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Collective modes versus Stoner excitations
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The energy-dependent spin-flip cross section due to exchange collisions of electrons with the
spin-polarized electrons of an itinerant-electron ferromagnet is expressed in terms of a two-particle
correlation function. For 1arge momentum of the incident electron it is proportional to the trans-
verse spin susceptibility and it is dominated by collective modes (magnons). For incident momentum

comparable to the Fermi momentum of the ferromagnetic electrons a model calculation within the
random-phase approximation shows that the cross section has a consistent contribution from spin-

flip Stoner excitations even for very small momentum transfer. The Stoner part of the spectrum is

found to be essentially free of Coulomb-interaction effects. Recent experimental results are dis-

cussed and compared with the predictions of the model. The possibility of measuring magnon

dispersions by this technique is pointed out.

I. INTRODUCTION

Recent experiments by Hopster, Raue, and Clauberg'
and by Kirschner, Rebenstorff, and Ibach have demon-
strated the possibility of studying the elementary excita-
tions of an itinerant ferromagnet by means of a spin-
polarized electron-energy-loss spectroscopy. Two comple-
mentary experiments have been performed. In the first
one (Ref. 1) a beam of unpolarized electrons impinges on
a ferromagnetic glass. The scattered beam is found to be
polarized parallel to the direction of the polarization in
the sample and the polarization, measured as a function
of the energy loss, shows a peak around a value corre-
sponding to the ferromagnetic exchange splitting. In the
second experiment (Ref. 2) a beam of spin-polarized elec-
trons impinges on a ferromagnetic crystal and the total
scattered intensity for small momentum transfer is mea-
sured as a function of the energy loss. This measurement
is performed with a definite initial polarization parallel or
antiparallel to the polarization of the sample. The quanti-
ty of interest, the so-called asymmetry, i.e., the normal-
ized difference between the scattered intensities for paral-
lel and antiparallel initial polarization is generally nega-
tive and has, again, a peak around the value of the ex-
change splitting. The results of both experiments can be
qualitatively understood in terms of spin-flipping ex-
change collisions. An example of such a process is shown
in Fig. 1. An incident electron, which is polarized oppo-
site to the polarization in the sample falls in a minority-
spin state (&) while a majority-spin electron (t) is released
from the system and emerges as the final electron. To an
observer who only considers the initial and final states of
the beam' it appears as if a spin-flip event has taken
place—although, in reality, no spin has been flipped.
Moreover, a particle-hole pair carrying spin S,= —h has
been excited in the system. This simple picture is now
sufficient to explain the results of Refs. 1 and 2. In the
first case it is clear that if the incident electron has spin l,

an exchange collision of the kind described above can easi-

ly occur, but if the incident electron has spin t this be-

comes very unlikely, since the majority-spin band has very
few empty states to accommodate the incoming electron.
As a consequence, the final beam is expected to contain
more spin-t electrons (from exchange collisions) than
spin-l electrons. This gives a polarization parallel to the
polarization of the sample. Similarly, in the second case,
the total scattered intensity for incident spin-J, electrons
will be larger than for incident spin-g electrons, due to the
contribution of exchange collisions to the former. This
results in a negative. asymmetry. In both cases, the spin-
flip process is accompanied by the creation of a particle-
hole pair across the Stoner gap having a characteristic en-

ergy in the neighborhood of the exchange splitting. This
explains the presence of a peak in the energy-loss spectra
around the value of the exchange splitting.

It is characteristic of the above discussion that it does
not require anything more complicated than the bare
Coulomb interaction between the external electron and
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FIG. 1. Schematic density-of-states diagram of a spin-flip ex-

change collision. The incoming electron (Eo, ) falls in the
minority band. An electron from the majority band emerges as
the outgoing one (Eft).
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one of the internal electrons plus the phase-space restric-
tions imposed by the exclusion principle. The internal
electrons, however, are also interacting via the Coulomb
force and must therefore display collective behavior: in
particular, besides the simple Stoner-pair excitations, they
can sustain transverse spin oscillations (magnons) and
multipair excitations. A complete theory of the
exchange-collision process should account for the ex-
istence of such excitations.

In this paper we shall be mainly concerned with the
question of the relative weight of the collective (magnon)
and single-pair (Stoner) contributions to the spin-flip in-
elastic cross section. In the case of neutron scattering,
another technique which probes the magnetic excitations
of a ferromagnet, the inelastic cross section at low tem-
perature and small momentum transfer is dominated by
magnons. The small Stoner contribution as calculated
from simple models of the transverse spin susceptibility
also shows an interesting interaction effect in that the po-
sition of its peak is shifted to lower frequency relative to
the noninteracting Stoner peak. Returning to the
electron-energy-loss experiments we may wonder whether
the situation with regards to these spin-carrying excita-
tions is the same as in neutron scattering experiments or
there are some differences due to the peculiar character of
the exchange process. In order to answer this question we
introduce the general formalism required to treat the ex-
change collisions in a many-body system. The differential
cross section (in Born approximation) for a spin-flip col-
lision of the kind described above can be expressed as the
imaginary part of a retarded response function
X~(po, q,E), where o and po are the spin and momentum
of the incident electron, q and E are the momentum and
energy transfers. In the limit of very large initial momen-
tum 7 becomes proportional to the transverse spin-spin
response function, the constant of proportionality being
the square of the Fourier-transformed Coulomb interac-
tion V (po). Thus, in this limit, the electron-energy-loss
cross section is expected to have the same shape as the
neutron cross section, differing from it only for the abso-
lute magnitude which decreases in the former case with
the square of the primary energy. For smaller values of
the incident momentum we can evaluate Xo within the
random-phase approximation (RPA) of Izuyama, Kim,
and Kubo (IKK) using, as those authors, a model Hamil-
tonian with a repulsive 5-function interaction of strength
U between electrons of antiparallel spin. We find the fol-
lowing: (i) The relative contribution of Stoner pairs to the
total cross section is considerably larger than in the ease
of neutron scattering. In particular, it does not tend'to
zero for q~0 and becomes larger than the magnon con-
tribution for sufficiently small po. (ii) The shape of the
Stoner excitation spectrum is similar to that of the corre-
sponding noninteracting spectrum: in particular, its peak
does not show any tendency to move toward smaller ener-
gy. Thus, we can conclude that the electronic spin-flip
cross section is much less influenced by many-body effects
than the corresponding neutron cross section. Neverthe-
less, an important many-body effect is present, since the
incoming electron can, in the course of the exchange pro-
cess, excite a magnon. This effect gives rise to a low-

energy peak in the cross section which, we suggest, should
be observable in an experiment with sufficiently large
momentum transfer.

Using our model evaluation of X we have also attempt-
ed to reproduce the shapes of the experimental curves of
Refs. 1 and 2 for the polarization and the asymmetry,
respectively. In the first ease the scattering is from a
glassy sample which diffuses the electrons at all angles.
This experiment is clearly not q resolved. Integrating the
model cross section over a reasonable range of momentum
transfers we find a curve which is in qualitative agree-
ment with the experimental one, having a peak at the
value of the exchange splitting and decreasing at higher
values of the energy loss. The most relevant discrepancy
is the presence of a magnon peak at low energy, which is
absent in the experimental curve, possibly for lack of reso-
lution. In the second case the experiment is q resolved
(only excitations with q -0 are probed) and we find that it
is not possible, within our mode1, to reproduce the broad
distribution of the asymmetry around the exchange split-
ting. As noted by the authors of Ref. 2 this width can be
interpreted as a measure of the nonuniformity of the ex-
change splitting over the Brillouin zone. Our model as-
sumes rigidly split bands and therefore gives a much nar-
rower distribution of asymmetry for q-0. It is interest-
ing to notice that by allowing a certain amount of nonuni-
formity in the exchange splitting in the analysis of the
first experiment one would also find a broader curve in
better agreement with the experimental curve.

This paper is organized as follows: In Sec. II we intro-
duce the formalism appropriate to calculate the inelastic
cross section for exchange collisions. In Sec. III we
present a model evaluation, within the RPA, of the
response function which gives the inelastic cross section.
In Sec. IV we discuss the many-body effects in our model,
compare the electron cross section with the neutron cross
section for the same kind of excitations and discuss the re-
lation of our results to the experiments of Refs. 1 and 2.

II. FORMALISM

In this section we introduce the formalism appropriate
to calculate the energy-loss cross section for exchange col-
lisions. Let p;(ri, o 1',r2, o2', . . . , rN, oN ) and pf(ri, o 1,
r2, o2, . . . , rN, oN ) represent the wave functions of the N
electron system before and after the scattering. These are
functions of the coordinates and the spins (r's and o's) of
a11 the electrons and must be antisymmetric with respect
to the interchange of any two electrons:
(r;,o;)~~(r cri), ii&j The tota. l wave function of the
%-electron system plus the incident electron before the
scattering can be taken as

(r o rl ~1 r2 ~2 'rN ~N)
l Po'I'

q i(rlt+1tr2t+2t trNt+N)e ~i(O) t

where r and o refer to the incident electron, whose
momentum is po and whose spin state is described by the
wave function P;(o ). Equation (1) is clearly not antisym-
metric under interchange of the "external" electron with
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an "internal" one and, in fact, need not be so, since the
external electron is definitely distinguishable, at this stage,
from any internal electron. A complete antisymmetriza-
tion of the wave function is, however, essential to describe

the state of the system after the collision, since, in this
case, it is not possible to say whether the emerging elec-
tron is the same one which left the electron source or a
"new" one emitted from the metal. Thus, we write

I

ip .r
Pf( 0 I 0I 2 02 ' ' ¹0N) 4'f( I 0I 2 02 ~ rN 0N)~ Xf(&)

~

~

~ ~
~ ~

~ ~
~

~(i)( pfFf (ri ITI ~ ~ ~ r' —I &' —} r & r'+I 0'+I rN 0N)e Af(0'),
i=1

where pf and Xf are the momentum and the spin wave
function of the emerging electron and Pf' denotes the
function obtained from pI after replacing the arguments
r;,0; by r, cr. It is easy to verify that the wave function of
Eq. (2) is totally antisymmetric under interchange of two
electrons. Its second term, which is normally disregarded
in the theory of high-energy scattering as a minor correc-
tion to the main direct term, is now exactly the one which
accounts for the possibility of spin flip.

The interaction between the incident electron and the
system is taken to be a simple longitudinal Coulomb in-
teraction:

HI gu (——
~

r —r;
~
),

u(r)=e Ir .

Within the first Born approximation the scattering ampli-
tude is given by the matrix element of HI between the ini-
tial and final states represented by the wave functions (1)
and (2).

The matrix element of HI between the initial wave
function f; and the first term of the final wave function

gf gives the direct scattering amplitude:

N

Apo, ~o p, cr XXi(0)Xf(0) Iq g gdrkdf(rl~0I r2 02 ~ ~ ~ rN 0N)pqp (Iri&I r2 02 ~ ~ ~ rN 0N)
~ pe+ k 1

(4)

whe«q =pa —pf is the momentum transfer, &, =4~e Iq is the Fourier transform of.the Coulomb potential, and

N iq.e;
&q= Xe

is the usual density-fluctuation operator. If X; and Xf are eigenstates of the z component of the spin, namely
X;(0)=5, and Xf(ir)=5, the sum over 0 in Eq. (4) gives a factor 5 . Thus, direct scattering preserves the spin

of the incident electron, which is not surprising for a spin-independent interaction. Next we consider the effect of the
remaining N terms in Pf. They give an exchange scattering amplitude equal to'

N N

Ap, pf f
———g g g X;(o)Xf'(cr;)I dr+ drze ' e 'p;(ri, oi, r2, 02, . . . , rN, aN)

l = 1 J = I cT)~o'2). . . , cT~, o' K=1

Xu((r —r, ~)

The terms with i =j on the right-hand side of Eq. (5) can
be written as

1 drdr;e e 'u(~r —r; ()
i po.r —i pf -r,.

~
ri, cri, r2, 02, . . . , rN, 0N )

1
IT2 Q~ (rI)f~ (r2) f~ (rN)

~

vacuum) .

X(f (@,( )y (;)
~

'), (6) The connection between the abstract state
~
S) and its

wave function P, is naturally

where /II(r) is the usual field operator which destroys an
electron of spin cr at position r in the N-electron system.
In order to derive Eq. (6) we have taken for X; and Xf
eigenstates of 0, with eigenvalues 00,0f and we have used
the well-known expression for the simultaneous eigen-
states of positions and spins of the system:

pg (ri, CT1,12,CT2', . . . , IN, 0'N )

(rl 01 r2 IT2 ~ ~ ~ rN' 0N
~

S & . (@

A similar treatment can be applied to the terms with i&j
in Eq. (5) with the result
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f drdr;dr& e e f 'U(
~

r —rj
~
)&f

~ f (r)f(ri, )P(rj, )g' (r) ~i & .
l,J, CTJ

The integral over r; in this expression gives the annihila-
tion operator for the state of the final electron acting on
the initial state of the system. This is essentially zero,
since the state of the emerging electron is well above the
Fermi energy of the system. Thus, the last line of Eq. (6)
gives the exchange-scattering amplitude in Born approxi-
mation. From now on we shall only concentrate on the

,spin-flip processes in which the direct term [Eq. (4)] is ab-
sent. We introduce the operator

N

p, (po q)= —g f drdr;e ' eG'OcT

by summing the scattering probability over the final states
and averaging over the initial states. This gives

dE„„——,„, Z X e '1&f IP.'..-..(Po, q) I
~ & I

'
dEdQ 4~2&4 po Z, f

x&(E —Ef+E;),

where P= 1/ke T, E is the energy loss, Q is the solid an-
gle, Z is the canonical partition function, and Ef and E;
are the exact energies of the states

~ f & and
~
i &. A more

convenient way of writing Eq. (11) is

XU(
~

r —r;
~ )g,(r)f (r;) (10)

(pf ——po —q). The double-differential cross section for an
exchange collision with spin flip (crf ———pro) is obtained

i

I &f I p'-, , —.,(po q) I
i & I

'
X (po, q, E)=— eZ,.f E —Ef+E;+i D

d2 2 p 1 ImX, (po q E)
dEdQ 4.~~g4 po w

where X,(po, q, E) is the linear-response function:

I &f I p, , —,(po q) I
~ & I

'
E+Ef—E +tO

(12)

(13)

which is also equal to the analytic continuation
(co +E+iri) —of the time-ordered autocorrelation spec-
trum:

X (po, q, iso„)= —f d~e "
& T,tp (po, q, ~)

Xp, ,(po, q) j &,
(14)

where co„=2m.n/P is a bosonic Matsubara frequency and
.

& denotes the thermal and quantum average. Equa-
tions (10)—(14) constitute a complete set of equations for
the calculation of the spin-flip cross section from a gen-
eral inhomogeneous electron system. Equation (14) is
amenable to a systematic expansion in Feynman dia-
graIQS.

In the rest of this paper we shall only consider the very
simple case of exchange scattering from a homogeneous
spin-polarized electron gas. Such a model is probably not
an unreasonable idealization for the behavior of the elec-
trons in a very narrow d band in an itinerant ferromagnet.
The field operator tfo(r) can be expanded in this case as

III. EVALUATION OF THE SPIN-FLIP
CROSS SECTION IN THE RPA

In order to evaluate the response function X (po, q,E)
we follow the standard RPA procedure, already used by
Izuyama, Kim, and Kubo and many others to calculate
the spin-spin correlation functions of a spin-polarized

K+ q/2, oo K —Jq/2, 0f pf ~0f

ining the exchange-collision diagram of an electron on a
system of noninteracting electrons. Such a diagram is
shown in Fig. 2. As a result of the collision the system
remains with an electron excited in k+q/2, oo (above the
Fermi surface) and a hole left in k —q/2, of. This
particle-hole state is created by the two operators in Eq.
(16). The matrix element for this process is exactly
V(po —k —q/2)

g elk r&
V(po-K-q/2)

Inserting this expansion in Eq. (10) and performing the
various integrations, it is straightforward to show that

p...,(po q) =g V(po —1 —q/2)~~+, n, ~ ~~-,n, ,k

(16)

This expression could have been written at once by exam-

Ppzop

FIG. 2. The simplest contribution to the spin-flip scattering
amplitude. Interactions between the "internal" electrons are not
included.
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electron gas. First of all, we assume a simplified Hamil-
tonian for the system:

H g Epc2p oup o + U g c2p+q fop fc2p q $Qp $ (17)
p, o'

where ap
——R p /2m& —p (p is the chemical potential and

mz is the effective mass of the band). This is a version of
the Hubbard model for band ferromagnetism, which is be-
lieved to be appropriate to describe the main features of

electron correlations in narrow energy bands, leading to
itinerant-electron magnetism.

As a second step we write the equation of motion for
the operator e (po, k, q), defined as

eo(po & q) = &(PO —&—q/2)& k —q/2, —cr~k+q/2, cr (18)

It is a matter of simple algebraic manipulations to prove
that

a~ e.(p„},q) = —[e.(po, },q), H]

(Ek+q/2 Ek —q/2)e (po & q) —U&(po —&—q/2)

~(X~( k q/2, cr p+q', cr —p, —o k+q'+q/2, cr k —q/2+q', cr p—q', o—p, o k~q/2, cr ~

p~q

(19)

The random-phase approximation consists of replacing the pairs of operators a a in the last term of Eq. (19) by their
average values (a "c2 & in all possible ways. Thus one finds

ecr(POr ~~ q ) ( ak+q/2, o ak —q/2, o)ecr—(POr ~r q )
O'7

+(nk —q/2, cr +—k+q/2, cr)U+(pO ~ q/2) g ~k —q/2+q', cr k—+q/2+q', o'

q

where

&k, o =&k+ Un —o

(20)

(21)

is the single-particle energy for spin o. In this approximation, therefore, there is a rigid splitting between the spin-up
(majority) and spin-down (minority) bands, the magnitude of the splitting being equal to U(n, n, ). —

From Eq. (20) one can easily derive the equation of motion for the time-ordered autocorrelation function,

Xk, k', cr(r) = ( T.[e.(po & q;r)e.'(po &' q)] & (22)

This equation is

Xk, k', o( r) 5(+)Bk,k'(nk —q/2, —o nk+q/2, cr )[~(PO ~ 'q/ )] (ak+q/2, cr sk —q/2, o)Xk, kt, cr(r—)

+ I'(Po —} —q/2»(nk —q/2, — ~k+q/2, ) g ( T [&q -q/2, — «)&q+q/2, (r)e (Po } ' q)] & . (23)

Equation (23) now involves the correlation function

Xq k (r) = ( T [aq q/2 o(r)aq+q/2 o(r)eo(Po, k', q)] & . (24)

Taking the Fourier transform and summing over k and }t', one finds

X (poq,oico„)=—QXkk (iso„)=g . ' '
V(po —k —q/2)

k l M+ —Gk+ q/2, o +k —q/2, —o

r

X &(p,—} —q/2)+ U g X,",',.(; „)
k', q'

(25)

It remains to calculate pk. qXq"k (ico). The equation of motion for Xk'k (v) is very similar to Eq. (23), with the only
difference that a factor U (po —Ir —q/2) is removed from the right-hand side:

Xk, k', o(r) @'r)I (po It q/2)(&k q/2, o —&k+q/2, o )

(].) (&)
(Ek+q/2, cr Ek—q/2, o)X , ', k(k'—)o+rU(&k —q/2 —o nk+q/2 o) QXq

q
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This equation can be Fourier-transformed and summed
over k and k' to find:

{I)
( i ) X~ (p(), q, i &

&&
)

X)& i& ~(i()i») =-
k, k.

""' " 1+UX(0)(q, im„)
'

where we have introduced the notation

(26)

(i) ~
n k —q/2, —cr +k+q/2, cr

X '
(pp, q, ice„)=

~ ~n +&k—q/2, —cT k+q/2, cT

x [U(po —k —q/2)]' . (27)

U(p, —k —q/2) —=U(p, ),

Notice that X~ '(q, ice) is the transverse spin susceptibility
of the homogeneous noninteraeting electron gas and it is
obviously independent of po. Combining Eqs. (25)—(27)
we arrive at the final formula for the RPA response func-
tion for spin-flip exchange collisions:

U[XIT (po&q&i~»)]
Xcr(po&q&i~») Xa (PO&q& ~») (())1+UX (q, iso„)

(28)

The first term on the right-hand side of this expression
represents the free-electron contributions and the second
one the many-body corrections. In the limit of very large
momentum of the incident electron we ean make the ap-
proxixn ation

FIG. 3. Model of a uniformly polarized electron gas. The
spin-f and spin-g bands are parabolic with effective mass m~
and split by a constant amount equal to the Fermi energy.

modeled the main features of the d-electron subsystem in
an itinerant-electron ferromagnet, in particular, the strong
peaks in the density of states of spin- t and spin- & elec-
trons just below and above the Fermi energy, but, of
course, all the effects associated with the details of the
band structure have been 1ost.

We propose to study the relative importance of collec-
tive modes (magnons} and Stoner pair excitations in the
spin-flip cross section. We use Eq. (28) of the preceding
section with the definitions given in Eq. (27) and concen-
trate on the relevant case 0 = l, i.e., of an incident electron
with spin antiparallel to the polarization. The nonin-
teracting transverse susceptibility Xo,(q,E) is readily cal-
culated for the model at T =0 and it is

and X(p(),q, i co) reduces to

yz(
1+UX (q,iso)

(29)
Xo,(q, E)= f(kF mz(E—EF )/A q ———,q),m I 1

Sm'A' q

where

(30)

which is proportional to the RPA expression for the
transverse spin susceptibility of the interacting electron
gas. Equation (29) was taken by IKK as the staring point
for the theory of neutron scattering from ferromagnetic d
electrons. Thus, we see that, apart from the strong depen-
dence on priinary energy implied by the factor U (po), the
spin-flip cross section in electron scattering reduces to the
spin-flip cross section in neutron scattering at sufficiently
high energy. In particular, the excitation spectrum for
small momentum transfer should be dominated in this
limit by collective oscillations (magnons). As we shall see
in the following section, this is no longer the case when
the momentum of the incident electron becomes compa-
rable to the Fermi momentum.

IV. CALCULATIONS AND DISCUSSION

We have considered a very simple model consisting of
two rigidly split free-electron bands, the lower one for the
majority-spin orientation and the upper one for the
minority-spin orientation (see Fig. 3). The amount of
splitting is taken to be equal to the Fermi energy. At
T =0, therefore, .only the majority-spin band is occupied
and the interaction parameter U is equal to EF/n, where
n is the density of d electrons. The two bands are very
narrow, having an effective mass mz several times larger
than the bare electron mass. In this way we hope to have

g(1&,E)=2KE —(E —E )Ln (31)

E+(q)=EF+A qkF/mJ)+A q2/2m') . (32)

For q ~0 the energy of a Stoner pair tends to
E+(0)=EF, which is the energy required to flip a spin
without momentum transfer. From the small q expansion
of X', (q, E),

kF is the band Fermi momentum for spin-t electrons and
Lnz=lnz+i arg(z} is the complex logarithm. The imagi-
nary part of XI"(p(),q, E) and X', '(po, q, E) can also be
evaluated analytica11y at T =0 and their expressions are
given in the Appendix. From the imaginary parts the real
parts of these functions can then be evaluated numerically
using the Kramers-Kronig dispersion re1ations.

The general features of the excitation spectruin
ImX, (po, q,E) in the E,q plane are the same as those of
the transverse spin-fluctuation excitation spectrum, name-
ly there is a line of singularity (magnons) at low energy
corresponding to the zeros of the denominator in Eq. (28)
and a continuous distribution of Stoner-pair excitations
for E (q) &E &E+(q), where the kinematic boundaries
E+(q) are given by the formula
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nR q /2m~
X,(q,E)- +E E—p (E —E )2

Q2q 2 7gEF
+— +O(q ) as q~O,

5 m~ (E EF—)3
(33)

it is also easy to see that the magnon dispersion varies, at
small q, as fi q /2m with an effective mass m' equal to
5m~. Such a universal relation between the magnon mass
and the band mass should not be taken seriously, even
within our model, since it results from the special charac-
ter of the RPA calculation. A more detailed treatment of
correlations would lead to the replacement of U in Eq.
(28) by a q- and e-dependent function U(q, e) with dras-
tic consequences on the magnon dispersion. As an exam-
ple, we have considered the finite-range interaction for-
mula

U(q)= U

I+y(q/kF)
(34)

P?lg
~+ 5

Pl
(35)

so that the magnon energy is considerably enhanced in go-
ing from y=O to y= 1, reaching, in the latter case, a
maximum value of ——,

' of the Fermi energy at the max-
imum wave vector q, =0.5k+, beyond which it becomes
overdamped. In general, y can be regarded as an adjust-
able parameter to fit the observed magnon dispersion.

0.20—

0. 18—

0. 16—

0. 14—

~ 0.12—
LLI~ 0. 10-
LL]

0.08—

0.06—

0.04—

0.02—

'~
'~

'~

I ~J
0.0 0.2 0.4 0.6

q/KF
0.8 1.0

FICs. 4. Magnon dispersion for two values of y defined in Eq.
{34). The dashed line represents the q-dependent Stoner gap
E {q}ofEq. {32).

with y= l. This formula is suggested by the fact that in
the paramagnetic state U(q) should reduce to the usual
function I(q) which is used in microscopic theories of
the longitudinal spin susceptibility of the electron gas.
The latter can be well approximated by the form of Eq.
(34). Further evidence that Eq. (34) might give a good
representation of the transverse spin susceptibility has
been found by Lowde and Windsor' in the analysis of
neutron scattering experiments. In Fig. 4 we compare the
magnon dispersion for y=0 (RPA) and y= l. The mag-
non effective mass is now given by

, Since its actual value does not affect the qualitative
features of our discussion, we shall set y =0 in the follow-
ing.

We now turn to the interesting question of the relative
weight (integrated cross section) of magnons and Stoner
pairs. From Eq. (13) it is easy to see that

E ImX po, q, E

=
Z pe '&i

I [p, — (po q) p'. , —(po q)] I
& &

i,f
=(g (nk qq2 nq—+q~z ) I' (po —k —q/2) & .

k

(36)

This exact sum rule represents the generalization of a pre-
viously known result for the frequency integral of the
transverse spin susceptibility, which states the latter to be
equal to n, n„I—t is e. asy to prove that Eq. (36) is satis-
fied by our RPA response function since ImX~~'(po, q,E)
obviously satisfies it, while the second term of Eq. (28) de-
creases, for large E, as 1/E and, therefore (from the
dispersion relations), does not contribute to the zeroth-
moment sum rule. The right-hand side of Eq. (36) can be
easily evaluated for our model at T =0 with the result

+ 00——f dE 1m' (po, q, E)

kF —p 2k„p
ln +

p kg+ p p —kF

(37a)

~ =
I p.-ql =V o+q'-2p'q)'". (37b)

[X',"(po,q,E (q))]
[ax',"(q,E)/BE]

(38)

where E~(q) is the energy of the magnon. For large in-
cident momentum, po &~k~, and small momentum
transfer, q «kF, both the weights of Eqs. (37) and (38)
tend to the common value V (po)n, indicating that the in-
tegrated cross section is exhausted by magnons. This is a
well-known fact in the theory of neutron scattering from
ferromagnetic electrons. At larger q the weight of the
pairs increases and that of the magnon decreases so that
their sum is given by Eqs. (37). Beyond q, the weight of
the magnon becomes zero. This behavior is shown in the
lower part of Fig. 5 for pp=10ky'. Notice that the total

Since ImX (po, q, E)=0 for F. &0 when q is less than kz,
Eq. (37a) gives the value of the integrated cross section
(for T=0) as a function of po and of the momentum
transfer q. On the other hand, the contribution of the
magnons to the integrated cross section can be directly
calculated from Eq. (28) and it is

1 oo

dE lm&g(po~q~E) I magnetos
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6.0—
po =1.5 KF

where qTF is of the order of the Fermi momentum. With
this modification Eq. (37a) still holds provided that p is
redefined as

40-

3.0—
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3.0— &o =10 K
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FIG. 5. Integrated cross section ( T) and its magnon (M) and
Stoner (S) components as functions of q for momentum of the
incident electron po ——10k~ and po ——1.5k~. The screening wave
vector qTF is equal to 0.

4me

0 +O'TF
(39)

weight is almost constant as a function of q. In the upper
part of Fig. 5 we consider the case of incident momentum

po comparable to kz, go=1.5kF. There are two qualita-
tive differences with respect to the large-po limit. In the
first place the Stoner pairs now have a non-negligible
weight (about —', of the total ) even in the very-small-q
limit. In the second place the total weight is increased
and depends more strongly on the value of q. These
features are reinforced at smaller values of po,' for exam-
ple, at po ——1.1k+ the Stoner pairs exhaust, in the small-q
limit, about —', of the sum rule. The conclusion is clear;
electron-exchange collisions with primary momenta corn-
parable to the band Fermi momentum are an effective
probe of the Stoner-pair excitation spectrum for q —+0 and
thus of the Stoner gap itself. In contrast to this the neu-
tron scattering technique is mainly a probe for the mag-
nons. The two techniques are, in this respect, complernen-
tary to egch other.

An unpleasant feature of our RPA calculation is that
for po approaching kz it gives a divergent spectral
weight, as can be seen from Eqs. (37). The origin of this
divergence is in the lack of screening of the Coulomb po-
tential which puts too much weight on the region of phase
space where po —k —q/2 is minimum. The simplest way
to correct this defect is to replace the bare Coulomb in-
teraction by the Thomas-Fermi screened interaction

non-interacting
- ———interacting

po=1.5 KF, q =0.2 KF

0.8
LLl

CT—0.6
O

0.2

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

E/EF

FIG. 6. Differential cross section o(q, E) vs energy loss for
the interacting (dashed line) and noninteracting (solid line) sys-
tem. Both curves are normalized to have a maximum at 1. No-
tice the coincidence of the two peaks.

p =(po+qTF+q —2po'q) (40)

and the formulas for J"'(po, q, E) are essentially un-
changed apart from equally trivial modifications. We
have calculated the spectral weights at po ——1.5k+ for
qTF ——k~ and we find that the ratio between the magnon
and the Stoner contribution is approximately unchanged
from the case qTF ——0; only the total weight becomes
smaller and less dependent on q.

Another interesting feature of our calculation appears
when we consider the shape of the cross section versus en-
ergy loss in the Stoner-pair region. In Fig. 6 we have
plotted the corresponding curves for q =0.2kF,
po ——1.5k~ both in the noninteracting ( U=0) and in the
-interacting case. The angle between po and q is taken to
be constant and equal to cos '(q/2po) —an approxima-
tion which is justified because the energy loss is much
smaller than the incident energy. Since we are only in-
terested in the shape of the two curves we normalize both
of them to a maximum of 1, although in reality the nonin-
teracting curve has a maximum several times larger than
the interacting one. We find that the two curves are
indeed very similar; in particular, they both have a peak at
about E =Ez, which is the value of the exchange split-
ting. This situation should be contrasted with the corre-
sponding one in the case of neutron scattering. The in-
teracting spin-correlation spectrum in our model has a
peak at an energy about 10% smaller than the nonin-
teracting one, which has a peak at EF. The absence of
this "excitonic shift" effect gives further evidence that the
electron scattering technique actually probes the single-
particle properties of the system.

%'e conclude our discussion with some remarks about
the experimental results of Refs. 1 and 2. A quantitative
comparison between theory and experiment is clearly out
of question here, since it would require the knowledge of
both the spin-flip and the non-spin-flip contributions to
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q -=E/A' Uo«A'kF, (41)

where Uo is the'velocity of the incident electron. This is
the regime in which the experiment of Ref. 2 is per-
formed. One does not expect to see the magnon here,
since the corresponding energy loss would be too small.
On the other hand, using Eq. (41), one would expect a
very narrow asymmetry spectrum centered around the ex-
change splitting and with a width

AE/EF —2V~/Vo =—„—,

if we take Eo 10 eV, E~ 0.3 eV, a——nd m~=-30m (for
Ni). This is clearly in disagreement with the experimental
observation of a very broad asymmetry spectrum:
b,E/Ez-=2. A very reasonable explanation of this result
has already been proposed by the authors of Ref. 2 in
terms of the nonuniformity of the exchange splitting over
the Brillouin zone. Within our model this would amount
to having a k-dependent self-energy correction in Eq. (21).
Such a self-energy should come from band structure as
well as from many-body effects. Although we have not
yet made any quantitative attempt in this direction, it is
easy to see that it would indeed give a broadening of the
asymmetry spectrum as well as some amount of magnon
damping, following from the smearing of the kinematic
boundaries for the excitation of Stoner pairs. At larger
scattering angle one enters a different regime in which the
momentum transfer is decoupled from the energy transfer
and it is given by

the cross section within a realistic model of the band
structure. If, however, we limit ourselves to a considera-
tion of the energetic structure of the asymmetry and po-
larization spectra, we can assume, following Kirschner,
Rebenstorff, and Ibach, that they are essentially propor-
tional to the spin-flip cross section. This approximate re-
lationship is due to the fact that the nonflip contributions
for incoming electrons of spin T or & are weakly energy
dependent in a region around the Stoner gap and their
difference is small (see Ref. 2 for details). The constant of
proportionality remains, of course, undetermined. This
basic limitation should be borne in mind throughout the
following discussion. In an electron-energy-loss experi-
ment in which E is much smaller than the initial energy
Eo, there are two regimes of interest: the small-angle
regime, 8«E/2Eo, and the large-angle regime,
8&)E/2EO. In the small-angle regime the relation be-
tween momentum and energy transfer is

f

from that of the first experiment. The main difference is
due to the fact that the target material is now a ferromag
netic iron-based glass which does not exhibit sharp Bragg
reflections. The complete scattering process must there-
fore be pictured as a diffuse elastic reflection from the
sample combined with an inelastic process in which some
amount of momentum and energy is transferred to the
electrons in the sample. Thus, even if the experiment is
angle resolved, this does not imply that it is q resolved.
On the contrary, a wide range of inelastic momentum
transfers can contribute to the scattering in a given direc-
tion. It is clear that this spread in momentum will give
rise to a spread in energy. In order to reproduce the ex-
perimental curve, we integrate the cross section for angles
8 from 0' to 90'. In. other words we assume that the sur-
face reflects the beam uniformly in all directions and that
the inelastic scattering accounts for the amount of
momentum which is needed to bring the emerging elec-
tron to the direction of observation, which is normal to
the sample. The integral over angle is changed in an in-
tegral over momentum with the help of Eq. (42). Thus we
calculate

p Vg
cr(E)=f dq q ImX~(po, q,E)

~ s„„„ (43)

over the region of the Stoner pairs, where the angle be-
tween q and po is cos '(q/2@0) and we take the follow-
ing values of the parameters: Eo 45 eV, E——F-2.7 eV, ——
po ——1.3kF, mz ——10m, and Vp/Vp —15. In Fig. 7 we
show the results for the bare interaction model (qTF ——0).
The curve has considerable structure. At E=0.06EF,
where the magnon merges with the Stoner pairs, it has a
first extremely narrow peak; at E=EF equal to the ex-
change splitting it has a second and stronger peak; hence-
forth it decays with a width of about EF. Introducing the
screening (qTF ——kz) tends to round out the structure; in
particular, the Stoner peak at E =Ez becomes lower and

7

LLj

o 4-

q =-2po sin(8/2), (42) 3-

or q~p08 if 8 1. It is not difficult, in this regime, to
transfer momenta of the order of the Fermi momentum,
and we suggest that it should be possible, in a q-resolved
experiment, to observe the magnon peak, if the damping is
not too severe.

Finally, we come to the discussion of the energy-loss
experiment of Ref. 1. Here, the induced polarization as a
function of the energy loss rises rapidly at low energy, has
a maximum around the exchange splitting (-2.8 eV), and
then decreases slowly over a range of several electron
volts. The analysis of this result is substantially different

2-

E/EF

FIG. 7. Inelastic cross section integrated over angles as given
in Eq. (43) and discussed in the text. Open circles are taken
from Fig. 2 of Ref. 1 rescaled to give the same maximum at
E =EF.
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broader, but the qualitative behavior remains the same.
The Stoner structure in Fig. 7 is in reasonable agreement
with that of Fig. 2 of Ref. 1 (open circles) but somewhat
narrower. The first peak of Fig. 7, instead, has not been
observed, possibly because the resolution was not suffi-
ciently good.

If in Eq. (43) we had used, instead of the response func-
tion X, the transverse spin-spin correlation function ap-
propriate for neutron scattering, we would have found a
curve rising sharply at very low frequency reaching a
maximum in correspondence of the first peak and then
decreasing slowly, with no structure around E =EF.
Once more, it appears that neutron scattering is mainly a
probe for the collective behavior. Notice, finally, that in-
clusion of the nonuniformity of the exchange splitting in
the analysis of this experiment would lead to a broader
curve, in better agreement with the experimental one.
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APPENDIX: ANALYTIC EXPRESSIONS
FOR Imp"'(yo, q, s) AND Iong' '(po, q, s)

The imaginary part of the integral in Eq. (27), with
ico~E+ig, can be evaluated in an elementary way for
i =1 and 2. We first consider the case sr= L. We intro-
duce the kinematic boundaries

E+(q) =b, +2' qkF, /ms+A' q /2m'

E+ (q) =b, +2% qk»/mii fi q /2—mii,

where 6 is the exchange splitting equal to the difference
of the Fermi energies, E~, Ep, . P—erforming the integral
we find

2m e4——ImX' '(po, q, E)= I[F' '(k„„a,a, b) —F' '(ki, a, a,b)]B(E E(q))B(—E+(q) E)—
7T i' q

—[F'i'(k~„a', a', b') —F' '((k i )',a', a', b')]B(E E' (q))B—(E'+ (q) —E) I (A2a)

——ImX"'(p, q, E)

2
[E'"(k~„k,, ~,a, b)B(E E(q))B(E+(q)——E)—F'"(kF»(ki ),a', 'a, 'b) B( E E' (q))B(E—'+(q) —E)],

(A2b)

where

F' '(k, a, a, b)

—I(2a —b)(2k +b)
4a —b

1

(k4+bk'+a)'" (A3a)

and

k i ——
~ i

E —6+iri~qi/2mii i,
Aq

ko' —2kok i Vo
(A4b)

and

F'"(k i,kz, a,a, b)

2(ki+bki+a)'i +2k&+b
=ln

2(k', +bk', +a)'i'+2k', +b
(A3b)

ki —— (E —b —i' q /2m'),
fi q

ko+0 +2ko9'Ho+2k(V —2kok&Po

The quantities k&,a, b, e and their primed counterparts are
defined as follows:

a'=4ko(ki) +(a')

b =2a —4po(1 —po)

where po is the cosine of the angle between po and q, and
ko ——po. These formulas are valid for the case of a bare
Coulomb interaction. If a screened Thomas-Fermi in-
teraction is used as in Eq. (39), it is easy to see that the
above formulas are still valid, with the replacements

2CX~CE+ gyF
(A )

CX ~Q +gyp

a =4koki(1 —po}+a
b =2a —4ko(1 —po)

(A4a) (i)
Finally, the imaginary part of the functions X, (po, q,E)
are easily obtained from the above formulas by inter-
changing kz, with kz, and replacing 5 by —h.
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