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The effects of elastic and inelastic scattering on energy spectra of electrons reflected from solids
have been investigated theoretically. The aim was to evaluate the spectrum in the vicinity of the
elastic peak. Following Tougaard and Sigmund's approach [Phys. Rev. B 25, 4452 (1982)], the elas-

tic and inelastic scattering events are separated as independent when calculating the flux of reflected
electrons. The influence of elastic scattering is considered here in detail within the I'i approxima-
tion of the Boltzmann transport equation, and the inelastic scattering is described by the Landau
formula. A general expression for the energy spectrum as well as expressions for discrete and con-
tinuous energy spectra are derived. Comparisons are made with the continuous part of measured

spectra and a reasonable agreement is seen.

I. INTRODUCTION

The influence of elastic and inelastic scattering on the
energy spectra of electrons emitted from solids has recent-
ly been investigated' . with attention to Auger-electron
spectroscopy (AES) and x-ray photoelectron spectroscopy
(XPS), which, among other spectroscopies, are widely
used for the investigation of solid surfaces. Electron-
energy-loss spectroscopy (EELS) of solids is also widely
used for surface analysis, ' where one has a plane-
collimated source of electrons incident on the solid sur-
face and where one measures the energy spectrum of re-
flected electrons. Common for these spectroscopies is a
continuous background signal due to electrons which, on
their way out of the solid, have suffered inelastic scatter-
ing events.

In quantitative analysis' where peak areas are deter-
mined the direct energy spectrum X(E)dE is needed.
Thus, the background signal as a part of the spectrum
must be interpreted with the aim of determining line in-
tensities. Empirical methods exist ' for deconvoluting
the spectrum of backscattered electrons resulting from
bombarding the surface with monoenergetic electrons.

There exist several Monte Carlo simulations of the
backscattering (reflection) of electrons at high incident en-
ergies () 10 keV) (Ref. 13), but only a few at the lower en-
ergies&4» usually applied in EELS and AES. It is, how-
ever, not simple from the simulations to extract physical
constants describing the electron transport in a solid.

A theoretical description of the energy spectrum is
needed for (i) extracting physical constants describing the
electron transport in a solid, and (ii) for evaluation with
respect to determination of the absolute elemental compo-
sition as well as depth information.

In the present work the elastic and inelastic scattering
of incident, monoenergetic eleqtrons reflected from solids
is investigated theoretically with the aim of evaluating en-
ergy spectra. The region of primary energy to be
described by the present theory is typically 500—3000 eV.
The investigations are based upon theories of particle

transport in random media. " The transport of re-
flected electrons is treated here in a PI approxima-
tion, ' ' which gives a better description of the elastic
scattering than the diffusion approximation applied re-
cently in XPS theory. ' A similar treatment on photoelect-
rons (in XPS) in the PL approximation is in preparation.

II. GENERAL

The physical situation is sketched in Fig. 1, where an
incoming electron with energy Eo and direction Qo
penetrates the planar surface of a semi-infinite solid. The
electron has a certain probability of being backscattered
from the solid with a kinetic energy (E,dE) into a direc-
tion (Q, d Q). While moving in the solid, the electron
may undergo both inelastic and elastic scattering events,
the latter due to angular deflection on atoms, whereas in-
elastic scattering is due to electron-electron interactions
which cause only very small angular deflections in com-
parison to elastic scattering of electrons. ' Therefore, as
long as only small relative energy losses are considered,
the elastic and inelastic scattering events may be decou-
pled. ' Elastic scattering events cause backscattering, and
inelastic events are responsible for the energy loss of a
backscattered electron.

0 ~ Eo

FIG. 1. Reflection of incident electron. Geometry and nota-
tion.
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In order to account for angular deflections due to in-
elastic collisions, the elastic scattering cross section may
be modified by changing Z to Z(Z+1) in the case of
Coulomb scattering. However, at lower energies, which
are going to be considered here, it is not so simple, and the
cross section will therefore not be modified.

With a monodirectional and monoenergetic source of
primary electrons hitting the surface (x =0) of the solid,
one finds that the reflected electron flux J(E,Q}dE d Q
is given by'

J(E,Q) =f dR Q(EO, QO, x =0;R,Q)G(EO, R;E), (1)

when elastic and inelastic scattering events are separated.
Here,

Q(EO, Q0, x;R,Q)dR d Q

is the probability for an electron with primary energy Eo
and initial direction Qp to pass a plane at depth x in
direction (Q,d Q) after having traveled a path length
(R,dR) in the solid; G(EQ, R;E)dE is the probability that
the electron has energy (E,dE) after having traveled the
path length R. Equation (1) assumes the total energy loss
Ep —E to be small enough to allow one to ignore the
dependence of elastic scattering cross sections on electron
energy. ' This assumption is justified to the extent that
only the energy spectrum near the initial energy is
analyzed. '"

III. ELASTIC SCATTERING

This section serves to provide a reasonable estimate of
the path-length distribution Q(EO, Qo, x =0;R,Q) in Eq.
(1). For that purpose the electron transport is first con-
sidered in an infinite medium, and afterwards is confined
to a semi-infinite medium.

The motion of an electron in a homogeneous, random
medium is characterized by a distribution function
F(r,v, t)d r d v in position r and velocity v at time t
The electron is assumed to have the initial velocity vp at
time t =0 when it is at r =0, i.e.,

F(r,v, O) =5(r)5(v —vo), (2)

where 5 is the Dirac function.
The function F obeys Boltzmann's transport equation,

which is used here in the forward form,
r

—v. V F(r,v, t)

=N fd v'fuF(r, v, t)K(v, v') u'F(r, v', t)K—(v', v)]

Vfe assume planar geometry, ignore energy loss, and in-
tegrate over the azimuthal variable, which is justified
when the experimental data are from, e.g., a cylindrical
mirror energy analyzer (CMA); then (2) and (3) yield'

F(x,g, R )

and

cr F x,q, R —F x,g', R 4

F(x,q, R ) = g (2l+ 1)Ft(x,R )PI(g) .
l

Equation (6) inserted into (4) and (5) yields
8 8 8—(21+1) Ft —(1+ 1) Ft+ )

—I FI-
(6)

and

F,(x,o) = ,' 5(x )P, (g,—),

=(2l+1)XotFi(x,R ) (7)

where

~t ——f der[1 —Pt(cosg)] (9)

is the transport cross section of order 1, and p is the
scattering angle in the laboratory system.

Equation (7) represents an infinite set of coupled, par-
tial differential equations. In the following, a diffusion
solution to Eq. (4) or (7} is considered briefly, and the PL
approximation' ' which reduces (7) to a manageable set
of equations is considered in detail.

A. Diffusion solution

For a homogeneous, infinite medium the nth moment
of the distribution function, defined by

Fi"(R)= f dxx "Ft(x,R), (10)

may be calculated following Ref. 1. The results for the
first three moments are

F(x,g, O) =5(x)5(g —go),
where R =vt is the path length, gp ——cosOp and g=cos8
(Fig. 1) are direction cosines with respect to the x axis,
and da is now the differential cross section for angular
deflection only. To separate the angular dependence it is
common to expand F in terms of I.egendre polynomials,
i.e.,

(3)
where v is the velocity after a scattering event with dif-
ferential cross section der =K(v, v')d u' His the d. ensity
of scattering centers. and

F (R)=1,
(x & =goA)(1 —e '), (12)
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TABLE I. Values of transport mean free paths A, ~ and A,2, calculated from Ref. 28.

E (eV)

Al A, i (A)
A,, (A)

500'

52
37

1000

140
84

2000

413
210

4000

1290
590

Si A, ) (A)
k2 (A)

57
41.

154
93

443
228

1370
633

X, (A)
A., (A)

17
15

35
29

92
59

256
140

A. , (A)
X, (A)

15
16

23
25

43
47

98
83

'Extrapolated from data of Ref. 28.

where

A.t =(¹ri)
Values for A,

&
and X2 based upon atomic scattering cross

sections are listed in Table I for silicon and some typical
metals at several electron energies. For large path lengths
R &&A, t,A, 2, one gets the diffusionlike asymptotic behavior
from (12) and (13),

F(x, t)=, exp
1

[2m (hx ) ]'~
(x —(x ) )'
2((bx) )

(19)

(gp ——1) and several values of A2/k, t. It is seen that tp is
zero for A,2/A. t

———,
' and gp ——1, and the variance is given by

2Dt to a good approximation, but the depth distribution
in an infinite medium approaches a diffusion profile only
if Eqs. (15) and (16) are valid,

(x)=goA,

((4 )')=2&(r —rp),

with the diffusion coefficient

(16)

which is the case when R ) 2A, &, cf. Fig. 2 and Ref. 1.
Within the validity of Eq. (19), one may write the

path-length distribution

Qd(Ep, go, x =0;R,g)dR dg
D= —UA,

1

3 1

and delay time

2 2to= [1+ 2 go —(3go —1)A,z/A, ,],
U

depending on gp and the ratio A,q/A, t.
The variance, Eq. (13), and the asymptotic expression,

Eq. (16), are plotted in Fig. 2 for normal incidence

for an electron in a semi-infinite medium, assuming the
Knudsen cosine law for the angular distribution,

Qd(Ep, gp, x =0;R,g)

3goA $=28
4m(R —Ro)'

exp
3QOA $

4(R —Rp)
(20)

where Rp ——vtp. Equation (20) is plotted in Fig. 3 for
several values of Rp, cf. Fig. 2. The presence of gpA, &

in

4-
&(z x) &

3 3-

0.3—
I

I

1

I

0.2—

l i I
I ~l

I '
I.y

I j

~ t

0.1

R/P,

FIG. 2. Variance of elastic scattering depth distribution
shown for normal incidence and A,2/A. & equal to 4, 4, and ~,
respectively. Solid curves: ((Px )2) according to Eq. (13). The
asymptotic behavior, Eq. (16), is indicated by the dashed curves.

/ /

/ /
I/ / I t

1 2
R /)t,

FIG. 3. Calculated angular integrated path-length distribu-
tions in semi-infinite medium for normal incidence. Dashed
curves: distribution in the diffusion approximation, Eq. (20),
with A,2/A, ~ as in Fig. 2. Solid curve: distribution in P& approxi-
mation, Eq. (41).
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(20) is due to the anisotropic source, whereas Rp appears
because Eq. (20) is a better approximation than that in
Ref. l.

B. P ~ approximation

at x =0, it is sufficient to Laplace-invert (26) and (27) for
x =0+ (cf. Fig. 1); i.e.,

Fp(0+,R)= +—
gp 5(R}

v3 3

As the diffusion solution is not valid at small path
lengths, a better approximation to the distribution func-
tion must be inferred; the PL, approximation demands
that17, 18,21

V 3 i —R/2i. i+ A, i e

X [Ip( , R /A—i)+Ii(—,
' R/I i)] (28)

F) =—0, I &I. (21)

in the set of equations, Eq. (7). Equations (7) and (21)
then constitute the so-called PL equations. Thus, the P1
equations solved here are

Fp(x, R)+ Fi(x,R) =0,
BR '

Bx
(22)

X [Ip( 2 R/A i) Ii( 2'R/I i)] (29)

—3 Fi(x,R) — Fp(x, R)=3N'oiFi(x, R),

with the initial condition (8).
The Laplace transform Ft(x,s) of (22} with respect to R

satisfies

sFp(x, s) —,5(x)+— Fi(x,s)=0,1 8
Bx

(23)
—3sF& (x,s) + —,7ip5(x) — Fp(x, s)=3No, F, (x,s) .3 8

F(0+,g, R ) =Fp(0+,R )+3gFi(0+,R ) .

Thus, the angle-integrated distribution function is
1

g F 0+ g, R =2FO 0+,R

(30)

where Ip and I, are modified Bessel functions of the first
kind. According to Eq. (6), the distribution function at
x =0 in the P1 approximation is then given by

—,
' (s+No i) —,' qpik-

Fp(k, s)=
k +3s(s+Ncr&)

(24)

2 'g(p —
2 Ek

3

Fi(k, s) =
k +3s(s+Ncri)

Fourier inversion then yields

3 v3 s+N~i
Fp(x, s ) = + gp+

. 4 4

' 1/2

(25)

Xexpi+[3s(s+Nai)]'/ x I (26)

and

I 1 vS
'

sFi(x s)= +—+4 4 s+Xo1

1. Soiution for infinite medium

For the infinite medium, Fourier transformation with
respect to x of (23) gives a set of algebraic equations with
the solutions

+Ii( —,'R/A, i)],

(31)

where the 5 function in (28) is neglected, as we are only
interested in particles with a finite path length. Inserting
the asymptotic expressions for Ip and Ii (Ref. 22) into
Eq. (31), we find, in the limit R » /I. ,

' 1/2
3

4nA)R, (32)

(8/BR )Fi(0+,R )(R)=
F,(0+,R )

which is identical to the leading term in the diffusion
solution, Eq. (19},with (15) and (16) inserted.

Consider Eq. (22), neglecting the term (B/BR)F, (x,R )
in comparison to NoiFi(x, R), ' and solve for Fp and Fi.
One then finds that Fp(x, R) and Fi(x,R) are the depth
distribution for a source at x =0 and the particle flux for
the same source, respectively, in the diffusion approxima-
tion. The difference between the Pi solution and the dif-
fusion solution for the infinite medium may thus be visu-
alized by comparing (8/BR )Fi(0+,R ) with
A, i 'Fi(0+,R ), determined by Eq. (29}. The expression

Xexp[+[3s(s+¹ri)]'/~xj (27) Ii( —,R/A, i)= —1+
(R/ki)[Ip( —,Rjki) —Ii( 2 R/Ai)]

(33)

for x &0, respectively.

If one is interested mainly in the distribution function
is plotted versus RjiLi in Fig. 4, which shows that only
after relatively large path lengths is it reasonable to
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FIG. 4. The significance of (3/BR )Ei expressed by f(R ), Eq.
(33).

neglect the time variation (i}/M)Fi(x, R) of the current
term I'~.

2. Solution for semi infinit-e medium

sa(s)= ——
4 4 s+X~,

L

—,
' + 1/4rip

+ 1+W3/2[(s+Ncr, )/s ]'~

for a(s).
Finally, from Eq. (36),

(1+1/2rip)(1 ——', ri)
F(0,ri, s )= 1+

2'gp 1+~3/2[(s+Ncr&)/s]'

Laplace inversion of (40), cf. Appendix B, yields

Q(Ep, rip, x =0;R,ri) = 1+ (ri ——,g )A, i
2&3 1

2QQ

—unIx, v'u(1 —u )f due
0 Q +3

(39)

(40)

(41)

s +To.]Fp' (x,s)=a(s}~3
1/2

Consider the homogeneous set of equations correspond-
ing to (23). For x & 0 the solution is

for the path-length distribution, where u= —sA, i and
terms with 5(R ) have been neglected.

a. Total flux. For the total flux of elastically backscat-
tered electrons, Eq. (41) yields

E. Ep, qp, x =0;R,g

XexpI —[3s(s+No, )]'~2x
I (34)

= —2(2—v 3) '1+ 1

2gp
(42)

alld

Fi (x,s) =a (s)exp I
—[3s(s+No i)]' x I, (35)

where a(s) is independent of x. The solution for the
semi-infmite medium, at x =0, can in'general be written
as

which is =—0.8038 for gp= l. The flux is negative be-
cause it goes in the negative x direction. Equation (42)
predicts a reflected flux beyond 1 for Hp& 55'. Therefore,
the expression for the path-length distribution should only
be applied at near-normal incidence.

b. Differential flux We presen. t the following.
(i) Numerical calculation. The integrand in Eq. (41} is

suitable for a Gaussian integration as
F(O, ri,R)=F'""' (O, ri, R)+F" (O, q,R), (36)

where F'~' can, e.g. , be given by (30).
To determine a(s), a boundary condition must be in-

ferred, cf. Ref. 23 or Appendix A, viz. ,

1 —ia/x, v'u(1 —u) i e
-u;R /A,

&

due ' =—, w;
~ +3,. ) ~&+3

where

(43)

F(O, ri, R )= 5(R)5(ri gp), ri &0—1

90
(37) l&

Qg = + COS
Pl +1

which may be considered as a condition for the particle
flux into the medium. Because the distribution function
is expanded here only into a finite set of Legendre polyno-
mials, it is reasonable to reduce Eq. (37) to a Marshak
condition' ' ' ' for the net flux into the medium, as will
be seen below, Eq. (48); i.e., for the Laplace transform,

1 1 1
dpi riF(O, ri, s) = ,' Fp(O, s)+Fi(O,s) =——+

D 2 4gp
(38)

in the Pi approximation, as Ft(O, s)=(1/2gp)Pt(rip) ac-
cording to (37). Insertion of Eqs. (26), (27), (34), and (35)
into (38) yields

Sm
Pl +1

Figure 3 shows the path-length distribution, Eq. (41), to-
gether with the diffusion solution, Eq. (20), with gp ——1 in-
tegrated over ri from —1 to 0.

With reasonable accuracy the summation in Eq. (43)
may, for simplicity, be approximated by a single exponen-
tial in the region 0&R &3A, i. One finds the approximate
expression
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Q(Ep, rip, x =0;R,ri)
v3 1+ (g ——,ri )A, , exp( —aR /A, , )'

(2+ 3) 2'tip

(44)

for the path-length distribution, Eq. (41). Equation (44) is
plotted in Fig. 5 with o.=0.42.

(ii) Analytical calculation for small path lengths F.or
small path lengths corresponding to s »No~, Eq. (40) is
approximated according to

Q A,

0.2—

0,1

1

1+v 3/2[(s+Na&)/s]'~

1

1+v 3/2

and it is found that

v3No. , 1,No,——( 3——,')
(2+v 3)z s ' s'

+ 0 ~ ~

FIG. 5. Calculated angular integrated P~-path-length distri-
bution for normal incidence. Solid curve: numerical calculation
according to Eqs. {41)and (43). Dotted curve: the exponentia1,
Eq. (44)„as an approximation to the path-length distribution.
Dashed line: analytical expression for small path lengths, Eq.
(45). Dashed-dotted curve: analytical expressions for large path
lengths, Eq. (46). The distribution for a single elastic'collision is
marked at 8 =0 for platinum and nickel, Eo ——1000 eV. (The
lowest value is for nickel. )

v 3(1+1/2rip)(ri ——', q )A, ,
'

Q(Ep, rip, x =0; R small, g)= [1—(v 3——,
' )R/A&+O((R/A, , )2)],

(2+ 3)'

when terms with 5(R) are subtracted.
(iii) Analytical calculation for large path lengths For s .«No ~, (40) is approximated according to

1 vs
1+v 3/2[(s+Noi)/s]'i vs + —,'(3Na&)' 2

and one gets

(45)

1/2
1 3 1

Q(Ep, gp, x =0; R large, q)=—— 1+
2 m gp

(ri ——,
'

q )A )
' ——v'3m. e 'erfc( —R /A, )'~

(R/X, )'"

where

erfc(z) = J dt e (47)

is the complementary error function. Application of the
asymptotic expansion of erfc(z) (Ref. 22) yields the lead-
ing term

Q(Ep, qp, x =0;R large, g)

(48)

which gives (3A,&/4n'R )' for rip ——1, integrated over ri,
i.e., the diffusion solution for R »A, &, compare Eq. (20).
This lends support to the use of the approximate boun-
dary condition, Eq. (38). Expressions (45) and (48) in-
tegrated over g are plotted in Fig. 5 together with the
path-length distribution, Eq. (41).

c. Angular distribution. In the P~ approximation, the
angular distribution

f, (8)=(cos8——,
' cos 8)sin8 (49)

0 0.2 0.& 0.6 0.8 1.0

FIG. 6. Angular distribution. Solid curve: P1 approxima-
tion, Eq. (49). Dashed curve: Knudsen's cosine law, Eq. (50).
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was found, whereas Knudsen's cosine law reads

fd(8) =2cos8sin8 . (50)

These two distributions are plotted in Fig. 6. It is seen
that in the I'& approximation the angular distribution is
narrower in the direction normal to the surface.

I;~, ' &u(1 —u )

2m —~ 0 (u+3)[u+A, ~sr(p)]

(54)

IV. ENERGY DISTRIBUTION
OF REFLECTED ELECTRONS

oo

G(EO, R;E)= f dp exp[ipe Ra(—p)],
2%

where

(51)

The electrons undergo multiple inelastic scattering
when moving in the medium. An individual inelastic
scattering event is characterized by an inverse differential
mean free path a(E, T), where E is the kinetic energy of
the electron and T is the energy loss. x(E, T) depends
only weakly on E, at most as E ' for free Coulomb
scattering, so when measuring small relative energy losses
the E dependence may be ignored. ' In the following, a is
therefore considered as a function of T only. Then the
energy-loss distribution for an electron with initial energy

Eo and path length R is given by Landau's formulaz~

Values for the inelastic mean free path A, and stopping
power S, defined by

Ta T, S= TT~T1
(55)

are calculated in, e.g., Refs. 25—27 and are shown in
Table II for aluminum, silicon, nickel, and platinum at
several electron energies. From these values and Table I,
it may be concluded that, in as far as the energy loss of an
electron is small compared to its initial energy, the mean
path length e/S will not exceed -2A, &. It would therefore
vot be reasonable to use the diffusion approximation. In
that case the approximate expression for the path-length
distribution [Eq. (44)] applies, and the energy distribution
[Eq. (54)] may be replaced by the simpler expression

J(E,rI)=, 1+ (q ——,q )
v~

(2+ 3)' 2rjo

and

(52)

with a=0.42.

00

dp e'&'
2m —~ a+A, ~o(p)

(56)

a(p)= f dTv(T)(1 —e '~ ) . (53)

The energy distribution of reflected electrons is given by
Eq. (1) which, after insertion of (41) and (51), yields the
general result

A. Discrete energy-loss spectrum

For that part of the spectrum for which the path length
R in Eq. (51) is small, R «A, , the integrand in (56) may
be expanded in powers of a. according to

I 1 1+ dT ~(T)e
a+A, io(p) a+A, i/A, a+A, &/A, a+1,(/A,

2

dT~(T) f dT'~(T')e 'I' r+ +

By (56) and (57), the spectrum then becomes (57)

J(E,g)=, 1~ (g ——,
' g')

(2+V 3) 2go
' a+At/A,

f dTz(T)~(e —T)+ (58)

In the considered energy region (500—3000 eV), for light elements such as, e.g., aluminum, we have A, »&A, . Hence,
the constant a may be neglected in comparison to A, ~/A, , and (58) reduces to

J(E,rI)= 1+ (g ——,q ) 5(e)+Ax(e)+A, f dTx(T)a(e T)+— (59)
(2+ 3)~ 2go, A(

This corresponds to neglecting the R dependence in the
path-length distribution, Eq. (41), from the beginning.
Equation (59) is then based upon a single elastic collision
and is therefore an approximation to the single-collision
distribution.

B. Continuum energy-loss spectrum

For larger energy losses where a continuum description
of the energy loss is appropriate, (53) may be expanded
in powers of p. To second order one finds'
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TABLE II. Values of inelastic mean free path and stopping power, from Ref. 25.

E (ev)
1000 3000

Al A, (A)
S (ev/A)

12
3.2

21
2.3

36
1.5

45
1.2

Si A, (A)
S (eV/A)

12
3.0

21
2.1

38
1.3

53
1.1

Ni A, (A)
S (eV/A)

8.0
7.0

14
5.3

25
3.9

33
3.0

Pt. k (A)
S (eV/A)

8.0
7.0

15
6.2

26
4.3

33
3.5

cr(p)=ipS+ —,'p W, (60)

eS
exp "—

1/2
cx

S2
' I/2

kiS 1+
A, iS

(62)

For comparison, the path-length distribution in the dif-
fusion approximation, Eq. (20), may be applied. Insert
Eq. (60) into (51) (Ref. 1) and then insert Eqs. (20) and
(51) into Eq. (1); with Ro ——0 in Eq. (20) the spectrum
then becomes

1/2

Jd(E, g) =2'
2m 8'

Se' ~ X [(S/W)(e +—'g A, W)' ]
X

(e + 2gok, i W)—'~
(63)

where K& is a modified Bessel function of the second
kind.

1. Evaluation of the straggling parameter

The nonrelativistic Mgller cross section for the scatter-
ing of two free electrons is given by

4
( T)

tM dT
E

1 1 1

Z' (E T)' T(E T)— —(64)

In Eq. (61) the large energy losses dominate in the in-
tegral, and a.(T) may then be identified with NZdo(T).
The upper integration limit is , E in (61) because th—e pri-
mary electron to be detected is that with the largest ener-
gy. Thus, Eq. (61) reads

with S given by (55) and W, the straggling parameter,
defined by

W= I dTT x(T) . (61)

The expansion (60) inserted into Eq. (51) yields a Gauss-
ian energy-loss distribution and, according to Ref. 29,
this is reasonable at large path lengths. Insertion of Eq.
(60) into (56) yields then the continuous spectrum

r

J(E,ri)=, 1+ (g ——,g )
(2+ 3) 2'90

W=( —,
' —31n2)me NZ (274 eV2A )NZ .

2. Comparison with diffusion solution

(65)

The energy distributions, Eqs. (62) and (63), are plotted
in Fig. 7 for several values of A, &S and A, &W, which, ac-
cording to Tables I and II and Eq. (65), are representative
for most solids in the region of primary energy (500—3000
eV) to be described by the present theory. In the plotted
energy-loss region the two energy distributions deviate
strongly in shape; the diffusional solution (63) has a pro-
nounced maximum which may be due to the strong max-
imum in the path-length distribution, cf. Fig. 3. Further-
more, except for the lowest energy, where a continuum
description is invalid, the energy distribution, Eq. (62),
based upon the P& approximation, always yields a lower
flux of reflected electrons. Only path lengths R (A,

&
are

represented in Fig. 7, and therefore the diffusion descrip-
tion should not be applicable.

3. Comparison upwith measurements
/

The continuous spectrum, Eq. (62), and experimental
points of the apparent EELS spectra, ' are plotted in Fig.
8 for nickel and platinum, normalized at an energy loss of
125 and 150 eV for primary energies of 500 and 2000 eV,
respectively. For the theoretical spectra, use has been
made of parameter values according to Eq. (65) and
Tables I and II.

The experimental points follow to some extent a
straight line, although not exactly the plotted theoretical
lines. However, in the plotted energy-loss region a reason-
able agreement is seen, indicating that the intensity of re-
flected electrons falls off exponentially with energy loss
according to Eq. (62), when the energy loss is small com-
pared to the primary energy of the electron. The mea-
sured yields are usually not known with sufficient accura-
cy' to permit a comparison of absolute yields, and some-
times absolute yields are not measured at all. Therefore
the above comparison was made only in arbitrary units.

V. DISCUSSION

It has already been mentioned that even for the optimal
value of A, 2/A, &

———,, the diffusion solution breaks down
when the mean path length of the considered electron is of
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R=0. Because of the simplicity of the approximate
path-length distribution, Eq. (44), it may be applied in-
stead of the full expression, Eq. (41). This leads to the
continuous energy distribution, Eq. (62), with a shape, cf.
Figs. 7 and 8, similar to that found in EELS measure-
ments ' (for the continuous part of the spectrum).

Although, a Gaussian energy-loss distribution is possi-
bly not a good description of the energy-loss processes of
the electrons, Eqs. (62) and (63) express, however, that
small changes in the elastic and inelastic cross sections,
due to the dependence upon the decreasing kinetic energy
of the moving electrons, have almost no influence on the
spectrum because the ratio of the cross sections enters. It
is noticed that in Eqs. (62) and (63) the parameters A, &,S,
and W enter as S/8", A, ,S, and A, , 8'. This indicates that
a variation of the energy distribution is rather moderate
toward variations of the parameters from element to ele-
ment because S and W increase with Z, whereas A,

&
de-

creases.

ACKNOWLEDGMENTS

FIG. 9. Integration path in Eq. (81).

x =0, (Al) reduces to

F„(O,q, R ) =5(goR )5(g —go),
which explains Eq. (37).

APPENDIX 8

(A2)

I would like to thank P. Sigmund and S. Tougaard for
valuable suggestions and discussions. Thanks are due M.
Urbassek for inspiring suggestions concerning the P& ap-
proximation and for his interest in the present work.
Thanks are also due K. B. Winterbon and L. V. Spencer
for useful comments on the manuscript. Financial sup-
port from the Ingeborg and Leo Dannin Foundation for
Scientific Research is gratefully acknowledged.

Consider Eq. (40), which needs to be Laplace-inverted.
The term of interest is

l c+1oo eSR
ds

2/v 3+[(s+¹rt)/s]'
'+t~ u&~p 2v 3u —3V'u(u+1)due

2m'k D —3

APPENDIX A

F„(x,q, R ) =5(x —goR )5(ri —go)e (A 1)

where o. is the total elastic scattering cross section. At

For a semi-infinite medium, the distribution function at
the surface, x =0, is given by the uncollided part of the
distribution function for positive g. From the transport
equation, Eq. (4), with the initial condition (5), it may be
deduced that the uncollided part of the distribution func-
tion is given by

C+l oo ~sR
ds

2m.i —'~ 2/v 3+ [(s+No't)/s]'

urn, tt v'u—(1—u )due
Q +3 (B2)

with u =s/Ntr~. It is noticed that u =3 gives no contri-
bution to the integral and that the only contribution
comes from the integration around the branch points —1
and 0, cf. Fig. 9. Thus,
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