that there is no particular significance
in choosing d to be a linear function of k. The same rep-
resentation can, and will be shown to, arise from the other
choices; in the cubic case only one of the possible repre-
sentations of the order parameter cannot be represented as
a linear d;(k). Whether it is particularly unlikely to occur
is not especially interesting.

The upshot is that it is possible to represent the gap
function in terms of objects transforming like any repre-
sentation of the point group. If you want to be able to ex-
press any gap function, you must use a faithful represen-
tation. The objects chosen must change sign under conju-
gation K. '

Finally, we note that we can combine Eqs. (22) and (38)
into one equation with four components:

(48)

where P is the four-component vector

(0ka~ PkP~~ Pka~~ Pkg) .

The Hamiltonian A has the form in 2&&2 Bloch nota-
tion:

H
—H(A )

Using Dirac notation, the time-reversal-invariant part is
H p3 +&„p~, while the other part is H I +&;pq, where
W„(&;) is the real (imaginary) part of &. The spin Zee-
man energy appears simply as IB.o., not

—,(I +p3)8 o+ —,
' (I p3)oqB cro—q'

as in, for instance, Maki. ' The content is, of course, the
same but the appearance and transformation properties
are more familiar and intuitive.

We have now established the rules which govern the
symmetries of the order parameter. The only rigorous re-
striction for triplet pairing is that the state must have neg-
ative parity. This can be achieved either with an a;(k)
which has intrinsic positive parity, but odd-order depen-
dence on k (as in the case of the d's in the last section), or
vice versa. For the cubic and hexagonal point groups O~
and D6h the character tables for the representations are
shown in Table I, along with the lowest powers of k
which produce them, in the representations using operator
sets 1' belonging to the various three-dimensional repre-
sentations of the cubic group and the axial-vector repre-
sentation of the hexagonal group.

The next step is to determine the possible symmetries
for minimum free energy, in states which can be reached
by second-order transition from the normal state. This
will be done according to the Landau theory, ' using pro-
cedures spelled out by, for instance, Lyubarskii. ' Since
the representations have odd parity they automatically
satisfy the tests imposed by Landau and Lifshitz. '
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TABLE I. (a) The representations I,—. have g(J) =+ I and operations g % have X(g &)=+X(A).
The last four columns show the lowest power n for which [ k;"] produces representation I,. (according
to list on left) in combination with j. J (according to the heading of the column). A polar (axial) vector
transforms according to I 4 (I"4+). (b) The same conventions are used as in (a). A polar {axial) vector
transforms according to [Hq +H5 I([H2 +H& )). The column on the right shows lowest power n for
which [ k;"] produces the representation I, on the left in combination with the axial-vector representa-
tion.

C2 C3
(a) Cubic group

C2 C4 p+

H)
H,

-'

H3

Hs
H-.

'

1

1

1

1

2
2

1

1

2
—1
—1

C6

1

1

—1

—1

1
—1

1

1

—1

0
0

C,

1

1

1

1

—1
—1

1 1

—1 —1

0 0
—1 1

1 —1

(b) Hexagonal
C3

1

1

—1
—1

—2
2

1

3
1

1

1

group
C(&)

2

1

—1

1
—1

0
0

4
2

C(2)
2

1

—1

—1

1

0
0

(H+2 +H+5 )

The next step is to expand the free energy in powers of
the order parameter. The first term is the second-order
invariant, which is always isotropic in the order-
parameter space. In most cases, the fourth-order invari-
ants will admit only a few sets of isolated directions as ab-
solute minima, and the calculation can stop there. We as-
sume that the isotropic fourth-order term is sufficiently
positive to assure the second-order character of the transi-
tion. In the case of all the two-dimensional representa-
tions in Table I, however, the fourth-order terms are not
always sufficiently isotropic, and it is necessary to use the
sixth-order term to locate the minima. The fact that the
order parameter may be complex introduces features not
found in otherwise similar problems such as ferroelectrici-
ty. In the usual case, with real order parameters, the in-
variants have to be symmetric in all interchanges of in-
dices. In the present case, with complex order parameters,
it is necessary for invariants to have equal numbers of a' s
and a*'s and to be separately symmetric in each, and in
the interchange of a and a*.

When we follow this program for the representation
tabulated above, it turns out that all representations of the
same dimensionality present the same algebraic problem.
For one-dimensional representations, this procedure is
trivial. For the other cases, the algebra is carried out in
Appendices A and B.

When we have reached this point, we must determine
the symmetry subgroup which characterizes these order
parameters. We distinguish two different 'groups which
may be of interest: (1) the group, including time reversal,
under which the order parameter is invariant as a complex
(as opposed to real) vector, and (2) the group under which
the order parameter behaves as a one-dimensional repre-
sentation.

Table II shows these groups for all the cases under con-
sideration. The table is to be interpreted as follows.
Within the obvious divisions by cubic versus hexagonal

and dimension of the irreducible representation, the left-
hand column is a serial number. The next shows the type
of order-parameter minimum as given in the quasitables
of Appendices A and B. (There is no entry necessary for
one-dimensional representations. ) The next column gives
the irreducible representations as shown in Table I. The
fourth column shows the group under which the order pa-
rameter is truly invariant for that type of minimum and
that representation. The fifth column shows the largest
group under which the order parameter is a one-
dimensional representation. The notation by which the
groups are described is as follows:

(1) If a group is written in the form G &&A, the order
parameter is invariant (or one dimensional) under the
point group G and under time reversal.

(2) If the group is written in the form (G/H), H is a
subgroup of index 2 in G; the order parameter is invariant
(or one dimensional) under the point group H; it is also
invariant under the product of time reversal with any of
the remaining elements of G. The choice of G in the
fourth column is not entirely well defined. If an order pa-
rameter d is invariant under A'A for some A, e'~d is
not, but for some choice P, it may be invariant under
A'A, where W'&A. Then for a given H, there may be
more than one choice of G. These groups may be iso-
morphic or not. If isomorphic they may or may not be
conjugate subgroups of the space group. In the fourth
column, I indicate this situation only when the groups are
not isomorphic. Then it is indicated by adding a second
symbol on the next line.

In the sixth column are shown the forms of d for each
phase. We single out this form because of its familiarity
and its relation to the He representations. In all cases,
the given forms will be multiplied by a function of full
cubic or hexagonal symmetry. It is highly likely that in a
significant fraction of cases, the k will be measured from
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TABLE II. The meanings of the columns are as follows: Column 1—a serial number, marked with an asterisk is included by
Volovik and Gor kov. Column 2—type of minimum as given in the Appendices. Column 3—irreducible representation of the order
parameter. Column . group under which the order parameter is invariant. Column 5—group under which it behaves as a one-
dimensional representation. Column 6—form of the order parameter —may be multiplied by a function {k)with full cubic or hexago-
nal symmetry. Column 7—number of distinct, symmetrically equivalent order parameters of a given type. Column 8—axes in k
space where the order parameter vanishes, indicated as threefold or fourfold. If it vanishes on only one such axis, numeral 1 is put in
parentheses. Otherwise, it vanishes on all such axes. Column 9—number of comporients of the order parameter which vanish on
those axes.

Cubic groups

1

ja
2'

3
I )

r2

4

Tg X~

One-dimensional representations
5

Wh XM
Wh Xm

6
k„x+k»$'+ k,z

k (k» k )x+k»(k k )$+k (k k»)z
none
3,4

I3
I3
r-,

D4X~
D,&Xm
( D4/D2)

Two-dimensional

D4h XM
D4h X~

representations
2k, z —k„x—k»9

k„x—k»$'

cok„x+cok»9+ k,z

none
4(1)

3

6
7
8a

9a

10
11
12

13

1

1

2(b)
2(b)
3(a)
3(a)
3(b)

3(b)

I4
I5
I4
I5
I4
r-,
14

C4„XA
D2~x~

( C2./C]h )

C,„Xm
D, Xm

( C2/E)
( C2,/E)
{C]h/E)

Three-dimensional representations
D4h XA
D4h X~ kyx+ k„y

( D4h /C4h ) ik, x k,9+ (k—» ik„)z-
{D4h/C4h) ik, x+k,y+ {ky +ik„)z
D,d XA ( ky k )x+(k k )y+(k ky )z
D3gXA (k»+k, )x+(k„+k,)9+(k„+k»)z

(D3d/C3;) (cok, —k»)x+(k„cok, )9—+(cok» —cok„)z

( k» +cok, )x+ (cok, +k„)9+(cok„+cok» )z

3
3
6

4

4(1)
4(1)
4(1)
4(1)
3(1)

none
3(1)

3(1)"

H)
H2
H3
H4

D6X A
C6„Xm
D,„X~
D,„Xm

Hexagonal groups

One-dimensional representations

D6h XA k, z, k„x+key
D6h Xm k»x —k„9
D6gXA k»(k» 3k )z k [(k k»)x 2k k»$]
D6p XM k„(k„—3k» )z, k, [(k» —k„)9—2k„k»x]

none
6

6,2(3)
6,2(3)

5

6
7
8.
9

10

H5
H,
H5
H6
H5
H6

C,„Xm
C,„xm
C„XA
D, XA

{C2„/C]„)
( Cp„/C2)
(D2/C2)

Two-dimensional

D2h X~
D2h XM
D2h X~
D2h X~

( D6h /C6h )

representations
k,9,k»z

k„x—key

kyx+k y
k,x+ik, 9,(k„+ik» )z

(k. + k, )-.+ (k-+ "k, )y

2(1)

2(1)
6

6

'Also given by Volovik and Gor'kov with the difference noted in the text concerning 8 and 9.
Also two zeros at ( k, = —3k„=—3k„), etc., in the case where the threefold axis is (111).

a point of high symmetry on the zone boundary rather
than from the center. In metals with disconnected or
multiply connected Fermi surfaces, the form will be even
more different from the sample form in the table. It
would really be better to use the group velocity rather
than the wave numbers in these expressions, but I think
most readers would find it less clear. The seventh column
shows the number of distinct order parameters which are
equivalent by symmetry. The eighth column shows the
symmetry of the axes, e.g., threefold, along which the gap

vanishes. A number in parentheses signifies the number
of such axes along which this happens. If there is no such
number, the vanishing occurs on all such axes. The ninth
column shows whether one or both branches vanish.

Volovik and Gor'kov have given a table which they say
contains "only superconducting phases in crystals with
the group Oi, (UBe&3) possessing the highest symmetry (in
the theory of superfluid He these phases are called in-
ert)." I do not understand this statement. What is meant
by highest symmetry? To see that the most obvious inter-
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pretations do not work, consider the cases 8 and 9 in
Table II. [Volovik and Gor'kov combine these into one
D4(E)(S =1), presumably because they have precisely the
same symmetry. I have separated them because they are
derived from different representations. ] The group for
these cases is a proper subgroup of those for cases 6 and 7,
which Volovik and Gor'kov do not include.

The term "inert" is also ambiguous. If we take the def-
inition of Bartori and Moore literally, none of our cases
is inert: the forms in the sixth column are multiplied by a
function of full cubic (or hexagonal) symmetry —the f (k)
of Volovik and Gor'kov —which certainly depends expli-
citly on the physical parameters. A more reasonable view
might be that inert should mean that the symmetry of the
order parameter, the forms in the sixth column, have no
explicit dependence on the physical parameters but then,
of course, all these states are inert, with some remaining
ambiguity as to how one views their state D4(E).

It seems more relevant that all the states shown in
Table II are the only ones required by symmetry to be ex-
trema, except for those arising from type 2(a) of Appendix
B. [See note iii of Notes added in proof ]

Notes added in proof:
(i) Since this work was completed, a paper has been

published [K. Ueda and T. M. Rice, Phys. Rev. B 31,
7114 (1985)] which overlaps this one considerably. They
exhibit the order parameters for all but one (No. 2) of the
cubic subgroups. The omission is due to the fact that they
chose to consider only symmetries which could be ob-
tained with a linear k dependence. They do not indicate
the symmetries of the states they find and their treatment
is valid only for symmorphic space groups. On the other
hand, they also discuss how to calculate the magnetic field
dependence of T, .

(ii) This prohibition against surfaces of vanishing gap
depends crucially on the presence of spin-orbit coupling.
Without it, we can easily imagine a state whose symmetry
group contains, as in the preceding paragraph, the two-
dimensional rotation group in spin space, leaving only one
component of d; there is then no difficulty in having this
vanish on a surface.

To be more specific, we note that the normal state sym-
metry is the direct product of O(3), the three-dimensional
rotation group in spin space, and 6 the crystalline sym-
metry group. The order parameter representation is then
D

~ XI;, where Dg is the representation of O(3) with angu-
lar momentum l and I; is a negative parity representation
of G. The symmetrized second order product of this rep-
resentation is [D~ XI;] =[D&] X[1;]+ID&I X tI;I .
Here, [H] (IHI ) is the syminetrized (antisymmetrized)
square of H. This can now be reexpressed as
[Di XI' 1 =(Dp+Dz) XS'iI I+Dt XA IT~, where S;(A;~)
is the number of times I I occurs in [I;] ( I I"; I ). This re-
sults in the following number of fourth-order invariants:
If the dimension d; of I; is 1, 2, or 3, the number of in-
variants is 2, 5, or 7, respectively.

Considering the case of d;=3, which occurs only in
the cubic 'class, the invariants additional to those
for He (Ref. 10) are A6= g,.

I
(dd+);;

I
and

—:g,.
I (dd);;

I

3. It is clear that if the corresponding
coefficients are small, they will simply orient one of the

He states with respect to the cubic axes, at least if the
He state is inert. It is certainly possible, though not, I

think, entirely obvious that with larger coefficients, quali-
tatively different states could result.

(iii) In a very recent paper [Zh. Eksp. Teor. Fiz. 88,
1412 (1985)], Volovik and Gor'kov have given a complete
listing of the symmetries for both singlet and triplet pair-
ing in cubic, hexagonal, and tetragonal crystals. Their
basic group theoretic approach is quite different from
mine, and they include some discussion of magnetism and
vortices.

I want to thank C. M. Varma and P. W. Anderson for
suggesting this work and for useful discussions.

APPENDIX A

In the representation I 3
—of the cubic group, the opera-

tions C4 are represented by the identity. The factor group
is isomorphic to D6. This makes it possible to treat all
the two-dimensional representations in a parallel manner.
It is convenient to write the basis function in the form

I u +iu, u iuI —where u and u may be complex and where
u is chosen to be invariant and U to change sign under a
twofold axis (other than Cq or C6). The operations C3
and/or C6 then multiply (u+iu) by phase factors of the
general form +co, where co=e

When the free energy is expanded in powers of u, v and
u *,u*, each term must have equal numbers of starred and
unstarred quantities and the whole expression must be in-
variant under the interchange of u, u with u*,u". In other
words, the free energy is of even order in the imaginary
parts of u and v.

The second-order invariant is simply u
I
+

I

u =I2.
The second-order products of u, v are grouped in represen-
tations as

R2] .'u +v2 2

R23. I(u +tu), (u —iu) I .
These lead to fourth-order invariants

I,=fu +u
f

=(fu
I

+ u
I

) — uu* —uu*f

I~3=( lu I'+ lv I')+ Iu*v —v*u I'

which enter the free energy F in the form
( A 4( Ig[ +A 43I43 ). When this is minimized, v /u is real if
A4) (A 43 if A&» A 43, u + u =0. In either case, the
remaining fourth-order term is (

I
u

I
+

I
v

I
) and isotro-

plc.
It is therefore necessary to consider sixth-order terms.

They are formed from the third-order representations

R3]. u —3uv3 2

R 32 '. U —3Uu3 2

R33. I(u +u )(u+iu), (u +u )(u —iu)I .
The invariants are then

I6, = fu f'fu' —3u'f',
I62 ——fu f'fu' —3u'I',
I„=(

I
u I'+

I
v I') Iu'+v'I'.
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If v/u is real, we call it tan8 and the minima are at either
2 le /6 or (21+1)m/6, corresponding, respectively, to
U=O or u=O, and states equivalent by symmetry. All
these points are required by symmetry to be extrema not
only with respect to real ( u, v) (because they lie on twofold
axes or mirror planes) but also with respect to imaginary
parts of (u, v) (because the free energy is even in the imag-
inary parts).

If, on the other hand, u +U =0, I6& ——I62
= —,(

f
u

f
+

f

v
f

), and I63 ——0. These points are also
required by 'symmetry to be extrema by the following ar-
gument: Ail products of (u+iv) can be written in the

occur, but cannot be reached by a second-order transition
from the normal state.

APPENDIX 8

All the three-dimensional representations of the cubic
group have very similar structures. When the order pa-
rameter is real there is only one fourth-order invariant
other than the square of the second-order invariant. In
the complex case, the situation changes. If we call the
components of the order parameter u ~, u2, u3, the second-
order products form the following representations:

2 2 2C(.'u ) +u2+u3
p&„+——(u+iv) (u +v )" .

The pair p~„+ and p~„constitute an irreducible represen-
tation unless I is divisible by 3. In that case the combina-
tions (pt„++@1„)are the irreducible representations.

We consider the neighborhood of a point (up, vp) where
ivp ——up, and expand in powers of u iv,—intending to
show that there is no linear term. We first note that
(@3k„++jr3k„)is equal to

2[(u+iv) "+(u —iv) "7(u +v )" .

This consists of a term of order (u —iv)" and one of order
n +3k. Thus, we are concerned only with the cases k=O
and ri=O or 1.

Considering now the cases i&3k, the invariant formed
from p~„+ is

f

u'+ v
f

'"(
f

u +iv
f

'+
f

u iv
f

"—),
which is of even order in (u —iv). Because (u*,v*) must
occur in each term to the same power as ( u, v) we have ex-
hausted the types of terms in the expansion. In the neigh-
borhood of (up, vp), then

F =Fp(up, vp)+
f

u +v
f

F2(up, vp)

+higher-order terms .
Now (up, vp) is given by (a/V'Z, ia/V'2)e'~, so that Fp
and Fz depend only on

f

a
f

=
f

u
f

+ v
f

. Finally,
then

Cp (cou t +cou 2 +u 3 / rou ] +cpu p + u 3 )
2 —2 2 — 2 2 2

C3 ~ ( u 2 u 3 y u 3u» u t u p )

The absolute squares of these are the invariants

I).
f
u, +u2+u3

f

= g f
u,

f

4+ gu, .2u.*2,
7 7+J

I2: 2g f
u) f

—gu; uj~
7 7 +J

I3. g fu; f'fu
7+J

These can be rearranged into the set
2

I). gu

The anisotropic part can then be written

F =ALII +BI2 .

(81)

(B2)

(83)

(B4)

F=Fp(
f

up
f

+
f

vp
f

)+
f

u iv
f f

u+iv f-
)&Fz(

f
up f + f vp

f
)+higher-order terms .

Thus (up vp) is an extremum; in fact, it is either a max-
imum or minimum, since (u —iv) appears only in its ab-
solute value.

Recapitulating, we see that there are three possible
types of minima for a second-order transition:

Order parameter

u=1, U=O
u=O, U=1

1 1

All these types are required by symmetry to be extrema
and no other points are required to be. Other minima can

FIG. 1. The
I g, x;=1,x; &OI.
x, =xk=0I. At LL;,

large triangle represents the region
The corner A; is the point I x; = 1,
XL' 0~ Xj Xk 2 At C~ XL' 3 At D]'~

1 1
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(2) Otherwise, if, say, x3 &x&+xq, we choose P3
——0

and P) ——P2
——tr.

b

FIG-. 2. Phase diagram in 2-8 space for the cubic group.

We now call
~

u;
~

=—x;,
2

F=A gx;e ' +Bg(x&) .

We want to minimize this subject to the condition

g,.
J

u
f

= g,. x; =1.
It is clear that if A is negative, we want all P's equal,

which brings us to the unitary case with I& constant and
the issue determined by B. If A is positive, however, we
can arrange the P's to minimize the first term. There are
two cases:

(1) The x; obey the triangle inequality. Then the phases
can be chosen to make II vanish.

(1) Corner

(2) Edge center

(3) Center

F =A+B,
(a) A +—for A &0,

B
2

B—for A&0,
2 8

(a) A+ —for 2&0,
3

B—for A&0.
3

(b)

(b)

Figure 2 shows the phase diagram in A-B space. 2(b) and
3(b) are the nonunitary regions. In 3(b), the u s have dis-
tinct phases 1, e — ' . In 2(b) the u's are (l,i,()). Note
that 2(a) is never an absolute mimmum.

This situation is shown graphically in Fig. 1. The large
triangle represents the region g,.x;= lx;, &0. x; is the
distance of x from the ith side. The inner triangle is the
region where the triangle inequality is satisfied. In the
small triangle with corner A;, I, =(2x; —1) when the P's
are chosen to minimize I~. The value of I2 is easily seen
to be x + —,', where x is the distance from the point x to
the center of the triangle.

If A&0, I~ ——0 in the center triangle, and the only
points in it where Iz can be minimized are the center C or
corners B. The only such points in the outer triangles are
the corners A;,B;, or the midpoints D; but the latter are
ruled out as minima by the limits set in the previous sen-
tence.

If A &0, I& ——1 everywhere and the minimum of I2 can
only be in the center C or at a corner A;.

The possible minima and the value of F are then
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