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ac losses in type-II superconductors in parallel magnetic fields
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A general critical-state theory, which includes the effects of both flux-line cutting and flux pin-

ning, is used for calculating hysteretic losses in type-II superconductors subjected to an oscillating
magnetic field oriented at an arbitrary angle with respect to a bias field, both fields being parallel to
the surface. Analytic expressions for the ac losses are obtained for the case that the amplitude of
the oscillating field is small compared with the magnitude of the bias field. These expressions
reduce to the known ones in two limits: the collinear case, when only flux-pinning losses are
present, and the perpendicular case, when only flux-cutting losses are present. A comparison with
the experimental results of LeBlanc and Lorrain is made.

I. INTRODUCTION

The hysteretic response of a type-II-superconducting
slab subjected to a parallel applied magnetic field that
varies in both magnitude and direction is remarkably
complex, as has been demonstrated in a series of experi-
ments by I.eblanc and co-workers. ' An interesting ex-
ample of this is the behavior of a superconducting disk ro-
tating relative to a fixed parallel applied magnetic
field this corresponds to the case of a stationary su-
perconductor subjected to a parallel applied field that
varies in direction but not in magnitude. To explain the
resulting behavior has required the development of a gen-
eral critical-state theory, which includes not only the ef-
fects of flux pinning, as in the usual critical-state theory,
but also the effects of flux-line cutting.

I.eBlanc and co-workers also have carried out experi-
ments in which the applied magnetic field varies in both
magnitude and direction. They examined two magnetic
regimes: the common collinear regime, in which an ac
field is applied parallel to a dc bias field, and the noncol
linear regime, in which both an ac field and a dc bias field
are applied parallel to a superconducting slab, but with
the ac field at an arbitrary angle relative to the dc field.
Although the usual critical-state theory can be used to
derive expressions for the ac losses in the collinear regime,
new equations and new physics must be added to calculate
and understand the losses in the noncollinear regime.

In this paper we apply our general critical-state theory
to calculate the hysteretic losses of a type-II superconduc-
tor in the noncollinear regime. The theory makes use of
two fundamental material-dependent quantities: J,i, the
transverse critical current density at the threshold of de-

pinning, and J,~~,
the longitudinal critical current density

at the threshold of flux-line cutting. Both J,i and J,
~~

de-
pend upon the magnitude of the local magnetic induction
8 and the absolute temperature T. To obtain analytic ex-
pressions for the physical quantities of interest, e.g., elec-
tric fields, current densities, and losses per cycle, we as-
sume here that the amplitude of the ac field is sufficiently
small that J,z and J,

~~
do not change significantly over

the cycle. We derive the desired expressions for the ac

losses in Sec. II. In Sec. III we apply these expressions to
the experiments of Ref. 4, and in Sec. IV we summarize
our results and discuss needed extensions of the theory.

II. THEORY

We consider first a semi-infinite, high-tc, irreversible
type-II superconductor with surface at x=0, to which is
applied a dc bias field Bp=XBp aiid aii ac field b (t) of
amplitude bp&&Bp af, ail arbitrary angle y (0&y&m/2)
with respect to Bo. The net externally applied magnetic
induction is B,(t) =Bo+b, (t), as sketched in Fig. 1.

It is convenient to write the magnetic induction inside
the specimen (x ~0) as B=Ba, where 8 =

~

B
~

is its

0

I
/

B~s

/
/

/
/

/

FICx. 1. Sketch of the fields applied parallel to the surface. A
dc bias field Bo is applied in the z direction, and an ac field 1, is
applied parallel to the y-z plane at an angle y with respect to
Bo. To lowest order in bo, the magnitude B,=BO+b, cosy of
the net applied field oscillates between So+bo cosy, and the an-
gle a, =b, siny/Bo between the net field and the z axis oscillates
-between +bo siny/Bo.
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magnitude and n its direction,

a=ysino, +zcosu .

We also write the current density J and the electric field
E in terms of their components parallel and perpendicular
to 8; i.e., J=Jiia+ JtP and E=Eiia+EzP, where
P=a Xx. We assume that it is a good approximation to
take B=p,oH inside the superconductor, and we ignore
any surface-barrier or surface-pinning effects. Using
Ampere's law, J=VXH (neglecting the displacement
current) and Faraday's law, we obtain

a(x)"
{bo/Bo} sin y

(ba/Bo} siin

(ba/Bo) sin g

and

Bcx
JI~

——po B
x

Jg = —po x

aa aa

(2)

(4)

- {bo/Bo) sing

B(x) )(
Bo + bo cos

Ba+ ba cos

(b)

/ Jii i J,ii(8),
which can be written, using Eq. (2), as

(7)

Bcx + k, i((8), (8)

aa oa
ax at 'i ax

The general critical-state model ' states that metastable
stationary distributions of 8, in which Et ——0, are always
such that Jz obeys

i Ji i
&J,t(8) .

Similarly, metastable stationary distributions of a, in
which E~I ——0, are always such that J~t obeys

80

Bo+ ba cos y

Bo- bo cas y Bmin{X)
t

Xp

FIG. 2. Sketch of (a) extremal field-angle profiles a,„and
a;„and the a, -increasing and a, -decreasing profiles a, and a„
vs x, calculated from

~

aa/ax
~

=k, ~i, (b) extremal field-
magnitude profiles B,„and B;„and the B,-increasing and
B,-decreasing profiles B, and B„vs x, calculated from

[ M/ax
(
=poJ,&.

where

k,
,
i(8)—=p~, ii(8)/8 . where J,z J,t(Bp) and k——,~i

——k, ~i(Bp). The depths within
which 8 and a change during each cycle are

We assume the material has been through many cycles,
so that it possesses a diamagnetic profile near the surface.
The magnitude and direction of the external 8 field are,
to first order in b, (see Fig. 1),

8, =Bo+b, cosy

x~ =b p cosy //J, pJ, ~

x, =bp siny/ppJ, ii,

(15)

a, =b, siny/Bp . (10)

B,„(x)=Bc+bp cosy —ppJ, &x,

8
&

(x) =Bp —bp cosy+/tpJ&tx (12)

The 8 and cx profiles are linear in x to lowest order in b, .
Figure 2 shows the extremal B and o. profiles,

respectively. Note that xz may be larger than, equal to, or
smaller than x„depending upon the values of y, J,z, and
J,ii. Also shown in Fig. 2 are 8 and a profiles for the
b, -increasing ( t ) and b, -decreasing (l) cases.

The ac loss per unit area per cycle 8" is given by the
time integral over the entire cycle of the Poynting vector,

W,' =pp '(t)dtx E(O, t)X[Bp+b, (t)] . (17)

Integrating Faraday's law from the surface to a point xo
sufficiently deep in the superconductor that E(xp, t) =0,
we obtain

a,„(x)=(b, /8, ) siny —k, i,x,
a;„(x)= (bp/Bp) siny+keiix —

i (14)

xXE(O, t)= f dx

Defining

(18)
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and

b(x, t) =B(x,t) —Bp (19) and b, -decreasing half-cycles by T and l, respectively, and
defining

4'(t)= f, dxb(x, t),
we obtain

(20)
b II~' = ( @',—@', ) (y siny +z cosy ), (22)

we obtain, after integrating by parts and changing vari-
ables,

W,
' =pp ' fdtb, (t) CI'(t),

dt
(21)

where we have made use of the periodicity of @'(t) in
time. Denoting values corresponding to the b, -increasing

I

bo
W", =po ' f db, b@'. (23)

Because we desire an expression for W. valid to order b03

we need to compute A4' only to order b p. In this approx-
imation Eq. (20) yields

X X X X

@',=yBp f dx a (x)+ f dx a,„(x) +z f dx[8 (x) Bp]+—f dx[8,„(x) Bp]—

4P cII 4IJ ci

where we have used

bp —b,
Xc I = Sing

8 c II

(25)

bp —b
Xp I = COSQ

2P ci

Similarly,

y
~ +z ~ (ha+ 2boba bo) (27—)

4IJ cI I

4P ci

such that from Eq. (22)

3
S111 1' COS p (bz b2)

2poJcII 2pofci
(28)

The resulting loss per unit area per cycle from Eq. (23) is

3
'

3
)

2 0 siIl p cos p
0

3P0 c
I ~

cl
(29)

2bp'
8'~ = 8'~p ——

3PPci
(30)

When y =m/2, on the other hand, there is no change in
8, to first order in bp, and all the losses are. associated

An alternative derivation using the instantaneous power
loss per unit volume, E.J=E~IJ~~+EzJz, reveals that the
first term on the right-hand side of Eq. (29) arises from
flux-line-cutting losses and the second term arises from
flux-pinning losses. Thus, 8 can be expressed as

W,
' = JY,', + W,'&, where W,'„ the flux-line-cutting contri-

bution, depends upon J,II, and W,'z, the flux-pinning con-
tribution, depends upon J,q.

When y =0 we have the common ac-loss configuration
in which no flux-line cutting occurs and the losses result
from flux transport across the array of pinning centers.
Equation (29) then reduces to the familiar result

with flux-line cutting, which changes a but not 8 during
the cycle. Equation (29) then reduces to the result derived
in Refs. 5 and 6,

2bp
8~ =S;c=

3pojcI
I

(31)

The above results give the loss per unit area per cycle
for a semi-infinite superconductor or at one surface of a
superconducting slab whose thickness is more than twice
as large as xz and x, [Eqs. (15) and (16)]. We consider
next the loss per cycle for a finite slab with surfaces at
x=0 and x =X =2x . In this case, the magnitude and
direction of the external field are still given by Eqs. (9)
and (10), but since two surfaces are now exposed to the
changing field, Eq. (17) is the ac loss per unit area per cy-
cle per surface. Equations (15) and (16) are still valid, but
now we must allow for the possibility that x, or xz can be
larger than x~, the half-thickness of the slab. If x, &x~
the upper limit x, in Eq. (24) must be replaced by x
and the upper or lower limit x„must be replaced by
min(x„, x ), the smaller of x„and x . Similarly, if
xz &x~ the upper limit xz in Eq. (24) must be replaced by
x~, and xz, must be replaced by min(xz„x ). These re-
placements are required by the conditions that (a) 8 is
symmetric with respect to the midpoint of the slab and (b)
E(x, t) =0.

To treat the case of a slab of finite thickness, we define
two quantities in analogy with Eqs. (15) and (16):

bp) =PpfciX ICOS} (32)

bpc —I 0 cIIXm /SInl' . (33)

The size of bo relative to bo~ aIld bp determines the de-
gree of penetration of the changing 8 and a profiles.
When bp (bp& and xz (x~, the changing 8 profile
penetrates only part way to the slab's midplane; when
b p & b&&z, full penetration of the changing 8 profile occurs.
Similarly, when b p & b 0, and x, &x, the changing a pro-
file penetrates only part way to the slab's midplane; when
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bo & bp„ full penetration of the changing u profile occurs.
The ac loss per cycle per unit area of one surface ob-

tained from Eqs. (23) and (24), is

2bp sin p 2bp& cos p
Wc =

~ + 2 (3bo 2b—op) ~

3p+~ll 3ppJci
(34)

when bop & bo & boo~

2b~ sin y 2bp cos p8",=
q (3bp 2bp—,)+

3PpJcll 3PpJci

when bo, &bp &boy, and

2bp& sin y
(3bo —2bo )

3p'o cll

2bop cos p
(3b p

—
2bp~)

3PpJci

(35)

(36)

3bo

4Po
(37)

which occurs at a value of Bp =Bpc such that
bpc 3bp/4 or——

J,ll(Bo,
'

) = 3bo siny/4ppx

Similarly, the maximum value of JF„z is

3bp
cos y,

4Pp
(38)

when bp~bp, and bo+bpz.
Equations (29) and (34)—(36) predict the variation of

W' with y for fixed bo and Bo. When both x, &x and

xz &x~, the. y dependence of W,
' is simple, as seen from

Eq. (29); otherwise, the y dependence of bp, and bpz [Eqs.
(32) and (33)] leads to a more complex behavior.

The predicted ac loss per unit volume per cycle is

W„=W,'/xm ——W„,+ Wcp,

where 8'„c and W„z are the flux-line-cutting and flux-
pinning contributions, respectively. For fixed y and bp
.but varying Bo Jell(Bp) and J,i(Bp), it can be shown
from the above equations that the maximum value of W„,
ls

subjected to a parallel dc bias field Bp and a parallel ac
field b, (t) of amplitude bo (bp «Bp) and angle y relative
to Bp. Measurements of W should be made at y =0' to
determine J,i versus Bp from Eq. (29) or (34); measure-
ments then should be made at y=90' to determine J,

~I

versus Bp from Eq. (29) or (35). With Jcq(Bp) and
J,ll(Bo) so obtained, Eqs. (29) or (34)—(36) should be used
to calculate values of 8", to be compared with experiment
for arbitrary values of b p Bo and y.

The theory of Sec. II assumes that Jci and J, ll
depend

upon the magnitude but not the direction of Bp relative to
the sample. If specimen anisotropy renders this assump-
tion incorrect, the best experimental procedure is to hold
the direction of Bo fixed relative to the specimen while
the direction of b, is changed. If, on the other hand, the
direction of b, is held fixed relative to the specimen while
the direction of Bo is changed, the expected angular (y)
dependence of the changeover from flux-line-cutting-
dominated to flux-pinning-dominated behavior could well
be swamped by the effects of critical-current anisotropy.

Numerous ac-loss measurements have been reported us-
ing experimental geometries in which flux-line cutting
evidently was involved. '" However, because none of
these used a procedure like that suggested above, we
currently are unable to make a definitive comparison with
experiment. Nevertheless, in the following, we attempt to
apply the theory of Sec. II to some recent experiments in
which flux-line cutting evidently is the dominant loss
mechanism. As will be shown, however, there is relatively
poor agreement between theory and experiment, presum-
ably because of the complicating influence of critical
current anisotropy.

LaBlanc and Lorrain have reported measurements of
ac losses in a rectangular speciinen of Vp g4Tip 76 In their
experiments, in the notation of our paper, the amplitude
of b, was held constant (bo ——0.05 T) and its direction
was fixed relative to the specimen, while Bp varied in both
magnitude and direction. From the authors' y =90 data
[triangular data points in Fig. 1(a) of Ref. 4] we can infer
J,ll(Bo) vs Bp as follows. The theoretical loss per unit
volume per cycle at y =90' is

2bo
(40)

3pobo&

which occurs at a value of Bo——8p~'" such that
bpp 3bp/4 or——

Jcj (Bp& ) =3bp cos1 /4@ox~

for partial penetration of the a profile [Eq. (29)], and

2bo
W„, = (3bp 2bp,)—

3go
(41)

Thus, 8 „obeys

3bp8' &
4@p

(39)

with the equality holding only at a value of Bp that simul-
taneously maximizes both 8'„, and 8'„&, an unlikely case.

for full penetration of the a profile [Eq. (35)]. Using Eqs.
(33), (40), and (41) and the triangular data points of Fig.
1(a) of Ref. 4, combined with the assumption that J,ll(B)
is a monotonically decreasing function of 8, we infer the
values of J,

~I
vs 8 shown as the points in Fig. 3. This

behavior of J, ll
can be approximated over the range

0.5 &8 & 2.2 T by (solid curve, Fig. 3)

III. COMPARISON WITH EXPERIMENT J,ll(8) = (6.9 X 10 )8 (1 8/B, q) A/cm—(42)

The validity of the theoretically predicted y dependence
of 8" should be checked experimentally using the follow-
ing procedure. A superconducting slab or disk should be

where B is in T and B,2 ——4.0 T.
The data shown in Fig. 1 of Ref. 4 do not permit us to

make a corresponding inference about the values of J,i
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FIG. 3. Experimental values (solid circles) of J,ll
vs Bo from

data in Fig. 1(a), Ref. 4, using Eqs. (40) and (41). The solid
curve represents Eq. (42).

over the same range. The reported results in the collinear
regime (y=O') are restricted to a small range of Bo for
which bo and Bo are comparable in magnitude. We thus
assume that

J,i(B)=J,ii(B)/X, (43)

where X is a constant independent of 8, to calculate the
losses when 0 & y &90'.

Shown in Fig. 4 is a comparison of the calculated losses
per unit volume per cycle, obtained from Eqs. (29),
(34)—(36), (42), and (43) (solid curves), with the corre-
sponding measured losses given in Fig. 1(a) of Ref. 4
(points). For this comparison the value X=13 is used, as
suggested in Ref. 4. In the experiments the bias field was

Bo——(8(~+bb)', where bb ——0 T (triangles) or 0.1 T
(squares), the amplitude of the ac field was bo ——0.05 T,
and the angle y between the ac field and the net bias field
was y =tan '(8

~ ~

/bb ). For the triangles, y =90', and, for
the squares, y varied from 79' at B~~

——0.5 T to 87' at

Bll
——2.2 T. The lower solid curve corresponds to the tri-

angular data points (bb ——0 T). It fails to fit all the data
points only because the empirical equation for J,~~(8) [Eq.
(42)] had only two adjustable parameters; using more ad-
justable parameters would have permitted a better fit.
The upper solid curve in Fig. 4 corresponds to b~ ——0.1 T.
The:upward shift arises from the increased contribution
of flux-pinning losses as y decreases. The predicted in-
crease in the losses at smaller values of B~~, however, is
much less than the experimentally observed increase.
Since the losses at these values of B~~ are still primarily
flux-line-cutting losses, we believe that the discrepancy be-
tween the theoretical and experimental losses is due to
critical current anisotropy, i.e., dependence of J,ll

upon
the direction of Bo. Although for the triangular data
points the direction of Bo relative to the sample is the
same for all B~~, the direction of Bo for the squares differs
from the direction for the triangles by an angle
5=tan '(bb/8~~), which varies from 3' at B~~

——2.2 T to
11'at Bll ——0.5 T

In the limit of small amplitudes (bo «Bo), our general
critical-state theory yields profiles that are indistinguish-
able from those obtained using a double —critical-state
model like that of LeBlanc and Lorrain. In agreement
with Fig. 4, these authors already noted in Fig. 1(c) of
Ref. 4 that their experimental data were not well
described by a critical-angle gradient depending only upon
the magnitude of B. On the other hand, they obtained
good agreement [Fig. 1(d) of Ref. 4] by assuming that the
critical-angle gradient depended upon both the magnitude
and the direction of B. In the framework of our theory,
their approach corresponds to accounting for specimen
anisotropy; i.e., they chose an empirical expression that
modeled the dependence of J,

~~
upon both the magnitude

of B and its direction relative to an axis of symmetry in
the specimen.

IV. CONCLUSIONS

IO
E

1P
O
4J

4P CO

cn O

0.7
I I

B„(&)
l.7 2.2

FIG. 4. Experimental (points, Ref. 4) and theoretical (solid
curves) values of the losses per unit volume per cycle as calculat-
ed from Eqs. (29), (34)—(36), (42), and (43) with g = 13. The ac
field was bo=0.05 T and the dc field was Bo=(BI!+b~)
where (a) bq ——0 T (triangles and lower curve) and (b) bq ——0.1 T
(squares and upper curve).

In Sec. II of this paper we derived explicit expressions
for the small-amplitude ac losses occurring when the ac
field is at an arbitrary angle y relative to the dc bias field.
When y=0', these losses arise primarily from the trans-
port of vortices across the array of pinning centers, and
when y=—90' the losses arise primarily from flux-line-
cutting processes. We suggested in Sec. III an experimen-
tal procedure for a definitive test of the predicted angular
dependence. In the absence of experiments well suited for
such a test, we applied the theory to the experiments of
Lealanc and Lorrain, in which specimen anisotropy ap-
pears to have had an overriding influence.

Several extensions to the theory would be desirable. In
deriving the results of Sec. II we assumed that, for a given
magnitude of the bias field Bo, the critical current densi-
ties were constants, J,q(8 )oand ~J~( B).oThis corre-
sponds to the assumption that the B and a profiles during
the cycle can be represented by segments of straight lines.
This should be a good approximation for small ampli-
tudes (bo «Bo). For large ac amplitudes, however, the
magnitude of B inside the sample differs significantly
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from 8&& over the cycle, and local values of J,q(8) and
J,~~(B) should be used in computing the time-varying,
nonlinear 8 and a profiles. It therefore would be desir-
able to extend the theory to permit the calculation of the
ac losses for large ac amplitudes in which the 8 depen-
dence of J,t(8) and J,~~(8) during the cycle plays an im-
portant role. We have developed a numerical method for
such a purpose; we plan to present our results in a subse-
quent publication. It also would be desirable to account
for the difference between 8 and poH inside the supercon-

ductor and to include surface barriers against the entry or
exit of magnetic flux.
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