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Droplet wave functions for the fractional quantum Hall effect
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Trial wave functions which, in the thermodynamic limit, describe states relevant to the fractional quan-

tum Hall effect are explicitly constructed for up to eight electrons. Estimates are given for the ground-state
energies and pair-correlation functions and for the low-lying excitation energies for states associated with

the filling factors v = 3, z, and
5 . The results help explain why the filling factors v = v~ = m/(2m+ 1),

m = 1, 2, . . . , and v = 1 —um show strong quantum Hall effects.

Any W-electron wave function of a two-dimensional elec-
tron gas in a strong perpendicular magnetic field may be
written in the form'

or

Q;+t(z)=C(Q;(z)) [P„(z)] (Sb)

P„(.) -=ff (z, —;)
j(J

(2)

as a factor. Thus, any state can be represented by an an-
tisymmetric polynomial P(z) or equivalently by a sym-
metric polynomial Q(z). We take the view'-5 that the frac-
tional Hall ground states occur in a hierarchy starting from
those proposed in Laughlin's classic paper, '

P(z) = [P„(.)]"", (3)

which describe states with inverse filling factor v ' = 2p+ l.
The low-lying neutral excitations from the Laughlin states,
at least at large momentum are weakly interacting
quasiparticle-quasihole pairs. The state describing a
quasihole at the origin is'

P'"'(z) =
Q z [P„(z)]"+'

,k=1

that describing a quasiparticle at the origin is'

(4a)

P')(z) = Q 26/t)zk [P„(z)]"+'
k=1

and the quasiparticle-quasihole excitation energy is

~ -=(y'"'I Uly'"'& + &q "IUly" &
—2(y, I Ulq, &, (4c)

where U is the interaction part of the Hamiltonian and
Igt'3), IP'"'), and I&a) are, respectively, the particle, hole,
and the v ' = 2p + 1 Laughlin states.

The hierarchy of wave functions is defined by the follow-
ing equations:5

@(z,z') = P(z, z') g exp( —Izkl'/4)
k=1

where zk= xk+iyk is the electron coordinate in complex no-
tation. [All lengths will be in units of the magnetic length,
related to the density of a single full Landau level n~, by
nt= (2rraL) ').] When all electrons are restricted to the
lowest Landau level (the extreme quantum limit) P(z, z') is
a polynomial in the zk s alone and, in addition, if P(z)
represents an isotropic state this polynomial is homogene-
ous. Furthermore, it follows from the antisymmetry of
Q(z) that P(z) has the Vandermonde determinant

and

Pt/3(z) = [P.(z)]
P,i, (z) = C[P.'(.)][P.(.)]',

P„,(.) = CI:P.'(.) 1'[P.(.)]' .

(7a)

(7b)

(7c)

where for an antisymmetric polynomial C(P(z)) denotes
the particle-hole conjugate polynomial associated with P(z)
and for a symmetric polynomial

C(Q(z) ) —= C(Q(z) P„(z))/P„(z)

In Eq. (Sb) Q (z) is the adjoint of Q(z) (Refs. 2 and 9)
l7lk

and is obtained from Q(z) by the replacement of zk" by

(2ri/tizk) ". In the case of Eqs. (Sa) and (Sb), Q;+t(z)
represents a state at v;+ t = 2p;+ t+ 1 + I/(v; ' —1) in which
the quasiholes (quasielectrons) of the v ' = 2p;+ t + 1

Laughlin state have formed the state associated with Q;(z).
In particular, for Qa(z) = [P„(z)]' and pt = 1 Eqs. (Sa) and
(Sb), respectively, give the v = ~ and T states proposed by

Laughlin. These statements are justified at greater length
elsewhere5 but we should emphasize that the hierarchy has
been described in somewhat different ways by other work-
ers. ~ ~ At the nth stage of the hierarchy, we can expect n

branches of low-lying excitations, corresponding to the for-
mation of quasiparticle-quasihole pairs at each possible level
of the hierarchy. Since the quasiparticle-quasihole pairs at
the deepest level of the hierarchy have the smallest-
magnitude fractional charges, these excitations should be
lowest in energy. Obtaining estimates of these excitation
energies for I =

5 and 7 has been the main motivation for
the calculations described below. Such estimates are of crit-
ical importance, in view of the increasingly convincing ex-
perimental evidenceto " that the states with v = v = m/
(2m+1) m=2, 3, . . . and their particle-hole conjugates
show the strongest quantum Hall effects of states of those
at nonprimitive higher levels of the hierarchy. These states
correspond to a sequence, starting from the v =

3 state, in

which the ground state at one step is formed in the quasi-
particlesof the v=

3 state at the next step.1

The three ground-state wave functions we are interested
in are'2

Q, +t(z) = C(Q;(z)) [P„(z)] (Sa) The quasihole states we are interested in can be written
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compactly by defining

N

H(z) —= g z„.
The polynomials for states where the quasiholes are formed
in the parent fluid are H(z)P„(z) (v = ~,~,~) and these
can be shown to have fractional charge ve in each case. The
polynomials for the states with the quasiholes formed in the
daughter fluid are

P ' "' (z) = &(H(z) Q i (z) ) [P„(z)]' (9a)

and

For a given P' if e;= e~ for any i or j we can drop the term
since its contribution will vanish when P is summed over.
Again we need to sum over P' only but the coefficient of
the term in the product polynomial labeled by
(e&,ez, . . . , ez) permuted to (strictly) ascending order is in-
cremented by @(P')$(P'), where P' is the permutation
which results in the ascending order.

(iii) "Differentiation" of an antisymmetric polynomial by
a symmetric polynomial.

Q(kt, kz, . . . , kg) P(mt, m2, . . . , m~)

=2 g @(P)g@(P') g f;z;', (13)
P,'g'(z) = C(H(z)Q i (z)) [P„(z)]' (9b)

and these can be shown to have charge v e/2. The
quasielectron counterparts for each of these states are ob-
tained by replacing H(z) by H (z) = 11„(26/Bzk).

For a given number of electrons (N) and homogenous
degree (M) any antisymmetric polynomial can be expanded
in terms of polynomials of the form

P(mt, m2, . . . , m~) = g@(P)zt '
z2 z~ (10)

P

where

P

and

m &,&!/(m t.)
—k;)! k; ~ m

fi=
0 k)m p (i)

e=m —k.

(14a)

(14b)

~here m1 to mN are the powers in ascending order
(m, & m;+t), the sum over P is over all permutations
[P(1),P(2), . . . , P(N)] of (1,2, . . . , N) and $(P) is
the sign of the permutation. Thus, apart from the common
factor 11k~=, exp( —Izkl'/4) and the normalization factor
(2m) i 2™(mt'mz' m~!) ' P(mt mz . . . m~)
is a Slater determinant formed from the normalized single-
particle eigenstates

= z exp( —
I z I /4)/(m m! 2 + ') 'i

for the lowest Landau level in the symmetric gauge. Sym-
metric polynomials can be expanded in the same way except
that @(P) does not appear and the restriction for power or-
dering becomes m;~ m;+1. All the results discussed below
were obtained by starting from the polynomial P„(z), and
sometimes H(z), and then performing an appropriate se-
quence of symbolic manipulations involving particle-hole
conjugation and the following operations.

(i) Multiplication of an antisymmetric polynomial by an
antisymmetric polynomial.

Here we use

P(k), k2, . . . , k~)P(mt, mz, . . . , m~)

= X g y(P')zt "'. . . z~~'~', (11a)
p pr

I
P (z) = g c;P ' (z) (15)

P(z)/P„(z) —= Q(z) is a symmetrical polynomial of homo-
geneous degree M~=M —N(N 1)/2. It is readily —estab-
lished that the number of symmetric polynomials [Qt'~(z)]
in this class is also I. Using the methods described above
we can determine the elements of the Ix I matrix, T„", de-
fined by

Q "(z)P„(z)= g T„-P J'(z) .

Thus,

This is like (ii) except that the coefficient of the appropriate
term in the result polynomial is incremented by
2 Q (P') 4 (P') 11 = f

(iv) Division of an antisymmetric polynomial by P„(z).
Given N, M= /, ~

t m; there will be a finite number, say
I, of distinct antisymmetric polynomials

P(m"' m'", mP') —= P"'(i = 1, . . . , 1)

Any antisymmetric polynomial P(z) in this class can be ex-
panded

where Q(z) = g cP ' (z)/P„(z) = g d Q J (z) (17a)
e, =k+m

p (i) (»b)
The sum over P in Eq. (1la) merely generates the N! terms
in the symmetric polynomial defined by Eq. (10) [without
the @(P)]. Thus, it is necessary to sum over P' only and
to add @(P') to the coefficient in the product of the sym-
metric polynomial labeled by (et, ez, . . . , e~) permuted to
ascending order.

(ii) Multiplication of a symmetric polynomial by an an-
tisymmetric polynomial.

In this case

Q(kt, k2, . . . , kw) P(mt, mz, . . . , mw)

= g P(P) g @(P')z; '. . . z~~ .

where

I
dj gc, T, l

'—— (17b)

(2m)' fg(r) = X (Aln, noly),
,

exp

We are now ready to present our results, starting with
those for the ground-state energies and pair-correlation
functions. These we estimate from expressions which em-
phasize the center of the droplets in order to minimize
finite-size corrections. For the pair-correlation function we
take'3
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FIG. 1. Pair-correlation functions for the v =
3 Laughlin state es-

timated from droplet wave functions as described in the text. The
solid line is for N, =6, the dotted line for N, =7, and the dashed
line for N, =&. The crosses are from the 2DOCP calculations of
Ref. 15 and represent the N, = ~ limit.
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r //a

FIG. 2. Pair-correlation functions for the v =
7 hierarchy state

estimated from droplet wave functions with five (solid line), six
(dotted line), and seven (dashed line) electrons. The crosses give
the N, = ~ limit as calculated in Ref. 5.

i.e., we approximate g(r) by the correlation between two
points in the finite droplet, one of which is located at the
center. In Eq. (18) n is an occupation-number operator.
In Fig. 1 we compare pair-correlation functions calculated
from Eq. (18) for Pt/3(z) and N=6, 7, and 8 with the
N = ~ limit which is available from Monte Carlo calculation
for the two-dimensional one-component plasma. "' We
see that even for %=6 the agreement is acceptable. This
gives us confidence that our drople'ts are large enough for
their centers to be similar to the infinite system. To obtain
P2/7 (z ) and P2/5 (z ) we must first determine
gt/2(z) —= C(P2 (z) ). The number of electrons in the
particle-hole conjugate of [P„(zt, . . . , z~ ) ] is Na = 2

(N, 1). Results for Q—t/2(z) for N, =2, 3, and 4 (N/, =2,
4, and 6) are summarized in Table I. These four polynomi-
als have homogeneous degree Na(Ã„+2)/4 and among po-
lynomials of this degree, are optimal in the sense of having
small-magnitude values when pairs of coordinates are nearly
equal. In Fig. 2 we show curves for g(r) calculated for
v = ~ from droplet wave functions of 5, 6, and 7 electrons

using Eq. (19). These are compared with their infinite-
system limit as calculated in Ref. 5.

The energy per electron is estimated from g(r) using

E & dre'n(r)[1 —g(r)] (19)
N

Results are given in Table II. For v= T and ~ the values

obtained are quite close to their N=~ limits even for
N =4. This is in contrast with results presented in Rezayi
and Haldane's related recent study of electrons on the sur-
face of a sphere. They find a large systematic overestimate
of the energy-per-electron magnitude which decreases like
N as N increases. The difference, as well a difference in
the location of the first peak in the pair-correlation function
for v = T, may be traced to their use of chord rather than

geodesic distances. The energies calculated for the v=
5

state are farther from their N= ~ limit and, in fact, it has
not been rigorously proven that the X=~ limit yields the
assumed state of uniform-electron density. However, the
main conclusion we wish to draw below follows from a qual-
itative consideration and the present trial wave functions
are, at least, adequate for illustrating the relevant feature.

The quasiparticle-quasihole excitation energies we have
calculated are listed in Table III. For v=7 our estimates

Nh Ql/2( l, . z. . , N)Z
h

TABLE I. Qt/2(zt, . . . , zjv ) for W&=2, 4, 6. The normalization
h

was chosen so that the coefficients become integers. Polynomials
for the larger values of Nh are available from the authors.

P)/3(z)

—E/N(e2//aL )
2/7(z ) P2/5(z)

TABLE II. Energies per electron in units of e /aL as calculated
from Eq. (19) for various-droplet wave functions. The N = ~
numbers are from Ref. 5.

Q(0, 2)
3Q(0, 0, 3, 3)+2Q(1, 1, 1, 3)

10Q(0, 0, 0, 4, 4, 4) —9Q(0, 0, 2, 2, 4, 4, )
+ 54Q (0, 1, 1, 2, 4, 4) + 3Q (0, 2, 2, 2, 2, 4)
—15Q(l, 1, 1, 1,4, 4) + 12Q(1, 1,2, 2, 2, 4)

+ Q(2, 2, 2, 2, 2, 2)

0.373
0.3&9
0.405
0.415
0.41&

0.410

0.398

0.394

0.382

0.574

0.398

0.433
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Pt/3(z)
5/(ez/aL )

2/7( ) P2/5(z)

Excitations in parent fluid

0.0782
0.0656
0.0711
0.0872
0.1020
0.1101

0.0413

0.0626

0,2264

0.1345

Excitations in daughter fluid

TABLE III. Quasiparticle-quasihole excitation energies in units of
e2/aL. For the v =

5 and 7 states, values are given for excitations

in. both the parent fluid and for the lower-lying excitation in the
daughter fluid as discussed in the text.

are consistent with previous results. ' When the excita-
tions are made in the parent fluid our estimates for v = T
and ~ are consistent with the approximate v behavior ex-
pected on the basis of the charges of the quasiparticles and
their sizes. However, as discussed above, for the hierarchy
states at v=

5 and ~ it is possible to create lower-energy

excitations by altering only the part of the wave function as-
sociated with the daughter Laughlin fluid. The excitation
energy should be particularly low when it occurs in the
daughter fluid of the v= ~ state since the wave function
vanishes as (z; —z~)3 when z; approaches z, even for the ex-
cited state. The numerical results given in Table III esti-
mate the excitation gap for v = ~ to be about five times

smaller than for v = T. We believe this difference is the
reason that the fractional Hall-effect anomalies are much
stronger for v near the latter fraction.
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