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Quasiparticle motion in superfluid He and Kapitza resistance of 3He A B phase boundary
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In this paper we investigate the motion of quasiparticles in superfluid He. The Bogoliubov —de
Gennes equation is generalized to an arbitrary type of pairing. For the case of a unitary p-wave
state, the ballistic description of Greaves and Leggett is shown to follow when the spatial variation
of the order parameter is slow on the scale of a coherence length. We also investigate the equation
of motion of the excitation spin in this case. We apply our equations to investigate the transport of
energy across the He A-B phase boundary, where in particular we show that a Kapitza resistance
exists. The feasibility of measuring this resistance is discussed.

I. INTRODUCTION

The motion of quasiparticle excitations in a superfluid
has already been discussed in s-wave singlet pairing by
Andreev. ' The case of p-wave triplet pairing appropriate
to superfluid He has been discussed by Greaves and Leg-
gett when the textural variation is slow enough that
ballistics applies. More recently, Kieselmann and Rainer
study this more generally, using the quasiclassical ap-
proach. This approach, though powerful, is much more
difficult and less transparent than the work by Andreev.
In this paper, we shall generalize the "Bogoliubov —de
Gennes" equations used by Andreev to an arbitrary type
of pairing, though we shall quickly specialize to super-
fluid He. It is then shown that the ballistic description
of Ref. 2 follows if the spatial variation of the order pa-
rameter is slow. We shall also investigate the question of
branch conversion, in particular the equation of motion
for the excitation spin, in which we obtain results contra-
dicting Ref. 3.

It is known that the two superfluid phases A and B of
He coexist at a particular temperature Tzz, which is a

function of the pressure and applied magnetic field. We
shall apply our genrealized equation of motion to the
phase boundary. In particular we investigate the trans-
port of energy when there is a temperature difference be-
tween the two phases. We show that owing to the "An-
dreev reflection" of excitations by the variation of the or-
der parameter, a Kapitza type of resistance arises. This
resistance is calculated at low temperatures assuming the
order parameter of Kaul and Kleinert. We finally dis-
cuss the experimental feasibility of measuring this resis-
tance, and show in particular that the arrangement of
Osheroff and Cross is a potential candidate.

relative space p=r& —r2 while taking appropriately the
dependence on the center-of-mass coordinate
r =(r~+r2)/2 into account (see also Ref. 1).

First, we consider a uniform system. We take a unit
volume and simplify our notation for spatial integration
by putting the dummy variable as a subscript on the in-
tegral sign. Recall first that, in a uniform system, the gap
matrix 6"~ is related to the order parameter
F"p=(az a zp) by

k k'
hap ———g V~, Fap,

k'

where V~, is the Fourier-transformed pair-interaction

potential V(p), aq annihilates a normal-fluid excitation
of momentum k, spin a, and the angular brackets denote
an average over the ground state (or, more generally, the
thermal average). On transforming back to relative coor-
din'ate space p—:r~ —r2 (recall that we are in a uniform
system), we get

k'

& p(p)=g&"pe'"'~= —V(p)F p(p),
k

where 1b (r, ) annihilates a normal-fluid excitation of spin
a at r~.

In the case of a non-uniform system, then, we have to
give the dependence on the center-of-mass coordinate as
well as on the relative coordinate p. Thus the order pa-
rameter at r=(r&+r2)/2 for relative distance p is

F p(r,p)= (y (r])yp(rz)),—

and the gap is therefore
II. GENERALIZED BOGOLIUBOV —DE GENNES

EQUATION b, p(r, p)= —V(p)F p(r, p) . (2)

In the first part of this section we shall generalize the
Bogoliubov —de Gennes equation to arbitrary'pairing of a
superfluid. Our derivation parallels the evaluation of the
quasiparticle energy by Balian and Werthamer in momen-
tum space: We shall transform their calculation back to

We note that generally the "gap" is a nonlocal object.
We next consider the motion of an excitation. Let

~
@o),

~
4&) denote the superfluid ground state and the

state with an excitation in which we are interested, respec-
tively. The excitation is uniquely specified by the values
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i% L)'j~(x) = [P~(x),H],a
at

with the reduced Hamiltonian H given by

(3)

f (x, t) =—(eo
~

l/i (x, t)
~
e, ),

g.(x, r)—= (e,
~ y.'(x, r)

~
e, ) .

The equation of motion for f~(x) can be obtained by us-
ing

where we have dropped the spin indices a and P, and po-
sition x for easier notation. An analogous equation for g
is obtained by interchanging f and g, changing the sign of
the right-hand side and complex conjugating all D„'s.

There are a number of simplifications to the seemingly
complicated Eq. (9). For singlet pairing, I: and b, are pro-
portional to ( L 0), and are even under p~ —p. Thus
all D„ for n odd vanish. If we further keep only the Do
term we obtain

H= f P (x) — V —p Q (x) V2
2m

0 1—Dp

(4)

if& f (x)=a
at

g2
V„—LLL f (x)

2m

+ A~LL x—,P gLL(x —P),
P 2

(S)

+~ ~X pX VX—X pX ~X
7

where m is the effective mass, and by also using the usual
mean-field-theory results

r

0
—1 0

g2
V+p

gl
gT

which decomposes into the two sets of equations of An-
dreev. ' For triplet pairing, F and 6 are symmetric ma-
trices and are odd under p —+ —p, so only D„ for odd n

remains.
As soon as the gap varies only slowly on the scale of its

range, we can define the gap b,"(r) for wave vector k at
position r by

LLLL g~(x) = Vx+LLL g~(x)
a A'

at 2m
6 L3(r,p)=gb ~(r)e'"'~,

k

analogous to the uniform case. D„ then becomes

(10)

—f b, *p x—,p fp(x p) . —
P

f [& (,p) — a (& (,p))]

X gLL(x) —P~a~LL(x)+, a„a~LL(x)+
PLJPL.

where az ——a/ax". We define, with n the number of
Pp Vp ~ ~ ~ p Alp

(D„)„.. . L„, LL(x)—= ( —1)"f & p(x,p)p~, pL„, (8)
P

and thus rewrite (S) as

ih' f=~ a
at

$2
V' —p f+Dog

2m

+ I (D, )„a~+—,
' [a.(D L ).]g I

+ I -,
' (D, )„,a„a~+ -,

' [a,(D, )„.]a~ I+

Usually the gap varies slowly on the scale of its range
(this assumption will be justified below); we can then ex-
pand the gap in a Taylor series in the c.m. variable, keep-
ing only the first two terms. We do the same thing for
fLL(x —p) and gLL(x —p), but now do not restrict the num-
ber of expansion terms (see below) and obtain the last
term of (S) as

1 a a' ak akn
gk

ak,

and hence the right-hand side of (8) is essentially an ex-
pansion of gap as a polynomial in k. The order of deriva-
tive of g to be kept in (8) depends thus on the form of gap
chosen. For the form chosen by Greaves and Leggett:

b, =i (cr;oy)d;„k„/kp.
then only D

L
need be kept. For the "cutoff" version

i(Lr;o~)d;„k„ if k "on shell"
gk

0 otherwise

(12)

(13)

our formula still applies for those (physical) momentum
values well within the cutoff, to lowest order in

~

k —k~
~
/k~.

If b," spreads over k values of thickness b.k, then the
range of the gap, from (10) is roughly A'/hk. Even for the
form (13) it is A'U~/D where co is the cutoff energy, and is
much less than fiUF/bo-go, where b,o is the maximum of
gap and go the coherence length. Thus, except when the
gap varies appreciably in a distance of the order of a few
angstroms, we can say that the gap varies slowly on the
scale of its range. This justifies the argument given before
in Eqs. (7) and (10). If we confine ourselves to the case
(12), as will be done in Sec. III, the equation of motion has
the simple form

at g

g2
V —p2m

—,(V.DL)+DL V

——,(V DL ) —DL.V

g2
V' +p2m

(14)
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Note that the operator A is Hermitian.
Before we proceed, we shall discuss the spin of the

quasiparticle. The simplest way to f'ind the necessary spin
operator would be to use the operational definition
p=y-/2s, with p, the "magnetic moment" s the "spin, "
and where y is the gyromagnetic ratio of He. This is
well defined (by considering a fictitious magnetic field)
and clearly reduces to the ordinary definition when the
fiuid is normal.

Under a magnetic field H, the Hamiltonian H in (4)
then acquires an additional term-(yA'/2)g~(r~pgp. H. The
equations of motion for f and gt then have extra terms-
(yfi/2)H. tr ppp, ( yiir/2) Htr*pgp, respectively. Hence
(14) becomes

(15)

from which we identify the spin-density vector
T

,
o. 0

X=
0 —a.

This result can also be obtained by the more conventional
but less easy approach of calculating the expectation value
&@i

I fatrapfp I @i& & @o
I Oatrapfp I

@o&
Appendix A..

It may be of interest to note some of the properties of
the spin-density operator. We consider the possibility of
an energy eigenstate being also an eigenvector of a com-
ponent of X. Writing

where

I

result for the excitation spin in a A-phase texture, as we
shall see in Sec. III E.

III. QUASIPARTICLE BALLISTICS

It has already been argued by Greaves and Leggett, in
the context of He-A, that when the relevant spatial varia-
tion of the order parameter is on a scale long compared
with the zero-temperature coherence length go, we can
speak of an excitation of wave vector k at position r,
whose equation of motion, from the Hamiltonian formal-
ism, is

i aEk —. aEkr=—,Itk= (16)
Br

where E"(r)=[ok+6,"(r)b, (r)]'~ is the quasiparticle en-
ergy and ek—= (iit' k /2m) —p. It can be realized immedi-
ately that (16) is valid for any other unitary states and for
nonunitary states as well if we replace b, 6 t by the
relevant one of its eigenvalues, provided the direction in
spin space diagonalizing b,"b"t is uniform and the spin is
along that direction.

As expected, the ballistics must follow from the gen-
eralized Bogoliubov —de Gennes equation derived under
the slow-variation condition. This will be shown below.
For simplicity we confine ourselves to the unitary case,
though the argument can be readily generalized to the
aforementioned nonunitary case, since then we can
decompose (14) into two sets of equations (cf. the singlet
case mentioned) with Di becoming diagonal by perform-
ing a rotation. Note for the general nonunitary case, (16)
is incomplete, even for slow variations. ' First we obtain
some preliminary results which will be useful to our
demonstration.

—Hz2 ——Hii —— (fi /2m)V —p-,
—Hp) ——H)p ———,

' (V.Di)+(Di.V),

we easily compute the commutator

A. Uniform solutions

Assuming a uniform gap linear in k of the form (12),'

we obtain from (11)

0 —( tr*H2i +Hzi tr )
(Di )„=(cr;cry )d;„/k„. (17)

]=
( H„+H„*) 0

Hence [X,A ]=0 if M= —,'(aDi+Dicr*) =0. Consider in
particular the 3 phase, where d;z b,zd; (Pz"+if' ') ——with
d, P'", P' ' specifying the spin and orbital parameters,
respectively, hence Di~i(oar) d. We can easily show
that X.d commutes with A but not with X—(X d)d. We
can understand this physically as follows: if d is in x-y
plane (not necessarily constant) then we have pairing be-
tween kg and —k t (similarly for down spins). An excita-
tion in the occupation number representation of these two
states, say

I
10), can be regarded as creating a k t, there-

fare of spin up character (amplitude f„) ar annihilating a—kT from
I

11) (amplitude g, ), therefore of spin down
character. Thus, X, is not a good quantum number.
However, if d=z, kg pairs with —kg; then both ways of
creating the

I
10) state would have spin up, and X, is a

good quantum number. This is related to an interesting

with ar =E"/fi, where, by observing b, =ik.Di

„fk gk

Rk 6 —6k
,

'gk

We see that

fk

„fkEk
Sk

(19)

We shall be interested in the A phase where
d& Azd;4&, @„=——P&"+i/&' as already described, and
the 8 phase, where d;& ——4~R;&e'~. R;z is the rotation
matrix of angle e=cos '( ——,') along co and P is the
phase angle.

In this case an eigenfunction of (14) can be easily ob-
tained in the form

f(r, t) fk
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~ fkE"+e„
(20a)

is proportional to a column of the unitary matrix U" of
Balian arid Werthamer, which diagonalizes the Hermi-
tian matrix 8' and transforms from superfiuid excita-
tions to normal-fluid excitations. E"& 0 solutions for (19)
are physical excitations (

~
N~) has higher energy than

~
@0)) and E"&0 solutions correspond to lowering of the

energy when an excitation is destroyed [obtained by con-
sidering f'= (4,

~ g ~
@o) and g'—:(@,

~

gt
~

d&o), note the
resulting equation is identical to (14)].

We can solve for gk from (19)

+gag

then

fkfk= 2
1+ (21a}

1
gIgx=

2

We shall show in the next section that +g g is a
constant in time, thus the above normalization is possible.

whence, in the unitary case

E'—e"
gkgk =

k kf kfk ~

E +e
If we normalize our solution, for unit volume, by

(20b)

B. Density, current, and momentum density

Consider the quantity p

p{r»=f'f+g'—g

Application of (14) yields

(22)

p(r, t)= — [(f V f fV f*)—(g—V g —gV g*)]

+[f'(Di V)g+g(Di V}f*+ f2'(V.Di)g+ —,'g(V Di)f* —c c ] . (23)

Hence

a
Bt

p(r, t) = —V.(j&+j2),

where

(25a)

(25b)

j,= " [(f'Vf fVf*) {g'Vg—r~g*—)], —
2P7ll

S(r, t)=f o'f ga'*g . —

Using (14), we can easily show that

a
at 'S;(r,t)= —V j;+. . .

(27)

(28)

where the ellipsis represents source terms, and where

. (f'~;Vf {Vf')~if Vg'~—,*g+g'~,*V—g }
2%i l

Equation (24) is in the form of a continuity equation and
allows us to interpret p as an excitation density {a con-
served quantity), and j~+ jq as the excitation current. j& is

as in the singlet case of Andreev's whereas an additional
term j2 arises for higher-l pairing. The presence of the j2
term need not surprise us (if one recalls Dirac's treatment
of relativistic spin- —, particles), and, as we shall show in

the subsection D, it is a term which arises from the depen-
dence of E on k through b,".

The currents (24) should be distinguished from the real
He-particle current associated with the excitation, which

is given by (m/mH, )jj, where mH, is the mass of (bare)
He, and

r

mj'&(r, t)—: . [(f Vf fVf*)—+(gVg ——gVg*)] .
2l

Such an identification is justified by the fact that for the
normalized plane-wave solutions (18), mj'~ ——Rk is the
momentum of the particle [cf. (34) below]. Note j~&j~
{because of the sign).

C. Spin density and spin current

We have already seen in Sec. EI that the spin density of
the excitation is

(fto; Vf Vfto.;f+(Vg)o;g—*—go; Vg'),
2ml

[ —,ft(o;(V D&) —(V.D&)o,*. }g
sA

+(f'~ Di.Vg —Vf'Di~,*g) cc ] . —(30)

This is the reaction due to the Cooper pairs. For the total
spin of the excitation, we integrate (28). After integration
by parts, we get

1 1(S)= J [ , ftV Mg+ f M Vg-
dt iA

+g ( —,V'.M')f+g (Mt V)f], (31)

where the tensor M= —,
' (oD&+D&cr*) is as defined previ-

ously and the dot products with V are always understood
to be between the spatial parts. [This, in fact, could have
been obtained by using iA(d/dt)(S) =([X,H]).] (31) is

(29)

is the i-direction spin-current density (Appendix A). The
second equality follows by taking the transpose of the last
two terms. The source terms are given by
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the same form as (23) when the latter is integrated, if M is
replaced by D) and M* by —D) . This sign difference
prevents us from putting the expression in square brackets
equal to a divergence and integrating it to zero. It
represents the action of the superfluid on the excitation
spin (Sec. III E for further discussions).

D. Derivation of ballistics

We now demonstrate that ballistics in unitary states fol-
lows from our general formulation. We consider wave
packets of the form

f(r r ) gf el(k't —tPt)

h, k
(32)

g( r r) gg ei()t r tPt)—
hk

where sum is over a momentum range Ak for k„,k„,k,
near the average wavevector k. When the typical
textural-variation scale Rp is large compared with gp, then
it is possible to choose the size of the wave packet
hr-(fi/bk) such that Rp»hr »gp ( AUy/5'p), 'where
b,p is the maximum of the gap. This allows us to speak of
the position of the excitation. The uncertainty in energy,
b,E, is then b,E"=Au+(hk) «bp « typical energy scale
in which 5" varies. This allows us to speak of the gap b,
and energy E" appropriate to the excitation. Hence the
wave packet (well) defines a quasiparticle in ballistics.

VA'th this, the rest is just simple algebra. The mean po-
sition of the quasiparticle is (the angular brackets shall
henceforth denote expectation values for the excitation)

(,'r&= f,r(f'f+g'g»

(14) is now substituted, and further integrated by parts.
The terms involving only f and g cancel exactly. We are
left with

(erik„& = —f I [ftV„(—,
' (V D))g+(D).V)g)

—gV„( —,
' (V Di)f '+(D(.V)f ')]

+c.c. I .

Thus all terms involve two derivatives. We recall our as-
sumption that the order parameter, thus 0&, varies only in
a distance Rp»gp»& 1 /kF. Thus we can ignore second
derivatives of D) when compared with other terms. The
third term combines with the first to yield

f f (V D()V~, whereas the second one, integrated by
parts twice, combines with the fourth to yield

f,[VtJ' (VA) )g —g(VtD) )VJ']

= —f [f (V.D()V++g(V„D,~)Vj'*] .

Hence

(i)ik„&=f [g(V„D,„)V„f'~cc ].. .

Here we can substitute our wave-packet form (32) since
V&D& is already a first-order gradient. Since the order
parameter is slowly varying, Ro ~~Dr, we can take V„D~
to be the value at the position of the wave packet, and get,
with A), the amplitude of the k wave,

(erik„& =2Reg
I
A), I g), (V„D)„)&„&ikf), .

dt

whose rate of change is

8
(r& =f r p= f—(j)+ji)

—= & j(+ji& (33)

d
(Xk„&= —2+Re

k
f) ~'(V,~"»)Ek+

The relation (20) can be substituted, and using
ik D(r) =b,"(r) we get

where we have substituted (23), integrated by parts, and
dropped the surface term due the fact that the wave pack-
et is localized in space. This is in fact just the Ehrenfest
theorem in quantum mechanics.

The average momentum for the wave packet is, follow-
ing (26),

f),v„(~"~" )f) I
~) I'

~ E"+&~

and when the state is unitary and the wave packet normal-
ized, with (21) we get

(A'k&= —.f [(f Vf fVf*)+(g Vg —gVg*)—] . (34) dI;

" (~k, &= —V„E&"&,

Taking the time derivative and noting that we have a
wave packet so that we can integrate by parts and drop
surface terms, we get

which is just the second of (16).
To complete our demonstration of (16) we have to

evaluate j~+j2. j~ can be evaluated easily by our wave
packet (31) for unitary states, using (20) and (21) and re-
placing averages of products by products of averages

(irik&= —f ftV ih

+ g'v~x~
at

fV iiri-
at

—gV IA
Bg
at

Akjr= 7

m Eg

where we have just written k for (k& for simpler nota-
tion. Note this is just

az' ~~~

BEg Bk
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For j2, we have

j2———— Im D& g.2

We can evaluate D& at the position of the wave packet
and substitute our plane-wave expansion (32), and more-
over use (20) and replace the products of functions of k by
products at (k), we obtain

J2 ~fkI E +ek E +ek

where we have again used k for (k), D~ ——D~((r) ),
b."=b"((r)) for the sake of a simplified notation. Using
the identity

(O;rJ J, )(re, rrj)=&,j+& etjm rrm

we find

i(kgmv IA'). r
ke —i [E"(v,=0)—Sc.v, ]t

i(k —mv /R) r
gke J.

(3&)

as one may verify explicitly on substitution into (14) when

D&(r) =Di(0)e

But our procedure is valid provided gp/Rp «1. This has
already been pointed out be Greaves and Leggett in the
ballistic case. We have thus shown that ballistics is true
in unitary phases (or nonunitary phases with restrictions
mentioned before) in lowest order in gp/Rp in which case
the Hamiltonian equations (16) hold.

E. Comments on branch conversion

cisely, if v, &0, the plane-wave solutions should be of the
form

+ 2 (Ctpdj v Ckpdjv)eijm arm
kF

(35)

If the state is unitary, the condition that 6"5"~ is propor-
tional to an identity matrix can be written as

kPdlPk vdJ'v ElJm 0m 0

We can differentiate this with respect to k& and find

( d'tpkvdJv) +kvd;vdJp )elm� (T m0

(36)

which implies that the last term of (35) is identically zero.
Thus

D&„xkt S"Dt&„—,' tr(D»~——kt—&kD'»),—
and so, with the help of (21)

j2= tr(D, 6"~ b,"D) ) . —
2fiE"

Now, since E"=(ek+6"b," )'

1 BE" BE" Bek 1 BE" B~ p 1 BE" Bb, p+ k +ae„oak kayak. , ak X aa".t, ak

(37)

k I. @P(D»P —~P (D» Pj2Ek

tr(D)b, " —b, D, ) = jq .
2E "A

This completes our proof.
We also see that if the state is not unitary, then (36)

fails and D»A" —5"D» is no longer proportional to an
identity matrix. j~,j2 then depend directly on the ampli-
tudes f, and f„i.e., on the spin of the excitation.

Before concluding this section we should mention that
we have implicitly used the plane-wave solutions for the
stationary condensate in our expansion (31). More pre-

The first term has already seen to be j~. The last two
terms are

In the Sec. IIID we only considered the position,
momentum, and energy of the excitation and left out
completely comments on the internal degrees of freedom.
This we shall now turn out attention to.

The internal degrees of freedom correspond to the pro-
duct space of (superfluid) particle-hole system, character-
ized by whether the group velocity is parallel or anti-
parallel to the momentum, and the spin degree of free-
dom. Since 6" usually has a much weaker dependence
on k than ek except very close to the Fermi surface, we

shall simply distinguish particles and holes by p &pF.
Consider first the particle-hole degree of freedom of an

excitation of (mean) energy E and momentum p. If the
typical textural length is Rp, we saw at the end of the Sec.
III D that the texture will mix the plane-wave solutions of
different momentum, the range of momentum being
-mu, -fi/Rp. Thus unless E is very close to

~

b,
~

such
that the difference between the particle and the hole
momentum is &fi/Rp, there is no appreciable mixing of
particle and hole. In other words, for Rp~&gp in the
ballistic case, particle-hole conversion occurs only when
E=

~

b, ~, i.e., where Andreev reflection occurs; in other
situations the particle-hole degree of freedom follows adi-
abatically that of the texture, as implicitly assumed in
Ref. 2. If R p gp then the range of momentum is
—(fi/gp) and corresponds to an energy -b,p. In this case
detailed solution of (14) is necessary and particle-hole con-
version occurs appreciably.

However, the spin internal degree of freedom behaves
entirely differently, since for given E,p, there is nothing
to prevent the conversion between the two spin directions,
at least for the unitary case. Looking at the formula for
d (S jldt in Sec. III C, in general we expect that probably
we have to specify the amplitudes and phases of f and g,
or equivalently the expectation values of (S) in order to
know its evolution in time (cf. Ref. 3).

We can do this explicitly, first in a uniform system, for
our wave packet (31), for which we must now demand
that it has an average spin (S ) . Ignoring now the V M
terms as they are of higher order, we obtain from (30),
since A=ik D&, 5 = —ik.D&,

. ~
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(S)= . ft[o,bb, t]f,
dt tA E+e

d (S')
dt

dek (j
2

(kXI) S'.
Ek ek fl dk BP

Q2
(S)=—. (dxd*)Xftof .

dt i' E+e (39a)

On the other hand, if we use f=6/(E e)g a—nd express f
in terms of g, we get

dt iA' E+e g'[o, ~~'l*g

602
g (dXd')Xo*g. (39b)

(39) can be combined to yield

(S)=— . 5 (dXd")X(S) .
e le (40)

Thus ( S ) precesses around the direction given by
(1/i )(d Xd ). For example, in the 2 1 phase with
d(k) =d=(1/W2)(x+iy), then (S) precesses around the
z axis. This can be understood as the result of the tunnel-
ing between the +z amplitudes (cf. precession of a spin- —,

'

electron under a magnetic field).
In a uniform unitary state then, (S) is a constant. We

now investigate the effect of a long-wavelength texture
(Rp »gp). Since the time of flight across the texture is
proportional to Rp, we shall need (d Idt)(S ) to first order
in the gradients of the order parameter. By this token, we
can investigate ( d Idt) (S) in cases where only part of the
order parameter is changing uniformly, and add up our fi-
nal result.

We shall consider first the A phase in which d is a con-
stant and the orbital parts P'",P' ' are changing. First we

let d=z so that only opposite-spin pairs form. " The con-
sideration of Sec. III B shows that f ~ f, ~

'+
) g, ~

' and

+ g, are constants. It ollows then trivially
that (S') =constant.

Next let d be a constant in the x-y plane so that we
have equal spin pairing (ESP)." Now f (

~ fi ~

+ ~g, ~

2)=C„ f (
~ f, ~

+ ~g, ~
)=C2, where C& and

C2 are constants. If we are in the uniform p"', p' ' case
then (20b) implies' (S') =(Ci —C2)&k/Ek This «rmu-
la is valid then also in nonuniform P'",P' ' case to lowest
order in gp/Rp With now . Ek=Ek(1) d(S )Idt to
lowest order in gradients, is hence given by

(Ci —C2) «k dk
EI, dk dt

where we have dropped the implicit k dependences. For a
general nonunitary state with b,"=cupid(k) ooz, with d
now complex and d 1*= 1 and 50 the root mean square
of the gap, we easily find

bht=bp[l+io (d"Xd')],

[o,b5"]=—25p(dXd') Xo',

and so

S)=o,d[Qk {dXS)]+ {dXQk){d.S
dt

+bt(dXS)(d Qk)+b2(Qk XS),
where a~, a2, bI, and b2 are scalars. The third term can
be dropped as d.Q~ can always be chosen to be zero.

We must now use (14) to obtain the coefficients. For
this we consider a wave packet at t =0 passing through
the origin, where, by suitable choice of axes, d is rotating
in the x-y plane

d=d(r)=xcos(a r+P)+ysin(a. r+P) .

In this case we have ESP along z and a superfluid spin
counterflow along a. The gap matrix is, with

k (P'"+i/'") =
~

kx1
~

e',

ak=a„~ kXI
~

e"
—i(a r+p)—e

0 i (a.r+ p)

It is necessary to keep the effect of the spin velocity in our
eigenstates to first order (cf. end of Sec. IIID). Thus we
write them as

ik+ r

0 —iE &t/Ak1
i%~ -r

0
!k+r'
ik~~. r

gA:&e

—iE )t/A

Combining the two cases above, our result for d=const,
while P'",P' ' is nonuniform, is then

Q2
(kx1)'[S—d(d S)] . (41)

dt Ekek fi dk r)r

Note that only the component of S perpendicular to d
changes (cf. the argument in Sec. II).

w(] ) w(2)Next consider P' ',P' ' =const and d nonuniform. We
define the tensor Q& by

5d'=e'J 5R Qld (42)

It is reasonable that 1 enters in (d/dt)(S) through the
magnitude of the gap only. Then the only other nonscalar
quantities on which (d Idt)(S ) can depend are the wave
vector k, the spin S of the wave packet, and the parame-
ters d, Q„' of the condensate. Since (S) is in spin space,
Q& and k always occur in the form Q-'=k„Q~. Q, S,P IJ

and d are all odd under time reversal and even under in-
version. Taking into account also that the order parame-
ter of the A phase has the ambiguity
P'",P'2'~ —P"', —P' ', l~l, d —+ —d, we conclude that
in each term d can only occur an even number of times.
Further, since we are interested only in the first-order gra-
dients, then

which by (16), is (46)
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From the physical interpretation and comparing with (38),
we have

U~&+ =&+
~ a, E,=Ek=—

(47)

=&+—'(z, E,=Ek= + a k

One can also verify this by direct substitution in (14).
Note that the texture leads to E»&Ek, and so a noncon-

stant spin, as we shall see.
Our wave packet is constructed by superpositions of the

solutions in (46). The width of the k values must satisfy
bk a».a so that the size of the wave packet is much
smaller than the texture. That the wave packet is passing
the origin at t =0 allows us to choose f„„f„„gk„g „,
Ak, and Bk to be nearly constant at the average value p of
k (on a scale of a).

We shall evaluate directly (dldt)(S) ~, p, by (43) we
shall need (S) ~, p to zeroth order in a. For example,

(S)
I
~=p= g AkB -(f ~ f„e + +

k', k"
'(k "~—k' ~) r

gk ~gk
"~e )+"

In these terms we need k' —k "+a=0, respectively. To
zeroth order in a, we can use [see (45), (20a)]

(S"), p
——C 1+ ze '~ +cc.

(&~+e~)

Similarly

(48a)

(S~), = iC 1—— , e ' +c.c.
(E~+e~)

(48b)

We can verify that (S'), whose explicit expression we
shall not need, is constant. Using the same technique and
(47), we get

E'p

dt ' fi E(S") ~, p
————uFa pC 1 — (1+e '~)+c.c. ,

, -~p *
gk'gk' E 2 ~k~~k~ '

k+ek

and factor out the integral C=gkAk Bkfk,f«(using the

approximate constancy of the factors) to get

(S~)= d~(Q'„p„)(d XS)',
dt AEpep

and we conclude, by comparison with (43),

(S') = ' d'(p„Q'„)(dXS)'. (50)
dt %Epee

We must have aq bq ————0 as (dXQk)(d. S), Qk XS are
nonzero. We may rewrite this as

dt
(S') = —a)d[d (Qq XS)],

and interpret the result as follows: the spin is "precess-
ing" around the same axis Qz as that of d as we move
along the quasiparticle trajectory (along p), at a rate speci-
fied by (50), while only its component parallel to d can
change.

(41) and (50) is our final A-phase result. Note that
(S) &const. In the B phase the result is of the same
form as (50) with d replaced by d(p) [also in (42)]: only
the "texture" of d(p) for the wave vector p will be
relevant, as a consideration of Eq. (38) will show.

IV. TRANSPORT OF ENERGY ACROSS PHASE
BOUNDARY

A. Theory

d;„=A,(z)d;"„+~(z)d;„,

where

(51)

A(z)+~(z) = 1,

It has already been pointed out in the Introduction that
for excitations incident on the boundary, the variation of
the order parameter leads to Andreev reflection, an effect
discovered by Andreev in studying the normal-
metal —superconductor boundary. This additional reflec-
tion brings about a Kapitza resistance of the phase boun-
dary. We shall do our calculation in the absence of a
magnetic field. We believe that the magnetic field neces-
sary for the experiment (see below) will not qualitatively
affect our results provided it is not strong enough to cause
appreciable distortion of the phases. Kaul and Kleinert5
(abbreviated hereafter as KK) assumed an order parame-
ter for the 3He A Bphase bounda-ry of the form (z is per-
pendicular to boundary and points from A to B)

y l

dt
(S~) ~, p

———u~a pC 1—

(49a)

( —1+e '~)+c.c.

and d;&,d;z are the order parameters of the uniform 2
and B phases, respectively, as described after (17). By
minimizing the energy in the Ginzburg-Landau region,
they find that

A,(z) =—1 —tanh
1 z
2 R(T)

(52)

(48) can be substituted to get
2

(S")= d"(Q„'p„)(dX S)',
fiE~e~

where R(T)=1.267$'(T), g(T)=/pl(1 —T/T, )'~ is the
temperature-dependent coherence length, and if we define

@e—iP j(1)+i j(2) (53)
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then —EAUFn

and

(1)
d;R;p ——P„ (54a)

gnf -. a =0,
L flUF n' —E

r

(56)

(54b)

The orientation for these vectors are shown in Fig. 1 for
the case P'"=z. We shall assume below that the phase
factors are chosen so that d;z is real.

We shall be mainly interested in the transport of heat
across the phase boundary. For the region 1 —T/T, «1,
then the mean free path (-10 " cm) would be the same
order as R(T) [if (1 —T/T, )=10 ]. This means that a
quasiparticle incident on the boundary has a high proba-
bility of interacting with the condensate or other quasi-
particles. Hence the resistance of the boundary itself is
nothing different from that of a slab of a normal He
fluid of thickness -Ro(T).

For more interesting properties, we therefore turn to the
low-temperature limit. This also allows us to regard the
condensate inert, except that it sets up the "potential" in
which our quasiparticles move. Though the argument of
KK would not be true in this case as
R ( T) =R (0)= 1.267/0, we shall simply assume that
(51)—(54) gives the correct order parameter.

To determine the transmission coefficient of excitations
incident on the boundary, in principle we have to integrate
the Eq. (14), with (D))& determined by (17) and (51).
However, we observe a number of simplifications of the
problem. Since we are interested in excitations of wave
vector close to kF and EF »Az, we can write the excita-
tion wave as, with n the unit vector along the incident
direction,

(55)

where g, and g will be expected to be slowly varying, com-
ikFn r

pared with e, since the kinetic energies ek of interest
are at most —hz and the deviation of the wave-
propagation direction is small. (14) can then be approxi-
mated by leaving out terms of order b /Ez or smaller,

A

where, since we shall be interested only in excitations near
kFn

the Fermi surface, we have approximated b,"by b
This is still four coupled first-order complex differen-

tial equations. We can further simplify this by using the
fact that the incident and transmitted waves are both
along +n in our approximation. We note that, for the A

phase, if we choose our spin axis perpendicular to d, then

D, is diagonal and (14) would decompose into two sets:
in this case we have equal spin pairing (ESP)," and f„g,
do not couple with f„g„and vise versa. For the 8 phase
and a given n, then the vector" 8;&n&=n" exists in
which case we have ESP for spin axes perpendicular to
n . ' Thus if we choose a new set of axes x„y„and z,
for the spin directions, where the subscripts s remind us
that these are axes for the spin, with z, (n) given by

z, (n) d=X n

+~(z)bit(+(1 n, )' +in—, ) . (58)

Note b, +&6", i.e., the intermediate states are nonunitary.
This leads to the possibility of a spin flux resulting from a
temperature difference across the boundary, an effect
which, however, will not be examined in the present pa-
per.

To solve (56), we shall make use of the translational in-
variance parallel to the boundary to reduce it to a one-
dimensional differential equation. We let

t

p(r . . 2 Z) (z)
iqtn)) r iqi")(zl" z

g(r) Z2(z) (59)

=(d Xn) (57)

then (56) decomposes into two independent sets, each of
the same form as itself, with new b," replaced by scalars

b, + for the spin S, („-)~0, and g', g the appropriate scalar
S

components. We shall not use separate symbols to distin-
guish these from the previous matrices. Note that z, (n)
depends on n, and our decomposition only holds for order
parameters of the form (51) so that there exists a constant,
common ESP z, (n) axis, though i(, +~=1 is not necessary.
Not:e also it is vital that n=const (approximately) for
both incident and transmitted waves.

With this choice, one can show that (Appendix B)

b.+(z) =A(z)6, „( n„+i—n, )

X

g (2)

A
=Z
-(i)

where n(( denotes n=n —z(z n). (56) then becomes (we
shall drop k in E" and ek whenever no confusion will
arise)

FIG. 1. Orientations of the order-parameter vectors of the
He A-B phase boundary.

UF Plz'l az

gnf

Zi(z)
~ a Z(.)

='
—UFn —E 2

L Bz

The plane-wave solution of (60) when 6" is uniform is
of the form
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Zi(z)

Z, (z)
=G'

E+e
e ' +62 2E+e

(61)

and the solutions are as shown in (61). We shall call the
corresponding coefficients A, B,C instead of G. Since we
have a first-order differential equation (60), ' the wave
functions Z1,Z2 are continuous across the boundaries.
Define

where v1vq can be determined by substituting this back to
(50) and identifying the vector q. We find EVgZ

e
B &VIZB

=q.n =vn»
Avy

wh'ere v= vt or v2. Thus if n, & 0, v&
——

~

v
~= (E

~

b"
~

)'~ (e & 0) refers to a particle propagating
towards +z (q n & 0), whereas v2 ———

~

v
~

(e & 0) is a hole
propagating towards —z (q.n&0); if n, &0, then
vz ——+

~

v
~

(e&0) is a hole propagating towards +z, and
v, = —

~

v
~

(e & 0) is a particle propagating towards —z.
Before we discuss (60) with b, given by KK, we make a

detour and solve it analytically for the following "piece-
wise-constant gap" model:

1f z & —gp/2

d;„= —,
' (d;~+d;„) if

~

z
~

& g'p/2 (62)

lf z &gp/2 .

%"e shall denote these three regions by A, C, and 8,
respectively. In each region the gap hz ~B~ ~c~ are constant

MBz=
~B —tv&z

e
E+eB

—l VgZ
e

and similar matrices for A and C. The continuity equa-
tions give

81—1 —1
/PlVQ g' /2AIC g' /2AIB g' /2

IBi I' Sa

[Ag f~ S„a,=p

and hence

(63)

We can extract the transmission coefficients easily from
this equation. For a particle incident from the A phase,
n, &0 and B2 ——0. The transmission coefficient, being de-
fined as (jq ) T/( jt )I (where we have neglected the j2 which
is of order b /ez smaller), is

SgSBSC

(1 p~pc)(1 pcp—a)e —+(pc pa )(pa p—c)e— (64)

where pq =b,z /(E+ez ), Sz =1—
~ p~ ~, etc. For a hole

incident from the A phase (n, &0) then a similar argu-
ment leads to

l

b, /ez, the transmitted flux of excitations incident from A
to B of a particular spin is (since n, & 0 for particles and
n, & for holes)

) w, [' s„~,=p

dQ e
dj+ ——de %(0)uFn, f(E)T+, — (66)

T is given explicitly as in (64) except for the new~'s and
S's. Thus T+(n) for particles are the same as T+( —n)
for holes (as b, +" —b, +). Similarly, o——ne can show that,
for given E, n, and spin, the T values are the same for ex-
citations incident from the B phase. ' The + signs here
denote whether 6+ is used. It has the physical meaning
that the z, component of spin (defined in Sec. II) for the
particles involved (

~ g ~
&

~
ri

~

) has expectation values

&&0, while the holes involved (
~ g ~

&
~ g ~

) would have

expectation values ~ 0.
For the KK order parameter (58), we integrate (60) nu-

merically. T is found from (63) and (65). We find that
the properties of the transmission coefficients just men-
tioned also hold. '

After obtaining the relevant transmission coefficients, it
is easy to obtain the transport properties. If we denote by
X(e) the density of states for the normal fluid at quasi-
particle or quasihole energy e, then, since the group velo-
city of the excitations if uF(e/E)n to lowest order in

where T is the relevant transmission coefficient, f(E) is
the Fermi distribution function, given by

f(E)=
e +1

(P ' =k~ T, T is temperature) and we have assumed
particle-hole symmetry and replaced N (e) by X (0). The
net flux of quasiparticle or hole energy from A to B can-
cels exactly with its backward counterpart: thus no net
flow of energy exists when the two phases have the same
temperature, an expected result.

However, when a temperature difference of b T exists,
the energy flux is given by

dII E /kgT e~8'= AT de
& 4' (e&E+1)2

XÃ(0)uz
~
n,

~
(T++T )

(67)
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FIG. 2. Resistance of the 'He A-8 phase boundary for unit—h~/k~ T
area multiplied by e plotted against k~T/6&. Solid
line, KK order parameter; dashed line, piecewise-constant
model.

where the & sign indicates that the integral is confined to
directions of n pointing from A to B (using the properties
of T mentioned). The evaluation of the integral can be
made more efficient by noting that the gap b," is indepen-
dent of the sign of n~ Sinc.e we have also assumed
particle-hole symmetry and replaced X(e) by $(0), parti-
cles and holes contribute an equal amount. Also by the
symmetry' T+ (n„,n~, n, ) = T+ ( n„, —n~—,n, ), the T+
contributes equally. The Kapitza resistance of the phase
boundary is given by

hT
AB (68)

where A is the area.
The results for. both the piecewise-constant model (62)

and the KK order parameter [(51), (52)] are given in Fig.—Ph~
2; where we have plotted AR~ae versus k&T/hti.
Note that R~B varies roughly exponentially with tempera-
ture.

B. Experimental feasibility

Here we consider a practical way of measuring the
resistance calculated in the Sec. IV A. We shall in partic-
ular show that an experimental setup similar to that used

by Osheroff and Cross for surface-tension measurements
is favorable. This arrangement is schematically as shown
in Fig. 3(a), with the "circuit diagram" for heat flow in
Fig. 3(b). We shall almost exclusively consider the case
that the pressure is the melting pressure without further
warning.

I.et us consider the particular example in which the
middle Cu plate 8' l2-pm thick, is drilled with about
150 40-pm-diam holes. A small temperature gradient
causes the A and 8 phases to exist in separate compart-
ments, with the phase boundary just at the holes. The
ends of the set up are sinters S which allow cooling and
temperature measurement. Since we are just examining
the experimental feasibility we ignore complications like

RAS R
RAB

Re Res

FIG. 3. Schematic diagram for a feasible set up for measur-
ing the A-8 boundary resistance (a) and its "circuit diagram"
for heat flow (b).

the bulging of the phase boundary and possible effects of
textures on the boundary due to the proximity to the
walls. The resistance of the wall separating the two
phases Rz is dominated by the Kapitza resistance be-
tween the Cu plate and the superfluid. To estimate this,
we use the Kapitza resistance Rx of sintered Cu with
He-8 in the millikelvin region, ' AR~ T= 10

m K W ', where A is the actual area of the sinter. We
shall assume this to be true also for the Cu plate, which
has an area of order A —1 cm . Thus the resistance Rii
has order 10' K/W. We shall see that this is much larger
than the RzB involved in the experimental situations in
mind, and hence we can assume that the wall is practical-
ly an "open circuit. "

The resistance of the bulk B phase is already treated
theoretically by Pethick et al. ' As T~O, the thermal
conductivity E roughly obeys AT=6. 9 erg/seccm, and
assuming the 8-phase dimension is 1&&1 cm, we give a
resistance of order 1X 10 K/W in the millikelvin region.
For the A phase we shall only give a very rough order-of-
magnitude estimate. Let us assume K-K(T, )X(T/T, ),
for both K=K~~,Ei, a=a~~, ai, where

~~
and l indicates

conduction parallel and perpendicular to the 1 vector, and
K(T, ) is the value at T„which is given by (the normal-
state value) K(T, )T, =10.7 erg/seccm Thus .except
for the ( T/T, ) factor, the resistance would be the same
order as that of B phase. Now a~~ and ai are likely to be
around —2 to —1 and 0 to 1, respectively (Refs. 20 and
21). Thus the resistance of A phase is about (at most a
few times higher than) that of B phase. The bulk phases
are in series with the sinter, and assuming a 10-g sinter of
70-nm Ag powder, the resistance Riis is of order 1.7 X 10
K/W in the millikelvin region. ' Hence we need the resis-
tance R~~ to be Rzz ) 1.7X10 K/W so that an experi-
ment is at all possible. We can easily estimate that at
k~T=O. lb~, 0.125~,0.155~, Rz~ for our arrangement
(area of A Bsurface =2X10-cm ) is about 5.5X10,
1.1X10, 2.2X10 K/W, respectively, for the KK order
parameter. Thus for T & 0.12kB -0.21T, R~B dom-
inates and hence is measurable. Note that we still have
RzB «R~, as claimed.

We have implicitly assumed that the mean free path of
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the quasiparticle, k, is much shorter than the sample size,
so that we can use the concept of bulk heat conductivity
K. For the 8 phase, Pethick et al. ' estimate
A, =(0.2 pm)e, and is about 0.44, 0.8, and 0.06 cm
at k~ T=0.15&,0.125&,0.155&. Thus at 0.126&, the
previous argument applies. At T(0. 1 X hg -0.17T„
however, the bulk heat conductivity is meaningless. We
need to reconsider then the resistance of the bulk phases.
Let us for simplicity consider the opposite limit A. »1
cm. In this case the ballistics of Greaves and Leggett ap-
plies in the bulk phase. Clearly for the 8 phase the resis-
tance is practically zero, as the excitations are never
texturally reflected. For the A phase, we actually need to
know the texture to make an estimate. However, we can
easily obtain an upper bound for the resistance by refer-
ring to the work of Greaves and Leggett: In their texture
IIA, where all the excitations must have at least A~ to
pass through, the resistance is estimated to be (0.15)
(T/T, )e " ~ cm KW ', or about 2.6&(10 KW ' for
our sample at kpT=O. leap (hz ——V1.32hz). In our case
the "resistance of A phase" would be much lower, as the
texture will generally allow some "easier" paths for the
excitations. The important point here is that it still would
not dominate the Rq~ contribution.

We note that we have also implicitly assumed that the
resistance Rzz is dominated by quasiparticle and hole
transport. One may worry about whether the contribution
by the collective modes would appreciably affect our cal-
culation of Rq~. To give an upper bound for the contri-
bution to the energy transfer, we assume that all collective
modes propagate without hindrance across the phase
boundary. We use the radiation formula for the power
transfer per unit area (m /60)(kp/c A' )T; this gives a
transfer of at most (~ /15)(kp/c A )T AT when a tem-
perature difference b, T exists, where c is the velocity of
the mode concerned. Even for spin waves (lowest c), at
melting pressure and k~T-0. 1b,~ we estimate a resis-
tance for unit area of —10 Kcm /W, which is much
larger than that of quasiparticles ( —10 Kcm /W). Thus
the heat conduction is mainly by the quasiparticle or
quasiholes, and the contribution from collective modes are
negligible.

Lastly, we worry about the heat leak RI. We do not
have a very reliable estimate of it. However, in view of
the heat-flow experiment by Johnson et al, if we assume
that all the (magnetic) temperature differences (-0.5 mK)
are due to the heat leak (estimated to be 0.73X10
erg/sec) we obtain Rl —10 K/W &&Rzz at
kp T=0.126,p which is as required for a feasible experi-
ment.

We should remark that though we have given our esti-
mates all at the melting pressure, there is practically no
difficulty in doing the experiment at a slightly lower pres-
sure, provided we can achieve the necessary low tempera-
ture for Rzz to dominate and a sufficiently large magnet-
ic field for stabilization of the A phase.

Thus we can conclude that we have a possible experi-
mental setup for measuring our predicted Kapitza resis-
tance of the phase boundary, the experimental conditions
are T(0.21T, and magnetic field of-several kilogcauss,
which is possible with present cryogenics.
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APPENDIX A

In this appendix we "prove" that the spin of a quasipar-
ticle is S= f (f crf g ter

—*g) using the more conventional
way of taking expectation values. The spin of the quasi-
particle is defined by subtracting the ground-state expec-
tation value from the

I
C&~ ) value

&» —= f,(&+i
I

@'~ ptp I
c'i& —&+0

I
0-'~-ptp

I
+0&) .

To evaluate this, we insert 1 —g I
4 )(@ I, where

is a complete set of states.
I
@0)(4o

I

+
I
@i&&@~

I
gi~es the t«ms (note &4'1

I VI @i&
= ( &50

I Q I
C&0) =0)

a ~ap p
—ga~apg p

(the equality follows by observing that g o*g is real). For
a state

I
C )&

I
@0), such that (4&

I 1(pI 4&)+0, then
we must be annihilating a particle from the condensate
other than the one in

I
@,). Then there must exist a cor-

responding state
I
@,), corresponding to annihilating

the "same particle" from the condensate in
I
40), so that

& @m
I fp I

@& & =
& @m

I fp I
@o&+0(1/N), wh«e N is the

(approximate) number of particles in the system. Thus
these states do not contribute significantly to (S). This
completes the proof.

The same procedure can be used to justify our expres-
sions for the number density, number current, and spin
current of the excitation by using the field operators

l4 ~4 (~P W )—
and

p~4p (~P ) p4p]—

respectively.

APPENDIX 8
Here we provide some useful geometric information

about the order parameter of the A-8 phase boundary and
calculate the 6+ defined in text. The boundary conditions
are already given in (54). In the A phase, the dipole ener-

gy is minimized by d =1 ( d = —1 corresponds just to
choosing P'",P' ' in the opposite directions), while in the
8 phase, we have R;&——R;&(co,O) where O=cos '( —~).~(}}

We shall first consider the case P&
——z (54b) as shown

in Fig. 1. R;z then rotates y to z. Thus we see that m
must be of the form
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(cosp)x+( I/v 2)(sinp)y+ (1/V 2)(sinp)z .

Now sin8= v 15/4 (the other sign corresponds to choos-
ing an opposite r0). Hence

v15
Rlp 4 ~l ~p 4 ~&p+ ~&@&~& 4

I

using (81). The gap matrix, with spin in new coordinates
and momentum still in old coordinates, is therefore, for
the A phase, as d=y„g'"=z, P' '=x,

i 0
b, ~ =b,„O . (z+ix) n,

The conditions y"=d"=z are then Ryx =Ryy =0, Ryz = 1

and hence cosp=v'3/5, sinp=+V2/5. The R matrices
are

while for the 8 phase

(1 n,—')'/ +in, 0

1

2
+v 3/2 0

0

+v 3/2

0
1

2 0

respectively. .

Now we choose the new spin axes as described in the
text, which we shall always distinguish by subscripts s.
Since(n );=R;„n„,z, (n)=dXn =yXn implies

0 —(1 n,—)'/ +in,
Note both hz, Az are diagonalized as claimed. The
"gaps" are then, as a function of z, given as in (58).

For the second possibility in (51b), we choose then
d"=P"'= —z, P' '= —x, so 1=y. Then new spin system
is still chosen with z, (n)=(d Xn), y, =y. Then now
Ry z Ryz & . The matri ces R are

r

+ ~3/2 0
z, (n) =(R,pnp, O, R„pnq)—/v L

where L =(R„&n&) +(R,zn&) . We choose y, =y, which
is always possible as shown in the text. Hence

so

1

2 0
(83)

x, (n) =( R„zn—&,0, R,&n&—)/~L

The matrix T, , which rotates from xyz to x,y,z, is
IJg &

Tp ~=pg v, Thus

i 0
4g ——b, g 0 . ( —z —tx).n,

& 1/2(1 n, ) —in, —
(84)

R; „n„=T; JRJ„n„

= ( —[1 (Ry~n—p ) ] /, Rypnq, O)

=(—(1—n, )'/, n„O) (82)

—(1 n, ) —in, —2 i/z

Thus except for an overall negative sign, the present b, ~ is
just the previous 6+. As far as heat transport (and other
transport independent of spin directions) is concerned, the
results are identical.
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