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Interpretation of NMR diffusion measurements in uniform- and nonuniform-field profiles
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With the use of Carr-Purcell random-walk methods, approximate expressions have been derived
for the spin-echo decay envelope for spins diffusing in a restricted region in the presence of an inho-

mogeneous field. The sample region considered is a slab with a uniform cross section and plane
boundaries. The inhomogeneous field may be either time independent or pulsed and is not required
to have a uniform gradient. With consideration of different limits of the final expressions, both re-
stricted and unrestricted diffusion can be treated. Comparison is made of our results with those
found by other authors, and suggestions are given which can be used to extend the sensitivity of
field-gradient NMR (nuclear magnetic resonance) diffusion measurements.

I. INTRODUCTION

The experimental determination of diffusivity covers a
very wide range of technical problems and materials. The
need for characterization of diffusion has led to the
development of a variety of techniques including tracer,
electrochemical, photobleaching, neutron scattering, and
constant and pulsed field-gradient NMR methods, as well
as interpretation of NMR relaxation measurements. In
many ways, field-gradient NMR is a superior experimen-
tal technique. It gives a direct measure of the mean-
square displacement of the diffusing particles, and the
measured diffusivity is not dependent on a particular
model for interpretation of the data. The atomic label
placed on a diffusing nucleus in the field-gradient NMR
method is simply the direction of its magnetic moment;
the motions of the nuclei are unaffected by this label, and
thus the process being viewed is self-diffusion. From a
technical standpoint, field-gradient NMR also offers
many advantages. These techniques are easy to imple-
ment, rapid to perform, and nondestructive to the sample.
They can be easily adapted to high- and low-temperature
environments, as well as a wide range of pressure.

The principles underlying the measurements of dif-
fusivity using field-gradient NMR have been discussed in
the earlier literature. ' We will briefiy outline these
principles, using for illustration a Hahn pulse-echo se-
quence (90' pulse —T—180' pulse —T—echo, where T is a
fixed time interval). The magnitude of the received signal
(echo amplitude) following the pulse sequence depends
critically on the relative phases of the precessing nuclear
spins. The Larmor condition, co=yH, specifies that the
angular precession frequency of each spin is strictly pro-
portional to the magnetic field. If an inhomogeneous
magnetic field exists in a region occupied by nondiffusing
nuclei, then, during the interval between the 90' and 180'
pulses, the spins in regions of larger field will accumulate
greater amounts of total phase. The 180 pulse sets the
phases of these spins behind by precisely the amount
which they were ahead immediately preceding this pulse.
During the interval following the 180' pulse, the nuclei
will accumulate phase in an amount equivalent to that ac-

cumulated during the first interval, and thus the ones in
larger magnetic fields will "catch up,

" resulting in all
spins having the same phase at time 2T. This refocusing
leads to the formation of a spin echo at 2T, as was
discovered by Hahn. The refocusing will be complete if
the magnetic field local to each spin remains constant in
time. If a spin situated in an inhomogeneous field dif-
fuses, its precession frequency will vary with time and the
total accumulated phase at 2T will no longer be the same
for all spins. Due to a spin's random motion, its phase be-
comes a statistical quantity. Consequently, for diffusing
spins, only an incomplete refocusing of the magnetization
will occur, resulting in a lower echo amplitude.

In a spatially uniform magnetic field the NMR signal
would not be affected by diffusion. Normally, however,
measurements are carried out in a Zeeman magnetic field
which has residual imperfections. These are usually ex-
tremely small compared to any externally applied gra-

' dient, but they are large enough to cause a spin echo to
form. In this case, the amplitude of the echo is largely in-
dependent of diffusion and is determined by spin interac-
tions represented by the characteristic times T& and T2.
Applying an inhomogeneous magnetic field leads to
reduction of this amplitude when diffusion is present.
The spin-relaxation effects, T& and T2, can be easily
separated from diffusion effects by comparing the echo
amplitudes with and without the applied inhomogeneous
field. The ratio of amplitudes depends only on diffusion
and gives a direct measure of the diffusivity. In this pa-
per we present general expressions for this amplitude ratio
for spins diffusing under a wide variety of external condi-
tions.

The effect of diffusion on the height of the spin echo
was first calculated by Hahn for an infinite sample with
a time-independent uniform gradient. Hahn's ideas were
extended by Carr and Purcell, ' who introduced a discrete
random-walk model to calculate the effect of diffusing
nuclei on the spin-echo amplitude following different
types of pulse sequences, and by Torrey, who modified
Bloch's differential equations to account for diffusion.
The differential equation and random-walk formulations
give the same result for the echo attenuation when applied
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to unrestricted diffusion in a uniform magnetic field gra-
dient. For the Hahn pulse sequence, the. calculated ampli-
tude is'*

=exp( y6—Dt /12),~o
where D is the diffusion coefficient, t is the amount of
time elapsed between the 90' pulse and the echo peak
(t =2T), y is the gyromagnetic ratio of the nucleus, 6 is
the magnitude of the field gradient, M is the echo height,
and Mo is the echo height measured at the same time
with no applied gradient.

The utility of NMR methods was greatly increased
with the pulsed gradient technique devised by Stejskal and
Tanner. Prior to this development, measurements were
restricted to materials with large diffusion coefficients
(D & 10 cm /sec). The reason for this restriction is that
the magnitude of the steady gradient that can be applied
to the spins without distorting the echo is limited by the
rf (radio-frequency) transmitted power (through the spec-
tral width of the rf pulses) and the bandwidth of the
detection system. VA'th the pulsed gradient method, the
gradient field is off during the rf pulses as well as at the
time the echo forms. Consequently, the above limitations
are removed, allowing much larger gradients to be used.
In the pulse sequence used by Stejskal and Tanner, two
gradient pulses of equal lengths, 5, are applied along with
a Hahn rf pulse sequence. The first gradient pulse occurs
between the 90' and 180' rf pulses and the second occurs
between the 180 rf pulse and the echo. The length of the
gradient pulses must be shorter than the time interval be-
tween the rf pulses. The echo amplitude for this se-
quence, assuming unrestricted diffusion, is

=exp[ —y 6 D5 (b —5i3)],
Mo

where b, is the time between the leading edges of the first
and second gradient pulses. If the rf pulses are made very
short, 6 is essentially the same as the time between them
(b.=T). The pulsed gradient method has been used to
measure diffusion in a wide variety of materials, including
ionic conductors, polymers, heterogeneous catalysts,
liquids, ' metals, "and biological tissue. '

In a typical measurement of diffusion, the distance
moved by a nucleus may be of order one to a hundred
microns. This is called the diffusion length. In some sys-
tems, such 'as colloids, microemulsions, or finely
powdered samples, the diffusion length may be the same
order of magnitude or larger than the size of the struc-
ture. In this case the assumption of unrestricted diffusion
used in deriving the echo attenuation formulas given in
Eqs. (1) and (2) is not valid, and these formulas will give
results for the diffusivity which depend on the duration of
the measurment. Several studies have discussed the effect
of a restricted diffusion region on the spin-echo de-
cay. ' ' Starting with the modified Bloch equations,
Robertson' has derived an expression for the spin-echo
decay envelope for the case where the diffusing spins are
confined to a region with plane boundaries which is finite
in one direction and infinite perpendicular to this direc-
tion. The spins are situated in a time-independent rnag-

netic field whose gradient is in the restricted direction.
Wayne and Cotts' have studied diffusion of methane ex-
perimentally and also by numerical solution of the Bloch
equations using the above sample and gradient field
geometry. Stejskal' and Tanner and Stejskal' have ob-
tained approximate echo attenuation expressions for
pulsed gradients in the limit where 6»5 for various
sample geometries. The technique they used was to first
determine the probability distribution of the spin displace-
ments, found by solving the diffusion equation subject to
the appropriate boundary conditions. Then they comput-
ed the reduction in echo amplitude resulting froin the cal-
culated distribution of displacements. Tanner and
Stejskal' have performed experimental tests of restricted
diffusion in a variety of model systems, using their ex-
pressions for data analysis. Neuman' has developed a
probabilistic method for calculating the echo attenuation
whereby the unknown distribution of phases of the spins
is approximated by a Gaussian. Using this approach, he
has obtained echo amplitudes for a steady, uniform gra-
dient in planar, spherical, and cylindrical sample
geometries. Murday and Cotts' have extended Neuman's
method to pulsed gradients and used it to calculate a
spin-echo decay envelope for restricted diffusion in a
spherically shaped region. The expression was then used
to analyze diffusion measurements made on particles of
liquid lithium. Stejskal and Tanner ' have written
comprehensive reviews of the research work in field-
gradient NMR measurements of restricted diffusion.

Another important aspect of NMR diffusion measure-
ment which has not received much attention is the mea-
surement of diffusivity using nonuniform gradient fields.
Magnetic field gradients which are nonuniform may arise
naturally in materials with substantial magnetic suscepti-
bility. Formulas derived assuming a uniform gradient
may not be appropriate in this case. Nonuniform gra-
dients may also be produced by the external coils used to
apply the inhomogeneous field during a measurement. To
accurately measure small diffusion coefficients, the largest
possible gradient is desirable. This is, in fact, a major lim-
itation preventing the application of NMR methods to
materials with low diffusivities. To produce large field
gradients, efficient coil designs which provide a large gra-
dient per unit current are necessary. This leads to a
design which sets the windings as close to the sample as is
physically possible. Since coils which are designed to pro-
duce uniform-field gradients actually do so only near their
centers, it is possible for much of the sample volume to be
in a nonuniform gradient during a diffusion measurement.
One of the motivations of this work is to allow nonunifor-
mity of the gradient to be taken into account

II. METHOD

In this paper we derive expressions for the spin-echo de-
cay envelope for spins diffusing in a restricted region with
plane boundaries in the presence of an inhomogeneous
magnetic field that can vary in an arbitrary way along one
direction. The results are applied to diffusion in an infin-
ite region by taking appropriate limits of the final expres-
sions. Our approach is based on the random-walk
methods introduced by Carr and Purcell, ' and incorpo-
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rates the Gaussian approximation to the phase distribu-
tion used by Neuman. ' A brief outline of the basic ideas
is given here; the detailed calculations will be presented in
the next section.

A Hahn pulse-echo sequence is applied to a group of
nuclear spins which is placed in a magnetic field. The
field is composed of a homogeneous Zeeman field and an
inhomogeneous field which may be static or time depen-
dent. The diffusion process is modeled by having the
spins execute a one-dimensional random walk through the
inhomogeneous field. Because of diffusive motion, the ac-
cumulated phase at the time of echo formation will be a
random variable which is described by a probability distri-
bution. A reduction in the amplitude of the spin echo will
result from the lack of phase definition. The task is to
find a quantitative relationship between the echo ampli-
tude and the diffusivity of the spins for a specified form
and strength of the inhomogeneous field.

We begin by reformulating the restricted diffusion
problem as one of diffusion in an infinite medium. By
considering spins diffusing in an infinite region in a
periodic field, taking the period to be twice the length of
the restricted region, it is possible to portray restricted dif-
fusion. ' The periodic field is expanded in a Fourier
series. We describe the spin displacements by discrete
random variables, with each spin accumulating phase in
an amount determined by the path it takes through the in-
homogeneous field. The phase of a spin at any time can
be expressed in terms of its initial position and the ran-
dom variables that characterize its movements. We make
the approximation that the distribution of phases is
Cxaussian, and consequently is completely determined by
its first and second moments. These can be calculated.
The last remaining step is to compute the average of the
cosine of the phase over this distribution at the time of
echo formation. This gives the average projection of the
spin moments along the direction'of detection, which is
proportional to the echo amplitude.

III. MODEL AND CALCULATIONS

The model system we consider consists of a group of
nuclear spins confined to a region which has length R and
occupies the interval along the z axis 0&z &R. The end
surfaces of the sample at zero and R are perpendicular to
the axis. Its cross-sectional shape and area play no direct
role in the derivations. The normalized spin density
(number of spins per unit length divided by the total num-
ber of spins) along z is denoted by p(z). In principle it is
possible to carry out the calculations, at least numerically,
for any given form of p(z). However, to obtain analytic
expressions for the echo attenuation, we will later assume
p(z) to be constant when it becomes necessary to introduce
a particular form. This requires the sample to have a
cross section of constant area.

A large, uniform, static field and an inhomogeneous
gradient field which has zero spatial average are applied
to the sample, and a Hahn pulse-echo sequence is used to
probe the nuclear magnetization. The magnitude of the
Zeeman field, Ho, is assuined to be much greater than the
magnitude of the inhomogeneous field, H(r). Therefore,
only the component of H(r) parallel to H'0, H~~(r), will

contribute significantly to the total magnetic field, and
only the spatial variation of this component will affect the
precession frequency of the spins. To simplify the calcu-
lations, H~~(r) is constrained to vary along one direction
which is taken to be z. The position-dependent labeling
occurs only along this direction, so with this geometry
only diffusive motion along z will be relevant. Our final
results for isotropic unrestricted diffusion are more gen-
erally applicable, independent of this constraint on the
direction of H~~. For isotropic restricted diffusion, it will
be necessary for the direction of H~~ to remain fixed over
at least a diffusion length. If anisotropic diffusion is con-
sidered, the direction along which H~I varies must remain
constant over the entire sample region in order to unambi-
guously measure a particular component of the diffusion
tensor.

The diffusion process is modeled by having the spins
execute a one-dimensional random walk. The spins move
about according to the following prescription: each
remains at some position for a fixed period w, then in-
stantly jumps to a new position whose z coordinate differs
from the z coordinate of the previous one by a fixed
amount g. The jump may occur in the positive or nega-
tive direction with equal probabilities. This is described
by setting

where z(t =jr) is the z coordinate of the spin after j
jumps, g is the z component of the jump length, and a& is
a random variable with the probability distribution
P(aj=1)= —,

' and P(aj= —1)=—,. For this model the
macroscopic diffusion coefficient is D= g /2~. In our fi-
nal expressions we introduce D by taking the continuum
limit, $~0, ~~0, holding D=g /2r constant. It is ir-
relevant that various details of the microscopic motion,
such as jump length and jump time distributions and
correlations, are ignored in this description. The NMR
method gives a direct measure of the mean-square dis-
placement over macroscopic distances during a given in-
terval of time, and the final results can be applied to all
microscopic transport mechanisms.

Following Wayne and Cotts, ' we replace the problem
of diffusion of spins confined to the interval 0(z (R by
an equivalent problem which considers the spins diffusing
along the entire z axis in a periodic inhomogeneous field.
The periodic field is constructed by extending

H
(z) over

the z axis so that it becomes an even function about the
ends of the sample with a fundamental period 2R, Fig. l.
Extending the inhomogeneous field in this manner is
equivalent to specifying that diffusion currents across the
sample boundary must vanish, i.e., the boundaries are re-
flecting. The total field acting on a spin is

Ho+H[~(z) =H(z). A spin at the position zo at t =0 will,
at time j~, be at a position

(4)

The spin at this time will be in a magnetic field
H(zo+ggj. , a;). During the time interval between j~
and (j+1)v, the phase accumulated by the spin is
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FICi. l. Illustration of the way diffusion in a restricted region
is modeled. It is assumed that the diffusion of spins in the re-

gion 0&z &8 with the inhomogeneous field H~~{z) is equivalent
to unbounded diffusion with H~~ extended over the entire z axis
as shown.

yrH(zo+gg, , a;). At a particular time t=Qr
(Qr & T), the total accumulated phase will be

Q j
P= g y&H zo+g g a; (5)

If the spin had stayed at its initial position, the accumu-
lated phase at Qv would be Po QyrH(zo——). We define
the new quantity PD =P—Po,

'
PD is the additional phase

accumulated by a spin due to its diffusion.
To calculate the diffusion related echo attenuation, an

expression for PD at the time of the echo peak will be
needed. This expression can be developed as follows. I.et
the 90' pulse occur at t=0. Immediately after the 90'
pulse, each spin has zero accumulated phase and the mag-
netic moment of the sample as a whole will point along
some direction in the xy plane. As time passes, the mag-
netic moment of the sample will precess in this plane and
shrink due to dephasing of the individual moments. The
180' pulse occurs at t=T=Nr and the echo forms at
t =2Nr. The effect of the 180' pulse is simply to reverse
the sign of P for each spin at t=Nr. The Po contribu-
tions before and after the 180' pulse cancel, giving P =PD
at t=2Nr If the spin. s were not diffusing, the accumu-
lated phase at 2Nv would be zero for every spin. With
diffusion, PD at t =2Nr is given by

2N

j=N+1
y~H z, +gga,

H(z) is a periodic function and can be represented by its
Fourier expansion,

H(z)= g fke'
k

Since H(z) is an even function with period 2R, we have in
the Fourier expansion the restrictions, k =mezz/R, with
m an integer, and fk=f k. Substituting Eq. (7) into Eq.
(6), we obtain an expression for the accumulated phase

PD is a random variable, owing to the fact that it is a
function of !a; I which are themselves random variables.

Since the distributions of the a; are known, in principle
it would be possible to convert the probability distribution
over these to a conditional distribution over PD itself in-
volving the starting position zo as a parameter. This dis-
tribution, p(PD Izo), expresses the probability that the
phase of a spin which started at zo will be found within
dPD of the value Pii. If p(PD I

zo) were known, the echo
amplitude could be calculated in a straightforward
manner. The ratio of echo heights with and without dif-
fusion is given in terms of p(Pz I

zo) by

M 00= f p(zo)dzo f cosPDp(PD I zo)dPD, (9)

and

(PD) „=f PDP(PD)dPD (first moment)
ao R

Dpzo p D zo zo D

(1 la)

(11b)

(P~),„=f QnP(PD)dPD (second moment) (12a)

= f f PDp(zo)p'(PD I zo)dzodPD, (12b)

where ( ),„ indicates the average of a quantity over the
distribution P(gz). To calculate these moments, we re-
turn to Eq. (8) where PD is given as a function of [a;!and
zo, and calculate averages of PD and PD over the known
distributions of these variables. Once this has been done,
P(PD) is approximated by a Gaussian distribution and the
ratio of echo heights is given by

M
COS D I

0
—00

(13)

We begin by calculating (PD),„. To facilitate this calcula-
tion, the following result will be used:

where p(zo) is the normalized spin density at t=0. The
integral over PD gives the average projection along the
direction of detection for moments initially at zo, and the
integral over zo sums these projections over the entire
sample to obtain the total detected magnetization. It is
implicit in this equation that the macroscopic magnetic
moment refocuses along the same direction with diffusion
as it would if the spins were not diffusing. This will be
demonstrated shortly. It is more convenient to work with
a different probability distribution, P(PD), where P(PD)
expresses the probability that the phase of a spin starting
at an arbitrary position will be found within dhoti of a
value PD at t =2Nr. P(PD) is found from p(Pz I

zo) by
averaging over initial positions of the spins:

R
P(PD) = f p{zo)p'(4'D I zo)dzo . (10)

Since p(PD I
zo) is not known, P(gz) cannot be found us-

ing Eq. (10). However, the first and second moments of
P(PD) are
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(
S

exp /kg g cJ I=[ccx(kg)]' '+',
j=r

forming the integral with p(zo) = 1/R, we obtain
(14)

(QD),„=0 . (18)

where the notation ( ) indicates an average over the dis-
tributions of the aj. From Eqs. (8) and (14), we obtain

2N

g fI,e '[cos(kg)]J
j=N+1 j=1 k

(y )=y

The sums over (coskg)J are geometric, and can be evaluat-
ed, glvIng

This is found by direct integration of Eq. (].6) for all
nonzero k terms and by returning to Eq. (8) to evaluate
the k =0 term. The fact that (PD),„=0indicates that the
average of the accumulated phases for all spins in the
sample at t =2%~ is zero, and the sample magnetization
will refocus in the same direction as it would if there were
no diffusion. (PD),„will always be zero for an inhomo-
geneous field which has zero spatial average.

To calculate (PD),„, we first square Eq. (8), obtaining
four terms of the form

k 1 —cos k

&& t cos(kg) —2[cos(kg)]~+'

+[cos(kg)] +'I .

(r&)'g gfI fi&
k I

j m

X ++exp ig k g a„+l g a~
m j n =1 @=1

(19)

Here it is seen that the value of (PD ) at the time of echo
formation for an arbitrary spin is not necessarily zero, and
depends on the initial position. Next, (PD ) must be aver-
aged over the initial positions of all spins. This is done as
follows:

(PD)„—= (PD) = f p(zo)(PD)dzo,

where the overbar indicates an average over initial spin
positions. To proceed further, a specific form of p(zo)
must be inserted. Assuming constant p(zo) seems most
reasonable, as well as simplifying the calculations. Per-

The sums over the indices m and j will run from either 1

to N or from N+1 to 2N in the different terms. (PD)„
can be found by first averaging over [a;I and then over
p(zo) as before. However, in this case, a great deal of la-
bor is saved by interchanging the order of these pro-
cedures. This is permissible since the averages are carried
out over different variables, and are independent. We first

find PD, where
R

PD
—I p(zo)Pa dzo . (20)

From Eq. (20), we obtain

N N 2N 2N 2N N N 2N

o'=(~.)'Xf.f ~ X X+ X X — X X - X X
k~0 m =1j=l m =N+1 j=N+1 m =N+1 j=l m =1j=N+1

J m

exp ikg g a„—g a
n=1 @=1

(21)

The only nonzero contributions in the double sum over k and l shown in Eq. (19) are from terms where l = —k, with

k, i&0. Next, averaging Eq. (21) over I a; I with the aid of Eq. (14), we obtain

(2N —3)cos(kg) —2N cos (kg)+4[cos(kg)] +' —[cos(kg)]
[1—cos(kg)]

In the Gaussian approximation, P(PD ) is completely
determined by the moments (PD),„and (PD),„given in
Eqs. (18) and (22). Equation (13) can now be used to cal-
culate the ratio of echo amplitudes. We use

cos DP D d D
——exp —

~ D,„, 23
Mo

where the last equality holds for a Gaussian distribution
with zero mean. Equations (22) and (23) together give a

general expression for the diffusion related echo attenua-
tion in terms of the parameters which characterize the
random walk of a particle. To treat the diffusion as a
continuum process, we take in Eq. (22) the limits $~0,
r~0, N~ oo, holding constant both D =g /2' and
t=2Nr. The limit kg~0 for all k is also taken, which
has the physical interpretation that the smallest length
scale for variation of the inhomogeneous field is much
longer than the particle jump length. We obtain

M =exp —y g f~f ~ z
k(~0) 42D

3 +4 —k Dt/2 —k Dt

I '3' (24)
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This is the general result for the spin-echo decay envelope
for spins diffusing in a time-independent inhomogeneous
field with an arbitrary profile. The magnetization is
probed using a Hahn pulse sequence, with t as the time in-
terval between the 90' pulse and the echo peak.

We will next find the decay envelope for the important
case where the inhomogeneous field is pulsed. For this we
consider the Stejskal-Tanner pulse sequence. The timing
arrangement for the rf and gradient pulses in this se-
quence is as follows: a 90' rf pulse at t=O; a gradient
field pulse starting at t=O, lasting until t=Mr; an rf
pulse applied at t =Mr (N & M ); a gradient pulse of equal
magnitude to the first applied from Xv to (M+X)~; and
finally, echo formation with the peak amplitude occuring

l

at time t =2K&. For this sequence of pulses, the phase
accumulation at t =2¹for a spin initially at zp is

M j—g exp ikg g a„
j=1 n=1

ND=r7 gfke
k

(pD ),„=0 (26)

%+M j
+ g exp ikg g a„. (25)

j=N+1 n=1

Once the expression for PD is written, the same type of
averages are performed as were done previously. We ob-
tain

(4D)-=27'~ g fkf k
k (~0)
r

M[1 —cos (kg)] —2cos(kg)+2[cos(kg)] +'+2[cos(kg)] +' —[cos(kg)] + +' —[cos(kg)]~ I+'
[1—cos(kg)]

(27)

Equations (23) and (27) together give the spin-echo decay envelope for the pulsed gradient case in terms of the random-
walk parameters. Again, to express the echo amplitude in terms of a macroscopic diffusion coefficient, the continuum
limit is applied to Eq. (27). In this case, the proper limits are kg~0, r~0, Q—+ 00, M —+ ~ wjth g /2~=D, +r=+ (the
time between leading edges of the gradient pulses), and M&=5 (the length of the gradient pulses). Taking these limits,
we obtain for the echo amplitude

fkf k2 —2-exp( —bk D)—2exp( —5k D)+exp[ —(5—5)kiD']+exp[ —(&+5)k2D]=exp —y
Mo k D k D

(28)

This is the general result for the echo attenuation due to
diffusion in a pulsed gradient field of arbitrary profile us-
ing a Stejskal-Tanner pulse sequence. This expression is
equally appropriate for the stimulated echo sequence.

IV. DISCUSSION AND APPLICATION
TO RESTRICTED AND UNRESTRICTED DIFFUSION

A. The uniform gradient field

The uniform gradient field is very important in applica-
tions. Quadrupole or anti-Helmholtz coils constructed
around a sample provide a uniform gradient, at least near
their centers. The case of restricted diffusion in a rec-
tangular region has already been solved for a time-
independent uniform gradient, ' ' so a comparison be-
tween results is available. The field profile is

val 0(z (R with the gradient field given by Eq. (29) can
be replaced by diffusion over the entire z axis with, the
gradient field given by

2GR + exp[i(2n+1)nz/R]
m „(2n+1) (30)

An additional term representing the Zeeman field Hp,
would be added to Eqs. (29) and (30) to obtain the total
magnetic field. However, it has been previously shown
that a spatially uniform field does not affect (PD),„and
(Pti),„. Setting H~~(z) from Eq. (30) into the notation. of
Eq. (7), we find

k =(2n+1)—,fk f k——2GR

(2n+1) m

Hii(z) =
~ GR(1 —2z/R ), (29) (31)

where G is the magnitude of the gradient. According to
the previous discussion, the diffusion of spins in the inter-

I

k~o n =—00

Substituting these into Eq. (24), we arrive at

M =exp
0

—8yGR 1 Dt
D n„p (2n+1). R

3 —4exp[ —(2n+1) nDt/2R ]+exp[ —.(2n+1) m Dt/R ]
(2n+1) n2

(32)
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This expression is the same as that derived by Robertson' and Neuman. ' In the short-time limit, t «R /D, the dif-
fusion is unrestricted and Eq. (32) reduces to the well-known formula for unrestricted diffusion in a time-independent
uniform gradient

M =exp
0

y262at 3

12
R

(33)

In the limit of extremely restricted diffusion, t ))R /D, Eq. (32) becomes

R4y262t

Mp 120D
(34)

For the uniform pulsed gradient [same form of H~~(z) as given in Eq. (29)] the echo height expression is found by sub-
stituting the parameters from Eq. (31) into the general echo attenuation formula for the pulsed gradient, Eq. (28). We
obtain

M =exp
Mp

—8yGR ~ 1

n. D „p (2n+1)
25D
R

2—2exp[ —(2n+I) m DA/R ] 2exp[——(2n+I) n D5/R ]
(2n+1) m

exp[ —(2n+1) HD(A —5)/R )+exp[ (2n—+1) m D(b, +5)/R ]
(2n+1)~

which agrees with the result found by Stejskal and
Tanner for unrestricted diffusion. The problem of re-
stricted diffusion with pulsed gradients that we have
treated here has also been discussed in a limiting case,
5&(h, by Stejskal' and Tanner and Stejskal' using an
approach different from ours. However, their results are
not consistent with those found by taking 5«h in Eq.
(35), nor do they reduce to Eq. (36), which is generally ac-
cepted, in the short-time limit. If, on the other hand, the
more restrictive limiting condition b~ao followed by
5—+0 is considered, the above authors' obtain

limln( lim M/Mo)= —(y5GR) /12 .
5~0 h~ oo

This is in agreement with the corresponding limit applied
to Eq. (35). We believe it is likely that the echo amplitude
expression given in Refs. 15 and 16 approaches the true
solutions only as 5—+0 and 6—+ ~.

B. Nonuniform gradient fields

Short- and long-time limits can be found for both
steady and pulsed nonuniform gradients for an arbitrary
H~)(z) by taking appropriate limits of Eqs. (24) and (28).
For the steady gradient field, the echo amplitude becomes

T

M yDt R
exp

12 y fkf kk—
0 k~p

in the short-time limit and

y'~ fkf k=exp
M() D

R
(38)

In the short-time limit where b„5«R /D, Eq. (35) be-
comes

R=exp[ —y G D5 (b.—5/3)], b.,5«, (36)

M 2y25 fkf k=exp
Mo k (~0)

R
b„5,(b, —5)))

(40)

Both the short- and long-time limits have clear and direct
physical interpretations. The nonuniform part of the field
1s

H)~(z) = g fg, e'
k (~D)

then,

cMI
I

dz y y k~ i( ekl)+z

k (~0),
I (~0)

(41)

f H dz y k i i(k+l)z (42)
k (yo), kl
I (@0)

where the integral is indefinite. The average of
(dH((/dz) taken over initial spin positions is

2 2
dHI) 1 ~ dH:——f — dz= g fkf kk, (43)

dz R o dz

in the long-time limit. For the pulsed gradient in the
short-time limit, the amplitude becomes

r

=exp —y 5 ~—— gf f22 R

k~0

(39)

Since there are two independent time parameters in the
pulsed expressions, there can be several long-time limiting
conditions. Considering the case where 5, b„and 6—5
are all much greater than R /D, we find
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while the average of ( f Hlldz) is In Eqs. (47} and (48), the z axis is defined to be locally
along the direction z =VHII /

[ VHII [.

k (~0)
Replacing the Fourier component sums in Eqs. (37)—(40)
by the appropriate expressions taken from Eqs. (43) and
(44), it can be seen thafin , the short- and long-time limits
the echo amplitude expressions for nonuniform gradients
are very similar to those for, uniform gradients. For unre-
stricted diffusion, G is replaced by (dHII/dz) when go-
ing from uniform to nonuniform gradients, and for ex-
tremely restricted diffusion G R /120 is replaced by

( JHllcz)
If the diffusion is isotropic one can relax the require-

ment that the direction along which Hll varies (defined to
be the z direction} stays constant over the entire sample
region. For unrestricted diffusion, the results derived here
will be more generally valid. In fact, the local z direction
can be taken to follow the direction of VHII. As a conse-
quence of this, the unrestr'icted diffusion formulas will be
valid for an inhomogeneous field which varies in an arbi-
trary way if VHII is substituted for dHII/dz. Further-
more, since the boundary conditions are unimportant for
unrestricted diffusion, the average denoted by an overbar
can be interpreted as an average over the sample volume.
If the diffusion is extremely restricted, then it is likely
that the sample as a whole is composed of many small en-
tities, with diffusion allowed only within the boundaries
of each one. In this case, the z direction must remain
fixed over the dimensions of an entity, but can vary over
larger distances. The direction z along which H~~ rs in-
tegrated is defined locally by the direction of the gradient,
i.e., z=VHII/

~ VHII ~. Using results from the above dis-
cussion, the unrestricted and extremely restricted dif-
fusion expressions for arbitrary inhomogeneous fields can
be put into more compact and transparent forms. The
unrestricted diffusion expressions, Eqs. (37) and (39), can
be written as

M
M0

r

yDt 2 R=exp — (VHII )2, t « (45)

M y t=exp — f Hlld
2

0
(47)

and the pulsed inhomogeneous field expression, Eq. (40),
can be written as

M =exp~o
Rb„5;(b,—5) &&

(48)

for a time-independent inhomogeneous field, and

R
exp[ —y D5 (b' 5 3)(VHII) ]~ 5~6

0

(46}
for a pulsed inhomogeneous field. For extremely restrict-
ed diffusion, the time-independent inhomogeneous field
expression, Eq. (38), can be written as

V. VALIDITY OF THE SOLUTIONS
AND APPLICATION TO EXPERIMENTS

In deriving expressions for the echo amplitudes, the as-
sumption that P(PD) is Gaussian was made. We now dis-
cuss the conditions under which this is a good approxima-
tion to the actua1 phase distribution, and we consider the
regime of validity of the results presented above.

Neuman' has considered the Gaussian approximation
to the phase distribution for long diffusion times. He
demonstrated that P(PD) approaches a Gaussian distribu-
tion when the time is much longer than that needed for a
spin starting at an arbitrary position to diffuse throughout
the, entire sample region, r ~~R /D. The arguments do
not depend on the type of inhomogeneous field, and apply
equally well to uniform and nonuniform gradients. Thus
the long-time expressions, Eqs. (47) and (48), should be
valid for arbitrary inhomogeneous fields.

For t «R /D, the restricted diffusion problem reduces
to diffusion in an infinite medium. Here, P('PD ) has been
shown to be Gaussian for a uniform gradient. ' In an
inhomogeneous field which does not have a uniform gra-
dient, P(PD) is not Gaussian, and Eqs. (45) and (46) are
only approximate. The actual form of P(PD) at small
times can be determined by the following simple argu-
ments, where, to be specific, we consider the time-
independent inhomogeneous field. For times short
enough such that the diffusion length is much smaller
than the distance over which the field gradient varies,
each spin can be taken to be diffusing in a locally uniform
gradient. The magnitude of the gradient seen by an indi-
vidual spin depends on its initial position. In this case the
phase distribution for the entire system can be represented
exactly as a sum of Gaussians with different variances.
The three-dimensional generalization of Eq. (9) can be ap-
plied directly to this distribution to obtain for the echo
amplitude

M 1
exp

M0 V

2Dt3
(49)

1 DtE=— [(V'H ) (VH ) ]—
2 12

The difference in the echo amplitudes found from Eqs.
(45) and (49) will always be less than E. Therefore, they
will give similar results if either the exponent is small, i.e.,
the echo has not been attenuated very much, or if the
mean-square deviation of (VHII ) is small.

To see how well Eq. (45) performs under realistic exper-
imental conditions, we have done a numerical calculation
for the sample and coil assembly shown in Fig. 2, top.
The inhomogeneous field is produced by a quadrupole coil
of the type used by Assink. In the arrangement shown

where V is the volume of the sample. Equation (49} can
be compared to the result based on the Gaussian distribu-
tion, Eq. (45). They are identical to first order, while the
first difference term is
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identical to that obtained by other authors' ' using dif-
ferent methods.

VI. CONCLUSION

1.0-

o 0.5-

0.2-

16

FIG. 2. (top) Model sample and quadrupole coil assembly.
The sample sits in a 5-mm-diam NMR tube which has a 0.5-
mm wall thickness. The wire bundles are 2 mm in diameter and
are indented 0.5 mm into the sample tube. For this coil, the

average gradient in the sample region is [(VH~~) ]'~ =8.89
g/(A cm) per turn of wire and the root-mean-square deviation of

(VH~~)' is [[(VHt~)' —(VH~[)']']' '/(VH~[)'=0. 358. The gra-
dient field contours sho'wn are for VH~~ ——4, 6, 8, and 10
g/(Acm) per turn of wire. (bottom) Spin-echo decay envelopes
for unrestricted diffusion using the above sample and coil as-
sembly. The upper curve is obtained by numerical evaluation of
Eq. (49). The lower curve is obtained from Eq. (45). Time is

measured in units of to, where tD/0 125=12/[y. D(VH~~) ].
At M/Mo ——0.5, calculated from Eq. (49), the attenuation calcu-
lated from Eq. (45) is M/Mo ——0.482.

here, the current carrying wires are deliberately positioned
very close to the sample; because of this, the gradient pro-
duced in the sample region is very strong and highly
nonuniform. Numerical computation of the decay en-
velopes (Fig. 2, bottom) shows that as long as the echo is
not attenuated to less than -0.5 of its original height, Eq.
(45) will be a good approximation to Eq. (49) for an inho-
mogeneous field of the type used during a diffusion exper-
iment. The same considerations also apply to the pulsed-
gradient case, Eq. (46).

For intermediate times, t =R /D, the actual phase dis-
tribution and the accuracy of the solutions are not known
for any form of inhomogeneous field. However, the
time-independent uniform gradient result [Eq. (32)] is

We have extended the range of external conditions for
interpretation of NMR measurements of diffusion. Using
Fourier expansions of the inhomogeneous magnetic field,
we can present a method which allows nonuniform fieId
gradients to be treated in an approximate way in either
pulsed or steady-state modifications and for restricted or
unrestricted diffusion. The results are applicable to stan-
dard spin-echo and stimulated echo diffusion measure-
ments. The geometry we have considered is rectangular;
consequently the results in the restricted diffusion case are
only a rough guide if used for other boundary conditions.
On the other hand, they are valid for unrestricted dif-
fusion in samples of arbitrary shape. This is the first cal-
culation of diffusive spin-echo attenuation for arbitrary
inhomogeneous magnetic field profiles and for a pulsed
gradient in a rectangular geometry. Our derivations
concur with previous work in the appropriate limits with
one exception; the Stejskal-Tanner calculation for restrict-
ed diffusion in a pulsed uniform gradient.

In our discussion it was necessary to make one approxi-
mation. This was that the nuclear magnetic moment
phase distribution is Gaussian. The accuracy of this ap-
proximation and of the solutions under various conditions
has been discussed.

Our results allow some improvement in efficiency of
the NMR diffusion technique. Normally, field-gradient
coils are used that optimize the uniformity of the gra-
dient, often at the expense of its strength. This is not
necessary. The most efficient design is to place the gra-
dient coil turns as close to the sample as possible. The
average squared gradient field can then be calibrated with
liquids of known diffusivity using Eq. (45) or (46). If it is
desirable to attenuate the echo to very low levels, Eq. (49)
could be used, provided the additional condition needed
for its validity is satisfied. A more complicated gradient
field calibration procedure would than be necessary. We
estimate that in sacrificing the uniformity condition of
the applied field gradient, it should be possible to gain a
factor of approximately 3 in average gradient field
strength per unit current, improving the sensitivity of dif-
fusion measurements by an order of magnitude. Of
course, the additional sample heating problems created by
such close proximity of the gradient coils would have to
be dealt with.
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