Tunneling $\alpha^2 F(\omega)$ as a function of composition in A15 V-Si

K. E. Kihlstrom^{*}

Naval Research Laboratory (Code 6634), Washington, D.C. 20375

(Received 25 March 1985)

High-quality A15 V-Si/SiO_x/Pb tunnel junctions on electron-beam codeposited V₃Si have been fabricated. $2\Delta/k_BT_c$ remains near the weak-coupled Bardeen-Cooper-Schrieffer limit as stoichiometry is approached. These junctions have satisfactory characteristics for taking derivative measurements. The data were reduced with use of the modified McMillan-Rowell proximity-gap inversion analysis developed by Arnold and Wolf to generate $\alpha^2 F(\omega)$ and related microscopic parameters. As T_c and the gap increase, there is no evidence of any qualitative change in the phonon spectra (such as phonon mode softening seen in other A15 compounds). Thus while in other A15 compounds such as Nb₃Ge, Nb₃Al, and Nb₃Sn there is evidence that mode softening is a major factor in the high transition temperatures, in V₃Si the high density of states at the Fermi surface (and not mode softening) is probably primarily responsible for the high T_c .

INTRODUCTION

Since the discovery of high- T_c superconductivity in V_3 Si (17 K) by Hardy and Hulm¹ in 1953, the record T_c has remained in the A15 family (now with Nb₃Ge, $T_c = 23$ K). What leads to the high T_c in the A15 compounds is an interesting question. As a result of early heat-capacity measurements on V_3Si (by Kunzler et al.²) and Nb₃Sn (by Vieland and Wicklund³), which showed high values for γ , the coefficient for electronic specific heat (62.8 and 52.4 mJ/mole K, respectively) and thus a high N(0), the density of states at the Fermi surface, it was believed that a peak in the density of states at the Fermi surface was responsible for the high T_c 's in the A15 compounds. Subsequent heat-capacity data began to confuse the picture. Nb_3Al (by Cort et al.⁴) and Nb_3Ge (by Stewart et al.⁵ and Kihlstrom et al.⁶) showed only moderate values for γ (36 mJ/mole K for Nb₃Al, 30.3–34.5 mJ/mole K for Nb₃Ge). Thus these higher- T_c materials showed lower values for N(0). Furthermore, more recent heat-capacity data taken by Stewart *et al.*⁷ on Nb₃Sn in an applied magnetic field (used to partially suppress the transition to better determine γ) gave a significantly lower value for $\gamma = 35$ mJ/mole K, although this number also is controversial. Recent heat-capacity measurements on V₃Si by Junod and Muller⁸ somewhat lowered the value of γ to 52.8 mJ/mole K but it still remains high. The same group revised upward the γ value for Nb₃Al (Ref. 9) to 44 mJ/mole K. The net result is that while V₃Si remains a high density-of-states material, many of the other high- T_c A15 compounds show significantly lower values for N(0), thus calling into question the idea that N(0) is the universal cause for high T_c in the A15 compounds.

Tunneling is the most direct probe of superconductivity. Because of advances in the formation of insulating silicon barriers (by Rudman and Beasley¹⁰) progress has been made in making tunnel junctions of sufficient quality to produce $\alpha^2 F(\omega)$, the electron-phonon spectral function, in several of the A15 compounds. The results from Nb₃Al (by Kwo and Geballe¹¹), Nb₃Sn (by Rudman and Beasley¹²), and Nb₃Ge (by Kihlstrom et al.^{6,13}) show the presence of phonon mode softening (a movement of the lowest-energy phonon peak to lower energies as the B element concentration increases toward stoichiometry (A_3B) . This results in increases in both λ , the electron-phonon coupling constant, and T_c . Thus a second explanation was proposed, that rather than a peak in the density of states at the Fermi surface, it is mode softening that causes the high T_c for the A15 compounds. But this then raises the question of V₃Si. While the other A15 compounds mentioned arguably have only moderate values for the density of states, V₃Si certainly does have a high value for N(0) (as does V₃Ga). Thus one would not think it would need mode softening to produce its high T_c . Whether there is mode softening in V₃Si was the prime question of this work.

A second issue is addressed. Conflicting results were obtained for the shape of $\alpha^2 F(\omega)$ for V₃Si by McKnight

FIG. 1. Model $\alpha^2 F(\omega)$ spectra for V₃Si. The solid curve $(\alpha^2 F_1)$ has λ equal to 1 and is proportional (by a constant factor) to the phonon density of states $G(\Omega)$ in V₃Si measured by Schweiss *et al.* (Ref. 16). Dotted curve $(\alpha^2 F_2)$ has $\lambda = 1.29$ and is equal to $\alpha^2 Ftr$ given in Ref. 14. This figure is from Ref. 15 by Mitrovic and Carbotte.

©1985 The American Physical Society

et al.¹⁴ (using far-infrared absorption) and Mitrović and Carbotte¹⁵ (who scaled the phonon density of states obtained by Schweiss et al.¹⁶ from neutron scattering). The discrepancy is shown in Fig. 1. Mitrović and Carbotte found, when they calculated thermodynamic properties using the scaled phonon spectra versus the $\alpha^2 F(\omega)$ from far-infrared absorption measurements, better agreement was obtained with the scaled phonon spectra. With tunneling we can measure $\alpha^2 F(\omega)$ more directly, thus we can hopefully resolve this question as well.

EXPERIMENTAL DETAILS

These samples were prepared at Stanford University by electron beam coevaporation (see Hammond¹⁷). Substrate temperature was $850 \,^{\circ}$ C, deposition rate 16.7 Å/s, and background pressure was 2×10^{-7} Torr. Sample thicknesses of both 700 and 2500 Å were prepared (both thicknesses gave excellent tunneling characteristics). The samples while still under vacuum were cooled to 100 $^{\circ}$ C and the barrier of 25–30 Å silicon (as per Ref. 10) was deposited. The samples were then removed from vacuum, and the silicon barrier was allowed to oxidize in air for 29 h. Then the junction area was defined by a dielectric (photoresist) and a Pb counterelectrode was deposited.

The current-voltage (I-V) curves for the three junctions studied are shown in Fig. 2. Leakage current at zero bias was negligible (of order 0.2%). Excess conductance below the sum gap was typically ~5%. The dV/dI data from the lowest-gap sample showed evidence of a slight proximity knee (which is difficult to see in the I-V). Later in the Arnold-Wolf proximity analysis, this resulted in larger values for the proximity parameters than in the other junctions. The differential conductance for these samples was measured in the superconducting state with the Pb electrode driven normal by an applied magnetic field (0.1 T), and then with the temperature elevated above T_c so that both electrodes were normal. The reduced tunneling

FIG. 2. Current-voltage characteristics for the three V-Si samples measured in this study.

density of states was then input into the modified McMillan-Rowell gap inversion analysis program (originally developed by McMillan and Rowell¹⁸ and modified by Arnold and Wolf¹⁹⁻²¹).

EXPERIMENTAL RESULTS

The ratio $2\Delta/k_BT_c$, a measure of the coupling strength, for these samples is shown in Table I. Unlike Nb-Ge, Nb-Al, or Nb-Sn (which become strong coupled),

Parameter	Sample 1	Sample 2	Sample 3
at. % Si	18.2	22.0	21.7
Thickness (Å)	2500	700	2500
$\Delta_{\text{V-Si}}$	1.39	2.10	2.41
T_c (gap open)	10.1	13.8	15.4
$2\Delta/k_BT_c$	3.2	3.5	3.6
L (excess conductance	6.0%	6.0%	4.5%
below sum gap in % of the			
above-gap conductance)			
Proximity parameter			
R	0.013	0.0135	0.015
d/L	0.220	0.125	0.150
λ	0.76 ± 0.15	$0.91 \pm .07$	$0.89 \pm .06$
μ^*	0.14 ± 0.07	$0.14 {\pm}.06$	$0.11 \pm .04$
$\langle \omega \rangle$	21.1 ± 1.7	20.9 ± 1.7	21.5 ± 0.6
$\omega_{ m log}$	19.2 ± 1.6	19.0 ± 1.5	19.9±0.6
$\langle \omega^2 \rangle$	512 ± 30	507 ±40	520 ±15
T_c (McMillan)	7.6	11.3	13.6
T_c (Allen and Dynes)	7.1	10.7	13.2

TABLE I. Physical parameters for various samples.

 $2\Delta/k_BT_c$ remains relatively constant at about the weakcoupled BCS limit of 3.5 as stoichiometry is approached. The gap is determined by the minimum of the derivative (dV/dI) through the gap region (after subtracting off the Pb gap). The T_c 's quoted are determined by measuring dV/dI at zero bias as a function of temperature to see where the gap opens up. Thus the T_c is measured on the same material that is being tunneled into. This constant value for coupling strength is in contrast to the results for Nb₃Al,¹¹ Nb₃Sn,¹² and Nb₃Ge,^{6,13} all of which showed a distinct change from weak coupling to strong coupling as stoichiometry was approached.

Figure 3 shows the $\alpha^2 F(\omega)$ traces for the three samples. The first thing to note is there is no evidence of mode softening in these samples. While there is some overall enhancement, there is no movement of the lowest-energy phonon peak as T_c and Si concentration increase. Correspondingly there is only a small change in the value for λ , the electron-phonon coupling constant from 0.76 to 0.91. This is in contrast to the results of Nb₃Al,¹¹ Nb₃Sn,¹² and Nb₃Ge,¹³ where mode softening was clearly present and the λ values increased from around 1.0 to ~1.7. The parameters from the $\alpha^2 F(\omega)$ measurements are given in Table I.

Comparing these results with those of McKnight et al.¹⁴ and Mitrović¹⁵ (see Fig. 1), there was no sign of the low-energy phonon peak at 7 meV as seen by McKnight et al. Some caution is necessary, however, because this is close enough to the gap that the data is difficult to obtain accurately (since dV/dI is changing rapidly). In fact, in the $\alpha^2 F(\omega)$ analysis we used a parabolic fit through this region. Nonetheless, the second derivative d^2V/dI^2 , which is used to determine peak positions and the cutoff value, showed no evidence of a peak in that region (although this also is changing rapidly and a small

FIG. 3. Electron-phonon spectral function $\alpha^2 F(\omega)$ for three V-Si samples.

peak could be washed out, we would expect to see that one is the size shown in McKnight *et al.*). On the other hand, the main peak is at about 21 meV, more in agreement with McKnight *et al.* (although a shoulder at about 27 meV may correspond to the main peak in Schweiss *et al.*¹⁶).

Recently Mitrović et $al.^{22-24}$ have discussed the possible effects of a varying density of states near the Fermi level on tunneling results. The conventional analysis (which is used in this paper) assumes a constant N(E). This has seemed reasonable since inhomogeneity (which is always present to some extent) will smear out the density of states and wipe out structure that would be in a pure material. On the other hand, it is difficult to know quantitatively whether this is entirely true. In particular, a test proposed by Mitrović and Perkowitz²⁴ to look at $\alpha^2 F(\omega)$ at energies above the cutoff was not possible because of the difficulty in having the program converge when the extra energies were included. Thus the question raised by Mitrović et al. will have to be answered separately from this work.

CONCLUSIONS

The main result seen from this work is the absence of mode softening in V_3 Si. In one sense this is not unexpected in that since V₃Si is a high density-of-states material, its high T_c can be explained by that alone, rather than needing mode softening as an explanation. This is in contrast to Nb₃Ge which has a significantly lower N(0) yet a higher T_c . Presumably if V₃Si showed mode softening as well, it would have a significantly higher T_c than Nb₃Ge. In another sense this is surprising in that it leads to the conclusion that there are two different mechanisms at work in the A15 compounds. It may be that vanadiumbased A15 compounds rely on a high density of states to produce their high T_c 's while niobium-based compounds, with only a moderate density of states, depend on mode softening to produce their high T_c 's. Otherwise the crucial element may be that the onset of a phase boundary in the metastable A15 compounds (i.e., Nb₃Al and Nb₃Ge) results in mode softening, thus the equilibrium A15 compounds would not show mode softening but the metastable A15's would. Nb₃Sn which does show mode softening yet is believed to be an equilibrium compound would seem to eliminate this, but results from Hellman *et al.*,²⁵ Maher *et al.*,²⁶ and Schiffman *et al.*²⁷ suggest Nb₃Sn is much more complicated than previously thought and probably is not an equilibrium compound in much of the range where tunneling was done.

The second main result is V-Si is a weak-coupled superconductor throughout its A15 range as seen both in the BCS limit values for $2\Delta/k_BT_c$ as well as the low values of λ of about 1. This is consistent with the lack of mode softening (which in Nb₃Ge, Nb₃Sn, and Nb₃Al produced a change from weak coupling to strong coupling as stoichiometry was approached). Finally, we were not able to support the finding of McKnight *et al* of a low-energy peak in V₃Si although we are in reasonable agreement with the rest of their spectrum. Finally, it should be noted that Klein *et al.*,²⁸ in 1978, found from band-structure calculations the remarkable result that Nb₃Ge ($T_c = 23$ K) had a low density of states, while V₃Si ($T_c = 17$ K) had a high density of states. They thus suggested that another mechanism, such as phonon softening, must be at work in Nb₃Ge. They appear to have been correct.

- *Present address: Department of Physics, Westmont College, 955 La Paz Road, Santa Barbara, CA 93108.
- ¹G. F. Hardy and J. K. Hulm, Phys. Rev. 87, 884 (1953); 93, 1004 (1954).
- ²J. E. Kunzler, J. P. Maita, H. J. Levinstein, and E. J. Ryder, Phys. Rev. **143**, 390 (1966).
- ³L. J. Vieland and A. W. Wicklund, Phys. Rev. 166, 424 (1968).
- ⁴B. Cort, G. R. Stewart, C. L. Snead, Jr., A. R. Sweedler, and S. Moehlecke, Phys. Rev. B 24, 3794 (1981).
- ⁵G. R. Stewart, L. R. Newkirk, and F. A. Valencia, Solid State Commun. 26, 417 (1978).
- ⁶K. E. Kihlstrom, D. Mael, and T. H. Geballe, Phys. Rev. B 29, 150 (1984).
- ⁷G. R. Stewart, B. Cort, and G. W. Webb, Phys. Rev. B 24, 3841 (1981).
- ⁸A. Junod and J. Muller, Solid State Commun. 36, 721 (1980).
- ⁹A. Junod, J. L. Jorda, M. Pelizzone, and J. Muller, Phys. Rev. B 29, 1189 (1984).
- ¹⁰D. A. Rudman and M. R. Beasley, Appl. Phys. Lett. 36, 1010 (1980).
- ¹¹J. Kwo and T. H. Geballe, Phys. Rev. B 23, 3230 (1981).
- ¹²D. A. Rudman and M. R. Beasley, Bull. Am. Phys. Soc. 26, 211 (1981); Phys. Rev. B 30, 2590 (1984).
- ¹³K. E. Kihlstrom and T. H. Geballe, Phys. Rev. B 24, 4101 (1981).
- ¹⁴S. W. McKnight, S. Perkowitz, D. B. Tanner, and L. R. Testardi, Phys. Rev. B 19, 5689 (1979).
- ¹⁵B. Mitrović and J. P. Carbotte, Phys. Rev. B 26, 1244 (1982).

ACKNOWLEDGMENTS

I would like to thank the Stanford University group for their hospitality and assistance, especially Simon Bending, Sergio Celashi, T. H. Geballe, R. H. Hammond, and Walter Lowe. Research support by the National Research Council is gratefully acknowledged.

- ¹⁶B. P. Schweiss, B. Renker, E. Schneider, and W. Reichardt, in Superconductivity in d- and f-Band Metals, edited by D. H. Douglass (Plenum, New York, 1976).
- ¹⁷For details on the *e*-beam evaporator, see R. H. Hammond, IEEE Trans. Magn. MAG-11, 201 (1975); J. Vac. Sci. Technol. 15, 382 (1978).
- ¹⁸W. L. McMillan and J. M. Rowell, in *Superconductivity*, edited by R. D. Parks (Dekker, New York, 1969), Vol. 1, p. 561.
- ¹⁹G. B. Arnold, Phys. Rev. B 18, 1076 (1978).
- ²⁰E. L. Wolf, J. Zasadzinski, J. W. Osmun, and G. B. Arnold, Solid State Commun. **31**, 321 (1979).
- ²¹E. L. Wolf, J. Zasadzinski, G. B. Arnold, D. F. Moore, J. M. Rowell, and M. R. Beasley, Phys. Rev. B 22, 1214 (1980).
- ²²B. Mitrović and J. P. Carbotte, Solid State Commun. 40, 249 (1981).
- ²³B. Mitrović and J. P. Carbotte, Can. J. Phys. **61**, 784 (1983).
- ²⁴B. Mitrović and S. Perkowitz, Phys. Rev. B 30, 6749 (1984).
- ²⁵F. Hellman, D. A. Rudman, R. H. Hammond, and T. H. Geballe, Bull. Am. Phys. Soc. 28, 261 (1983); F. Hellman and T. H. Geballe, *ibid.* 29, 385 (1984).
- ²⁶D. M. Maher, M. Hong, M. B. Ellington, D. L. Stubbs, T. H. Geballe, and G. W. Hull, Jr., Bull. Am. Phys. Soc. 28, 261 (1983).
- ²⁷R. A. Schiffman and D. M. Bailey, High Temp. Sci. 15, 165 (1982).
- ²⁸B. M. Klein, L. L. Boyer, D. A. Papaconstantopoulos, and L. F. Mattheiss, Phys. Rev. B 18, 6411 (1978).