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Total transformation of electronic F-center emission into multiple-state
CN vibrational emission (4.8 p, m) in CsC1
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Optical excitation of a new F-center —CN defect complex in CsC1 produces —instead of any electronic
emission —a highly efficient five-band vibrational emission around =4.8 p, m (=0.25 eV), involving the
five lowest states of the CN anharmonic oscillator. Pulsed laser excitation shows that the energy transfer
from the excited F electron occurs mainly at 1 eV into the 'fourth CN level, producing a sequence of
hn =1 population inversions and emissions with great potential for laser application. (100) .polarization of
the CN emission reveals rotational alignment of the CN molecule by the associated Fcenter.

The simplest Oq symmetry electronic defect in ionic
crystals —the F center —can be associated with a great variety
of catiortic, anionic, or vacancy-point (or pair) defects.
These F aggregate centers of reduced local symmetry,
changed wave functions, and electron-lattice coupling' share
one common feature with F centers, i.e., highly efficient,
spectrally broad, and Stokes-shifted electronic emission
bands. Several of these systems (like F~, Frr, F2+, F2
centers) have gained significance as solid-state systems ca-
pable of tunable near-ir laser emission.

A new optical property can be introduced by associating F
centers with substitutional diatomic molecular defects. The
first realization of this, an F-center-CN defect pair on
(NNN) (110) positions [FH (CN ) defect] in KC1, shows
an electronic-absorption and emission band of similar
strength and only slight spectral broadening and red shift
compared to the F center. As a new effect, however, it
displays a very weak energy transfer from the excited F
electron to the CN internal stretching mode (E„;b,=0.25
eV), leading to n = 0 1 excitation and subsequent
m = 1 0 radiative relaxation of this CN mode. Though
this produced the first discovery of molecular vibrational
fluorescence in ionic solids, the weak coupling of the CN
to the optical F-center excitation (at E,„,= 2.3 eV) allowed
only low quantum efficiency (q =0.04) and a low energy-
conversion rate qE= rlE„;b,/E, b, = 4X 10 ' .from visible
pumping into infrared emission light.

We report here —after a systematic search —a new
Fir(CN ) center in CsC1 with a dramatic increase in the F
electron-CN vibrational coupling and great application po-
tential. Unlike the NaC1 structure of KC1, the body-
centered cesium halide structure should produce for a next-
nearest-neighbor (NNN) F-CN pair a (100) oriented com-
plex as illustrated in Fig. 1. As for F~ centers in KC1, one
can expect that the excited F-center 2p state could split into
two spectrally separate absorption transitions [FIr(1) and
Fir(2)], polariz'ed parallel and perpendicular to the pair axis.

Our first experiments confirm this [Fig. 2(a)]: CsC1 crys-
tals containing low (6X10 5 to 6&10 3) mole ratios of
CN defects, when additively colored, quenched and
cooled, show essentially only the well-known F absorption
band (with its characteristic spin-orbit split spectral struc-
ture). Irradiation into the F band around 170 K leads to
conversion into two absorption bands (0.27-eV separation),
which we attribute to migration and association of the F

centers with CN defects, forming the FH(CN ) center as
illustrated in Fig. 1. The most dramatic effect of this
F FH(CN ) conversion occurs in optical emission, as
shown by excitation spectra in both stages [Fig. 2(b)]. The
normal F emission at 1.25 eV observed in the quenched
state3 becomes totally suppressed by F FH conversion,
and is replaced by a much stronger emission around 4.8 p, m
(excited in both FH absorption bands). In both stages the
emissions were measured with broad bandpass filters (peak-
ing around 1.0 and 4.8 p, m) and with an InSb detector.
From these conditions and the observed relative emission
strength, we estimate that the FH liminescence quantum ef-
ficiency q must be considerably higher ( —4-6 times) than
the q value of the F luminescence.

Figure 3 shows the FH (CN ) emission spectra in CsCl
containing 6 & 10 and 6 & 10 mol ratio CN, both mea-
sured at two temperatures. For the low-CN -concentration
case we obtain five about equally separated emission bands,
all shifted to lower energies compared to the indicated posi-
tion of the n=1 0 emission of the isolated CN defect
[Fig. 3(a)]. As the band separation hv = 25 cm ' corre-
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FIG. 1. Structural model, wave functions, and energy levels of
the ground and excited states of the FH(CN ) center in cesium
halides.
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FIG. 4. FH(CN ) emission spectra in CsC1+3&10 4 CN
under [100] polarized excitation in the FH(2) and F~(1) band,
measured parallel and perpendicular to the excitation polarization.
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) emission bands, after 40-nsec pulsed-laser excitation. (b)
mission intensity from the five lowest excited CN vibrational

states, immediately after pulsed F&(CN ) electronic excitation,
plotted into level diagram.

tensity (focused cw laser), however, repeated FH excitation
can occur prior. to the slow CN relaxation in the F-CN
complex. This leads to partial pumping of "vibrationally ex-
cited FH centers" into higher CN levels, as we could ob-
serve by a relative increase of the 5 4 emission and an
appearance of a higher 6 5 emission band in spectal mea-
surements of the type in Fig. 3.

Figure 5 illustrates directly the population inversion
among the CN levels achieved under pulsed pumping
(strongest between n = 4 and 3), indicated by the rapid ini-
tial decay of the 4 3 emission, most likely by stimulated
transitions. Experiments with this system for powerful 4.8-

p, m laser applications are actively under way. They possibly
allow laser light tuning by the above described shift of the
inversion into higher CN levels under strong pump-light
intensity.

Efforts to fully understand this highly efficient and novel

energy-transfer process between F and CN are under
way —both theoretically and by further experiments. Reso-
nance Raman measurements of the FH(CN ) defects will

clearly decide if the FH-electron —CN vibrational coupling
occurs in the absorption process itself or during and/or after
excited-state relaxation. If the latter is the case, the elec-
tronic energy of the normal F emission (F. =1.25 eV) fits
closely to the fourth CN vibrational level excitation ener-

b
gy, suggesting a direct and highly efficient transfer pros er process

etween both. Experiments of FH centers in Csar and CsI
are already under way.
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